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Antibiotics are used for disease therapeutic or preventative effects in humans and
animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can
also cause undesirable effects in microbial populations, including selection for antibiotic
resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer.
Carbadox is a veterinary antibiotic used in the US during the starter phase of swine
production for improved feed efficiency and control of swine dysentery and bacterial
swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin
in Shiga toxin-producing Escherichia coli (STEC) and a phage-like element transferring
antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on
prophages in other bacteria is unknown. This study examined carbadox exposure on
prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a
human foodborne pathogen that frequently colonizes swine without causing disease.
S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in
bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox
induction of phage-mediated gene transfer was confirmed by monitoring the transduction
of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella
strain. Furthermore, carbadox frequently induced generalized transducing phages in
multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of
chromosomal and plasmid DNA that included antibiotic resistance genes. Our research
indicates that exposure of Salmonella to carbadox induces prophages that can transfer
virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced,
phage-mediated gene transfer could serve as a contributing factor in bacterial evolution
during animal production, with prophages being a reservoir for bacterial fitness genes in
the environment.
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INTRODUCTION
Antibiotics are used to treat bacterial infections, prevent bacterial
infections, or improve feed conversion efficiency in food-
producing animals. However, antibiotics have broad and unin-
tended, sometimes called collateral, effects on microorganisms
and the microbial communities they inhabit. A microorgan-
ism’s response to antibiotic exposure can be monitored by gene
expression signatures that indicate the organism’s physiologi-
cal response to antibiotic-related stress (Brazas and Hancock,
2005). Sub-minimal inhibitory concentrations of antibiotics in
particular have been shown to have the unintended effect of mod-
ulating gene expression in various bacteria (Davies et al., 2006).
Transcription in the foodborne pathogen Salmonella enterica
serovar Typhimurium is affected by sub-inhibitory concentra-
tions of antibiotics of agricultural importance, such as quinolones
(Yim et al., 2011) and tetracyclines (Brunelle et al., 2013). In
both studies virulence genes were among those upregulated by
these antibiotics, suggesting that low concentrations of certain

antibiotics may promote rather than inhibit S. Typhimurium
survival in the host.

In the US, salmonellae are the leading cause of bacterial
foodborne morbidity and mortality for humans (Scallan et al.,
2011). The prevalence of multidrug-resistant Salmonella isolates
has increased over the last few decades, and outbreak investi-
gations indicate that antimicrobial resistant Salmonella isolates
are associated with an increased rate of hospitalization (Varma
et al., 2005a). Furthermore, patients infected with antimicrobial
resistant Salmonella have an increased frequency of bloodstream
infections and longer lengths of hospitalization (Varma et al.,
2005b). Acquisition and carriage of antibiotic resistance genes by
Salmonella is therefore a critical factor in the degree of human
morbidity and mortality caused by this pathogen.

Salmonella has acquired antibiotic resistance genes from
the environment. Its primary habitat is within the microbial
community of the intestinal tract, and this community, or gut
microbiota, is a reservoir for antibiotic resistance genes (Salyers
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et al., 2004). Sub-inhibitory antibiotics promote resistance gene
transfer among gut bacteria via transposons (Shoemaker et al.,
2001; Song et al., 2009), plasmids (Feld et al., 2008), and phage-
like gene transfer agents (GTAs) (Stanton et al., 2008). The agri-
cultural antibiotic carbadox is frequently used in the US during
the starter phase of swine production for performance enhance-
ment and control of enteric diseases. Carbadox is an antibac-
terial agent used exclusively in animals. For growth promotion
and disease prophylaxis, swine feed contains 10–25 g/ton [11–
28 mg/kg or parts-per-million (ppm)] and 50 g/ton [55 mg/kg
(ppm)], respectively. Carbadox, a quinoxaline-di-N-oxide, is
mutagenic, causing base pair substitutions and frameshift muta-
tions in DNA (Beutin et al., 1981). A range of carbadox
concentrations from 0.5 to 8 μg/ml (ppm) has been shown
to induce prophages in Shiga toxin-producing Escherichia coli
(STEC) (Kohler et al., 2000) and GTAs in Brachyspira hyo-
dysenteriae (Stanton et al., 2008). However, it is unknown what
effect carbadox would have on prophages encoded by other
bacterial species, including those native to S. Typhimurium
strains.

Salmonella strains have multiple prophage genomes inte-
grated into their chromosomes. For example, the genome of
S. Typhimurium strain LT2 contains four functional prophages:
Gifsy-1 and -2 and Fels-1 and -2 (McClelland et al., 2001; Casjens,
2011). Investigation of prophages in S. Typhimurium indicates
that many of these prophages can be induced to produce infec-
tious virions by various environmental signals including DNA
damage, antibiotics such as mitomycin C, and hydrogen perox-
ide (Schicklmaier et al., 1998; Figueroa-Bossi and Bossi, 1999;
Schmieger and Schicklmaier, 1999; Frye et al., 2005; Garcia-
Russell et al., 2009). Furthermore, prophages often encode vir-
ulence genes that enhance the pathogenesis of the bacterial
strain into which the prophage is integrated (Groman, 1955;
O’Brien et al., 1984; Cheetham and Katz, 1995; Waldor and
Mekalanos, 1996; Figueroa-Bossi and Bossi, 1999; Mirold et al.,
1999; Figueroa-Bossi et al., 2001; Ho et al., 2002; Casjens and
Hendrix, 2005).

Since Salmonella strains usually contain multiple functional
prophages and frequently colonize the swine intestinal tract, the
goal of the current study was to evaluate prophage induction and
genetic transfer in S. Typhimurium following carbadox exposure.
Our research demonstrates that carbadox induced prophage pro-
duction, thereby generating infectious virions capable of trans-
ferring virulence and antibiotic resistance genes via a prophage
genome or generalized transduction.

METHODS
BACTERIAL STRAINS, MEDIA, AND CHEMICALS
Bacterial strains (Table 1) were grown in LB (Lennox Laboratory
Supplies, Dublin, Ireland) or E minimal medium containing 0.4%
glucose (Vogel and Bonner, 1956). A 5 mg/ml carbadox (Sigma-
Aldrich, St. Louis, MO, USA) stock solution was made in 0.1 N
NaOH and used at a final concentration of 2.5 μg/ml unless noted
otherwise. Other antibiotics were used at the following concen-
trations: ampicillin (100 μg/ml), kanamycin (50 μg/ml), tetracy-
cline (20 μg/ml), chloramphenicol (30 μg/ml), and carbenicillin
(50 μg/ml).

S. TYPHIMURIUM GENE AND PROPHAGE KNOCKOUTS BY
RECOMBINEERING
Oligonucleotide primers for PCR amplification and construc-
tion of gene and prophage knockouts are listed in Table 2.
S. Typhimurium gene and prophage knockouts were constructed
by recombineering (recombination-mediated genetic engineer-
ing) as previously described (Bearson and Bearson, 2008; Bearson
et al., 2008). Briefly, the 5′ end of a gene knockout primer (bold,
Table 2) has homology to 32–44 bp of the target gene whereas
the 3′ end contains universal sequences (underlined) to amplify
an antibiotic resistance gene and truncate potential translation
of the target gene. A gene knockout primer set was used to PCR
amplify either the neo or the cat gene. Gel electrophoresis was per-
formed on the amplification product of a knockout fragment and
the respective DNA fragment was gel extracted using a Freeze’n
Squeeze column (Bio-Rad, Hercules, CA). Each knockout frag-
ment was transformed (Sambrook and Russell, 2006) into an
arabinose-induced S. Typhimurium strain containing the pKD46
plasmid (Datsenko and Wanner, 2000). Transformants contain-
ing the knockout were selected on LB agar medium containing
kanamycin. If necessary, the gene knockout with the neo marker
was moved to another strain background by transduction using
a P22 phage with a high transduction frequency. Flp mediated
deletion of the neo or cat gene was performed by transferring the
pCP20 plasmid into the knockout strain by either transduction
or transformation followed by a procedure to screen for loss of
resistance to kanamycin (Cherepanov and Wackernagel, 1995).

DETERMINATION OF PHAGE TITERS FOLLOWING CARBADOX
INDUCTION OF BACTERIAL STRAINS LYSOGENIZED WITH THE MODEL
PHAGES P22, λ, HK97, AND SF6
Bacterial strains lysogenized with P22 (UB-1790), λ (UB-1703),
HK97 (UB-1704), and Sf6 (UB-1496) were grown in LB broth at
37◦C with shaking. At a density of 1 × 108 bacterial cells/ml, car-
badox was added to a final concentration of 0.5 μg/ml (ppm). At
the indicated times after carbadox addition, aliquots of the cul-
tures were removed, shaken with several drops of chloroform to
complete lysis, and titered on the permissive host. Strains used to
titer the phage lysates were DB7004 (P22), 594 (λ and HK97), and
UB-1458 (Sf6).

CARBADOX INDUCTION OF WILD-TYPE S. TYPHIMURIUM
S. Typhimurium strains were grown in LB 0.4% glucose at
37◦C with shaking at 180 rpm. Carbadox was added to cultures
at OD600 = 0.2 at a final concentration of 2.5 μg/ml (ppm).
Incubation of cultures was continued to monitor for bacterial
cellular lysis.

PHAGE TRANSDUCTION USING CARBADOX-INDUCED S.
TYPHIMURIUM LYSATES
Supernatants from non-induced and carbadox-induced bacterial
cultures were harvested by adding 100 μl of chloroform, vortex-
ing gently, and allowing the culture to incubate for ∼15 min with
shaking. The cultures were centrifuged at 1000× g for 20 min
and the supernatant was transferred to a fresh tube containing
200 μl of chloroform for storage. Bacterial lysates were plated
to LB to ensure that viable bacterial cells were not present. An
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Table 1 | Bacterial strain list.

Strain no. Strain background Genotype Phenotype* Source

LT2 (BSX 1) S. enterica LT2 Wild-type John Foster

UB-0020 S. enterica LT2 leuA414, Fels2−, r −, sup◦ Miriam Susskind

UB-1731 (BSX 97) S. enterica LT2
TT23657

�(Fels-2 Gifsy-1 Gifsy-2) Kelly Hughes (Bunny et al.,
2002)

UB-1790 S. enterica LT2 leuA414, Fels2−, r −, sup◦ P22 UC-911 prophage KnR Padilla-Meier et al., 2012

DB7004 S. enterica LT2 leuA414, supE Winston et al., 1979

ATTC 14028s S. enterica Wild-type Lionello Bossi
(Figueroa-Bossi et al., 1997)

UK1 S. enterica UK1 Wild-type John Foster

SL1344 S. enterica SL1344 Wild-type StrR John Foster

χ4232 (BSX 8) S. enterica χ4232 Wild-type NalR Tom Stabel

NCTC13348 S. enterica DT104 Wild-type ApR, CamR, TetR, StrR, SuR, SpR Public Health England

DT104-530 S. enterica DT104 Wild-type ApR, CamR, TetR, StrR This study

DT104-745 S. enterica DT104 Wild-type ApR, CamR, TetR, StrR, KnR This study

DT104b-5414 S. enterica DT104 Wild-type ApR, CamR, TetR, StrR This study

DT120-150 S. enterica DT120 Wild-type ApR, CamR, TetR, StrR This study

DT120-305 S. enterica DT120 Wild-type ApR, CamR, TetR, StrR This study

DT120-613 S. enterica DT120 Wild-type ApR, CamR, TetR, StrR This study

DT120-7055 S. enterica DT120 Wild-type This study

DT193-1434 S. enterica DT193 Wild-type ApR, CamR, TetR, StrR, KnR, NalR This study

DT208-2348 S. enterica DT208 Wild-type ApR, CamR, TetR, NalR This study

U302-4715 S. enterica U302 Wild-type ApR, CamR, TetR, This study

BSX 7 S. enterica TT22971
(LT2)

metA22 metE551 trpD2 ilv-452 leu pto (leaky)
hsdLT6 hsdSA29 hsdB strA120/pKD46

ApR, 30◦C John Roth via Max Wu

BBS 119 S. enterica LT2 metA22 metE551 trpD2 ilv-452 leu pto (leaky)
hsdLT6 hsdSA29 hsdB strA120

BSX 7 cured of pKD46

BBS 120 S. enterica LT2 metA22 metE551 trpD2 ilv-452 leu pto (leaky)
hsdLT6 hsdSA29 hsdB strA120/pCP20

ApR, 30◦C BBS 119/pCP20

BBS 231 S. enterica LT2 metA22 metE551 trpD2 ilv-452 leu pto (leaky)
hsdLT6 hsdSA29 hsdB strA120 hisDCBHA::neo

KnR BSX 7/oBBI 197/198
(hisD-A::neo)

BBS 233 S. enterica χ4232 hisDCBHA::neo NalR, KnR BSX 8 × HT BBS231

BBS 243 S. enterica χ4232 �hisDCBHA NalR BBS 233 × HT BBS 120

BBS 561 S. enterica LT2 metA22 metE551 trpD2 ilv-452 leu pto (leaky)
hsdLT6 hsdSA29 hsdB strA120 sodCIII::neo

KnR BSX 7/oBBI 300/301 neo

BBS 565 S. enterica LT2 sodCIII::neo KnR BSX 1 × HT BBS 561

BBS 649 S. enterica DT104-745 �floR �tet �pse-1 KnR

BBS 651 S. enterica DT104-745 �floR �tet �pse-1/pKD46 KnR, ApR, 30◦C BBS 649/pKD46

BBS 998 S. enterica UB-1731 sodCIII::neo KnR BSX 97 × HT BBS 561

BBS 1004 S. enterica LT2 metA22 metE551 trpD2 ilv-452 leu pto (leaky)
hsdLT6 hsdSA29 hsdB strA120 Fels-1::neo

KnR BSX 7/oBBI 302/439 neo

BBS 1008 S. enterica LT2 �(Fels-2 Gifsy-1 Gifsy-2) Fels-1::neo KnR BSX 97 × HT BBS 1004

BBS 1010 S. enterica DT104-745 �floR �tet �pse-1 hisDCBHA::cat KnR, CamR BBS 651/oBBI 197/198 cat

BBS 1012 S. enterica DT104-745 �floR �tet �pse-1 �hisDCBHA KnR BBS 1010/pCP20

UB-1703 E. coli K-12 λ prophage Roger Hendrix (Hendrix and
Duda, 1992)

UB-1704 E. coli K-12 HK97 prophage Roger Hendrix

594 E. coli K-12 594 StrR Weigle, 1966

UB-1458 S. flexneri PE577 Wild-type Renato Morona (Casjens
et al., 2004)

UB-1496 S. flexneri PE577 Sf6 prophage Renato Morona

*Known antibiotic resistance phenotypes. Ap, Ampicillin; Cam, Chloramphenicol; Tet Tetracycline; Str, Streptomycin; Su, Sulfamethoxazole; Sp, Spectinomycin; Kn,

Kanamycin; Nal, Nalidixic acid.
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Table 2 | Primers used in this study.

Gene/phage target Primer Sequence (5′–3′) References

hisD-A oBBI 197 ctgatggcgctgcgcttatcaggcctacgtaatgcatagagcagtgacgtagtcgc This study

oBBI 198 cgttttgccagcattggatggcctccttaacgatagctgaatgagtgacgtgc

sodCIII oBBI 300 gttaaccttgtaaatgccaatggcacaggtcaaaagatcgatagctgaatgagtgacgtgc This study

oBBI 301 gtggaacagtgcctcacagagtgaattttattttataacgcatagagcagtgacgtagtcgc

Fels-1 oBBI 302 cattcattaaggaaggaaagagtatgactgtagaaaaatccgatagctgaatgagtgacgtgc This study

oBBI 439 cataaccacttaacatcttgttttatctaaataaaattaagcatagagcagtgacgtagtcgc

P22-like ST104Gp1F gacgcccgtcactgcacagtta This study

ST104Gp1R acccggcgacgcttaatctg

Bold text indicates homology to the target gene/phage.

Underlined text indicates sequence for neo or cat amplification.

overnight culture of the transduction recipient was grown in
LB or LB glucose at 37◦C with shaking. The transduction was
performed with equal volumes of both the S. Typhimurium recip-
ient strain and either the non-induced or the carbadox-induced
culture supernatant. The transduction was incubated at 37◦C
for ∼1–3 h before plating on the appropriate selective medium.
To determine the transduction frequency for transfer of the histi-
dine operon, the transduction was plated onto E glucose minimal
medium. Transduction frequency for antibiotic resistance gene
transfer (sodCIII:: neo in Fels-1, plasmid-encoded kanamycin,
and chromosomally encoded tetracycline) was determined by
plating the transduction to LB containing either kanamycin or
tetracycline.

PHAGE PURIFICATION FOR ELECTRON MICROSCOPY
Overnight cultures were diluted 1:100 in 400 ml E glucose min-
imal medium and incubated at 37◦C with shaking. At OD600 =
0.5, carbadox was added to a final concentration of 2.5 μg/ml,
and incubation continued until lysis was achieved. Phages were
purified and visualized by electron microscopy as described pre-
viously (Humphrey et al., 1997) with the following modifications.
Purified phages were negatively stained by mixing phage sam-
ples with an equal volume of phosphotungstic acid (2%, pH 7.0).
Samples were deposited on Formvar-coated 200-mesh carbon-
reinforced copper grids (Electron Microscopy Sciences, Hatfield,
PA) and viewed with a FEI Tecnai G2 BioTWIN electron micro-
scope (80 kV; Hillsboro, OR).

RESULTS AND DISCUSSION
CARBADOX INDUCES S. TYPHIMURIUM AND OTHER
Enterobacteriaceae PROPHAGES TO CAUSE PHAGE REPLICATION AND
CELL LYSIS
To test whether well-characterized prophages in S. enterica and
other Enterobacteriaceae species are induced by carbadox, we
monitored the infectious phages produced by carbadox-treated
cultures of bacterial strains that were lysogenized by the “model
system” phages P22 (S. enterica), λ and HK97 (E. coli), and Sf6
(Shigella flexneri). In each case, at least partial clearing of the cul-
ture indicated a substantial fraction of the cells in the culture
had lysed by about 2 h. All four prophages gave an approximately
three-log increase in free phage in the culture (Figure 1), with

FIGURE 1 | Carbadox induction of Enterobacteriaeae prophages.

Bacterial strains lysogenized with P22 (UB-1790), λ (UB-1703), HK97
(UB-1704), and Sf6 (UB-1496) were grown in LB broth at 37◦C with shaking.
At a density of 1 × 108 bacterial cells/ml, carbadox was added to a final
concentration of 0.5 μg/ml. Phage lysates were obtained by shaking with
chloroform at the indicated times after carbadox addition and titered on a
permissive host. Open symbols indicate cultures with no added carbadox
and closed symbols indicate cultures with carbadox added. The different
induced lysogens are indicated in the figure insert.

about 10–200 progeny phage produced per bacterium that were
initially present at the time of carbadox addition. Several concen-
trations of carbadox were tested, and 0.5 μg/ml (ppm) is shown
as the minimum that gave good induction of P22. Carbadox
induces the P22 Salmonella prophage as well as E. coli and S.
flexneri prophages under these conditions, and this is not sur-
prising given its apparent mechanistic similarities to the action
of mitomycin C. Carbadox is a DNA damaging agent, and DNA
damage induced by mitomycin C is known to induce the bacte-
rial SOS pathway, which induces prophages. It is likely capable of
induction of prophages from many if not all Enterobacteriaceae
bacterial species, as well as more distantly related bacterial phyla.

Frontiers in Microbiology | Evolutionary and Genomic Microbiology February 2014 | Volume 5 | Article 52 | 4

http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology/archive


Bearson et al. Carbadox induced gene transfer in Salmonella

To examine prophage induction by carbadox in wild-type
S. Typhimurium isolates containing their natural prophages,
we initially examined S. Typhimurium LT2, a strain that is
widely used in the study of Salmonella genetics in the labora-
tory (Lilleengen, 1948). Cultures of wild-type LT2 in early log
phase growth were exposed to carbadox. The bacterial density
of the culture abruptly decreased at ∼2 h following exposure to
2.5 μg/ml (ppm) of carbadox (Figure 2). Mitomycin C exposure
is known to result in the induction of prophage Fels-1 from strain
LT2 (Garcia-Russell et al., 2009). The fact that carbadox induces
wild-type phage λ (above), which is only known to be induced
by the SOS function of activated RecA protein (Little, 1993),
strongly supports this mechanism for carbadox-mediated induc-
tion. Thus, the decrease in LT2 cell density is almost certainly due
to bacterial cell lysis resulting from prophage induction.

LT2 is known to carry four prophages. Amplification of the
integrase gene from DNA extracted from phage heads indicated
that at least one of these, the Fels-1 prophage, was induced fol-
lowing carbadox exposure (Stanton and Humphrey, unpublished
data). The BBS 1008 strain is an LT2 derivative from which all four
prophages have been deleted. Following exposure of BBS 1008
to 2.5 μg/ml of carbadox, the bacterial culture density did not
decrease (Figure 2), indicating that these prophages are respon-
sible for the bacterial cell lysis phenotype induced by carbadox
exposure.

Examination of the purified phages by electron microscopy
demonstrated the presence of mostly empty phage heads in the
carbadox-induced culture of LT2 (data not shown). Treatment
of S. Typhimurium LT2 and other strains with mitomycin C is
known to induce Fels-1 plaque-forming phages with poor effi-
ciency (Figueroa-Bossi and Bossi, 1999), so it is perhaps not
surprising that whole phage particles were not seen. Nonetheless,
phage heads were either greatly reduced or were not observed in
the absence of carbadox for the LT2 strain and in the presence of
carbadox for BBS 1008. These results confirm prophage induction
in a natural wild-type S. Typhimurium isolate following carbadox
exposure.

FIGURE 2 | Carbadox exposure of wild-type S. Typhimurium LT2

results in bacterial cell lysis. S. Typhimurium strains (LT2 and BBS
1008) were grown in LB glucose medium at 37◦C with shaking. At
OD600 = 0.2 (arrow), carbadox (2.5 μg/ml) was added to cultures
indicated by the closed symbols. The open symbols indicate control
cultures without carbadox.

CARBADOX EXPOSURE OF S. TYPHIMURIUM LT2 PROMOTES PHAGE
TRANSDUCTION INTO A SUSCEPTIBLE BACTERIAL HOST
To monitor phage transduction frequency, a neo gene was inserted
by recombineering into the putative virulence factor sodCIII on
the Fels-1 prophage of strain LT2 to create strain S. Typhimurium
BBS 565. The carbadox-induced phage lysate from BBS 565
(LT2 sodCIII::neo) efficiently transduced the kanamycin-sensitive
strain BBS 243, as demonstrated by 8 × 103 kanamycin-resistant
transductants per ml of lysate. In the absence of carbadox
induction, BBS 243 remained susceptible to kanamycin follow-
ing transduction with the control supernatant from BBS 565.
This indicates that carbadox-induced prophages can carry genetic
material from a donor into a recipient bacterial strain.

CARBADOX-INDUCTION OF MULTIDRUG-RESISTANT S. TYPHIMURIUM
DT104 RESULTS IN GENERALIZED TRANSDUCTION OF CHROMOSOMAL
AND PLASMID DNA
Generalized transduction involves the packaging of random host
DNA (genomic or plasmid) into a bacteriophage particle and the
transfer of that DNA to a recipient strain. Bacteriophage P22 is a
generalized transducing phage that is commonly used for genetic
experiments with Salmonella (Zinder and Lederberg, 1952;
Kropinski et al., 2007). Although S. Typhimurium LT2 contains
multiple prophages, it does not contain a P22-like prophage that
performs generalized transduction. Some multidrug-resistant S.
Typhimurium isolates like phage type DT104 harbor a P22-
like prophage. This prophage has been described as PDT17,
ST104, and prophage 1 (Schmieger and Schicklmaier, 1999;
Tanaka et al., 2004; Cooke et al., 2008). To determine whether
carbadox exposure could induce generalized transduction, S.
Typhimurium DT104 NCTC13348 was exposed to carbadox. The
culture lysed, and the phage-containing supernatant was har-
vested. The BBS 243 strain, a histidine auxotroph lacking the
genes hisDCBHA, could be successfully transduced to his+ with
this lysate. Generalized transduction was observed by growth on
minimal medium lacking histidine, demonstrating the transfer of
the his operon from the his+ donor (DT104) to the his− recipient
(BBS 243) (Table 3). The results show that carbadox exposure of
multidrug-resistant S. Typhimurium DT104 can stimulate gener-
alized transduction and therefore chromosomal gene transfer.

The Salmonella genomic island-1 (SGI-1) is ∼43 kb and
typically contains chromosomally-encoded resistance genes for
multiple antibiotics including ampicillin, chloramphenicol, and
tetracycline within an integron (Boyd et al., 2001; Mulvey et al.,
2006). We attempted to transduce SGI-1 but were unsuccess-
ful. Due to the size of SGI-1, transduction of this entire island
by P22 into another Salmonella strain that does not already
contain a segment of SGI-1 is inefficient [P22 packages about
43.4 Kbp of DNA (Kropinski et al., 2007)]. To overcome this
experimental limitation, we utilized a DT104 derivative (BBS
1012) as our recipient strain. The BBS 1012 strain is a his-
tidine auxotroph that has an internal deletion within SGI-1,
resulting in sensitivity to ampicillin, chloramphenicol, and tetra-
cycline due to the loss of multiple antibiotic resistance genes.
In addition, BBS 1012 contains a natural plasmid that con-
fers kanamycin resistance. Transduction of BBS 1012 with the
carbadox-induced phage lysate from wild-type S. Typhimurium
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Table 3 | Average frequency of generalized transduction per 0.5 ml of

lysate from numerous S. Typhimurium donor strains into BBS 243.

Salmonella donor strain Not induced Carbadox induced ± s.e.m.

LT2 0 0

UB-1731 0 0

ATTC 14028s 0 0

UK1 0 0

SL1344 0 0

χ4232 0 0

DT104 (NCTC13348) 0 6 ± 1.7

DT104-530 0 291 ± 100.8

DT104b-5414 <1 117 ± 52.8

DT120-150 0 124 ± 19.3

DT120-305 <1 420 ± 94.8

DT120-613 <1 86 ± 16.7

DT120-7055 0 0

DT193-1434 0 0

DT208-2348 0 0

U302-4715 0 0

DT104-530 (kanamycin sensitive) resulted in the transfer of tetra-
cycline resistance following selection on tetracycline-containing
LB agar medium. Transduction into the BBS 1012 strain was
confirmed by growth on medium containing kanamycin and
the absence of growth on minimal medium without histidine.
Furthermore, the initial selection of BBS 1012 on LB medium
containing tetracycline resulted in 100% co-transduction of resis-
tance to both chloramphenicol and carbenicillin. The floR and
pse-1 genes encode resistance to chloramphenicol and carbeni-
cillin, respectively, and these genes are located adjacent to tetG on
SGI-1. These results indicate that exposing multidrug-resistant S.
Typhimurium DT104 to carbadox can promote the transfer of
numerous genes co-located within SGI-1 that encode resistance
to multiple classes of antibiotics. Thus generalized transduc-
tion could participate in bacterial strain evolution by providing
an assortment of antibiotic resistance genes for recombination
within this important genomic region.

Although the SGI-1 integron in S. Typhimurium DT104
encodes multiple antibiotic resistance genes, some strains con-
tain additional antibiotic resistance genes encoded on plas-
mids. Transduction of BBS 243 (kanamycin sensitive) with the
carbadox-induced phage lysate from S. Typhimurium DT104
(745) resulted in bacterial growth on LB medium contain-
ing kanamycin, demonstrating the transfer of the plasmid
encoding kanamycin resistance. Thus, carbadox exposure pro-
moted generalized transduction of this natural plasmid as
well as chromosomally-encoded antibiotic resistance genes in
multidrug-resistant S. Typhimurium DT104.

CARBADOX-INDUCED GENE TRANSFER IS A GENERAL PHENOMENON
THAT OCCURS IN MULTIDRUG-RESISTANT S. TYPHIMURIUM STRAINS
DT120 AND DT104
Since the prevalence of multidrug-resistant S. Typhimurium
strains has increased over the last few decades, we wanted to
determine whether carbadox-induced gene transfer is unique to

S. Typhimurium DT104 or is a general property of multidrug-
resistant S. Typhimurium strains. Phage lysates were harvested
from several S. Typhimurium phage types following carbadox
exposure and used to transduce the recipient strain BBS 243
(�hisDCBHA) with selection on E glucose minimal medium; sev-
eral different phage types were investigated as these, by definition
(i.e., DT), should have varying prophage content. Carbadox-
induced phage lysates from several S. Typhimurium DT104 and
DT120 isolates resulted in growth on minimal medium, indi-
cating the transfer of the his operon to BBS 243 (Table 3). The
results suggest that generalized transduction following carba-
dox induction is a common phenomenon for multidrug-resistant
S. Typhimurium DT104 and DT120.

We PCR amplified the P22 gene 1 (encoding gp1/portal
protein) from several of the DT104 and DT120 isolates that
we have shown are capable of generalized transduction, sug-
gesting that these multidrug-resistant isolates contain a P22-
like prophage. To confirm that a phage capable of generalized
transduction is required for carbadox-induced gene transfer,
the P22-like prophage (prophage 1) was deleted from DT104
using recombineering. Gene transfer into BBS 243 was elim-
inated following transduction with a carbadox-induced phage
lysate from the DT104 P22-like prophage knockout strain, indi-
cating that the P22-like prophage is responsible for the gener-
alized transduction from S. Typhimurium DT104. In support
of this, the S. Typhimurium strains LT2, UK1, SL1344, and
χ4232 (frequently investigated strains in the literature) are inca-
pable of generalized transduction and do not contain a P22-like
prophage. In contrast, genome scanning has identified integrated
P22-like prophages in the genome sequences of isolates of S.
enterica serovars Arizonae, Cholerae, Dublin, Hadar, Heidelberg,
Houtenae, Johannesburg, Mississippi, Montevideo, Newport,
Paratyphi, Rubislaw, Schwarzengrund, Tennessee, Typhimurium,
Uganda, Wandsworth, and Welteverden; this suggests that P22-
like prophages are common among Salmonella serovars and the
potential for strain evolution due to generalized transduction is
perhaps underappreciated. The capability of generalized trans-
duction among Salmonella serovars is reinforced with the knowl-
edge that P22 phage lysates are known to be stable for many years
in the laboratory. Likewise, an ecological significance of phages in
the environment is that DNA encapsulated within a phage head
is protected from nucleases and therefore can survive outside of a
bacterial host until encountering a recipient.

Swine environments, including swine manure, have been
shown to contain abundant phage populations (McLaughlin
et al., 2006; Wang et al., 2010). Bacteriophage populations present
in manure could be derived principally from prophage induction
of bacteria present in manure or a combination of induction from
within the swine gastrointestinal tract and in manure. Prophage
induction can be stimulated by various environmental signals
and stresses including ultraviolet light, hydrogen peroxide, mit-
omycin C, and carbadox. Analysis of fecal phage metagenomes
from medicated swine administered in-feed antibiotics [carbadox
or ASP250 (chlortetracycline, sulfamethazine, and penicillin)]
compared to non-medicated swine suggested that prophages were
induced with antibiotic treatment (Allen et al., 2011). Similar
work with mouse fecal phage metagenomes has shown that
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antibiotic treatment caused an increase in the abundance of
phage-encoded antibiotic resistance genes (Modi et al., 2013).
This suggests that antibiotic-induced phage-mediated transduc-
tion may contribute to antibiotic resistance gene transfer during
animal production. Relatively little information is available con-
cerning the extent of carbadox-induced prophage from bacteria,
as Salmonella is only the third bacterial genus for which this
response has been described (Kohler et al., 2000; Stanton et al.,
2008). Additional information is needed to understand the capac-
ity for carbadox to induce prophages during swine production
since there is a potential for dissemination into the environment
following manure application onto agricultural soils.

CONCLUSIONS
Prophages are a potential environmental reservoir for bacterial
fitness genes and may drive the emergence of new epidemic clones
(Brussow et al., 2004). Prophages integrated in the genomes
of Salmonella strains can encode genes associated with viru-
lence or antimicrobial resistance (Figueroa-Bossi and Bossi, 1999;
Figueroa-Bossi et al., 2001; Moreno Switt et al., 2013). Therefore,
the pathogenic potential of a particular Salmonella strain depends
in part upon the prophage repertoire integrated into the bacterial
genome, and acquisition of prophages could conceivably result in
enhanced bacterial virulence or survival during host colonization.
In this report, we demonstrate that exposure of several different
S. Typhimurium isolates to the agricultural antibiotic carbadox
resulted in the production of transducing particles capable of
transferring the individual phage genome as well as chromosomal
and plasmid DNA by generalized transduction.
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