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ABSTRACT

SplicePort is a web-based tool for splice-site
analysis that allows the user to make splice-site
predictions for submitted sequences. In addition,
the user can also browse the rich catalog of features
that underlies these predictions, and which we have
found capable of providing high classification
accuracy on human splice sites. Feature selection
is optimized for human splice sites, but the selected
features are likely to be predictive for other
mammals as well. With our interactive feature
browsing and visualization tool, the user can view
and explore subsets of features used in splice-site
prediction (either the features that account for the
classification of a specific input sequence or the
complete collection of features). Selected feature
sets can be searched, ranked or displayed easily.
The user can group features into clusters and
frequency plot WebLogos can be generated for
each cluster. The user can browse the identified
clusters and their contributing elements, looking
for new interesting signals, or can validate pre-
viously observed signals. The SplicePort web
server can be accessed at http://www.cs.umd.edu/
projects/SplicePort and http://www.spliceport.org.

INTRODUCTION

Accurate splice-site prediction is a critical component of
eukaryotic gene prediction. Whole genome analysis of a
single organism or comparison of genomes depends on
accurate gene annotation. However, annotation is still
limited by our ability to properly identify splice sites (1).
We have developed a feature generation algorithm (FGA)
for sequence classification (2). FGA automatically
searches through a large space of sequence-based features
to identify the predictive features. The identified features
are used by a support vector machine classifier and
produce accurate splice-site prediction on human

pre-mRNA sequence data. In this work, we present a
web-based interactive tool, SplicePort, which allows the
user to explore the FGA features and allows the user to
make splice-site predictions for submitted sequences based
on these features.
Existing Internet resources, such as GeneSplicer (3),

NetGene (4,5), MaxEntScan (6) and SplicePredictor (7),
offer online splice-site prediction, providing the user with
a list of predicted constituent splice sites for each input
pre-mRNA (or genomic) sequence. However, a researcher
may also be interested in identifying the signals used
by the computational method to predict the splice site.
Any element in the DNA sequence of a gene that helps to
specify the accurate splicing of the pre-mRNA sequence is
a splicing signal. Branch sites, pyrimidine tracts, exon
splicing enhancers and silencers are all examples of known
functional signals in the neighborhood of splice sites
in eukaryotic genomes (see (8) for review). SplicePort,
besides splice-site prediction, allows the user to explore all
the FGA-generated features. We hope this will provide a
useful resource for the identification of signals involved
in specific splicing events, and possibly for the discovery of
previously unappreciated splicing motifs.

THE FEATURE GENERATION ALGORITHM

In earlier work, we developed the FGA framework, which
automatically identifies sequence-based features important
for a sequence classification task (2). We applied this
method to the task of splice-site prediction for the human
genome (formally, the classificiation of AG dinucleotides
into acceptors and non-acceptors and the classification of
GT dinucleotides into donors and non-donors). FGA
achieves very high accuracy compared to GeneSplicer (3),
one of the leading programs in splice-site prediction.
At the 95% sensitivity level, we were able to achieve
improvements of 43.0% and 50.7% in the reduction of the
false positive rate for acceptor splice sites and donor splice
sites respectively (2), [Islamaj, R. et al., submitted].
Our data is a collection of 4000 pre-mRNA human

RefSeq sequences. We refer to these sequences as the
training sequences. For our experiments, we applied a
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3-fold cross-validation scheme, and we tested our final
splice-site model on the B2Hum data set supplied by the
GeneSplicer team (3). This data set is a collection of 1115
pre-mRNA human sequences which do not overlap with
our training sequences.
The core of the FGA method is a focused FGA that

constructs complex features from simple sequence ele-
ments, such as single nucleotides and their position.
Optimal features are selected after each generation step in
order to keep the number of features manageable, and
multiple rounds of feature construction and feature
selection are applied in an iterative fashion. The feature
types that we consider capture compositional and posi-
tional properties of sequences. A compositional feature is
a string of k consecutive nucleotides (k-mer), where k
ranges from 1 to 6. Compositional features include
upstream, downstream and general k-mers. For each
compositional feature, we count the number of times
that feature is present in the neighborhood of the splice
site. The length of the neighborhood region for the
upstream or the downstream k-mer feature type is 80 nt,
while that of the general k-mer is 160. The position-specific
k-mer feature represents the substring appearing at
positions i, i+ 1, . . . , i+ k� 1 in the sequence.
Conjunctive positional features are complex features
constructed from conjunctions of position-specific 1-mer
features. An n-positional feature consists of a conjunction
of n nucleotides in n different positions co-occurring in the
sequence. This type of feature is intended to capture the
correlations between different nucleotides in non-
consecutive positions in the sequence. For each positional
feature we record the absence or presence of that feature
in the neighborhood of the splice site.
For the human RefSeq training sequences, the FGA

algorithm selected 3000 features for acceptor splice-site
prediction and 1600 features for donor splice-site predic-
tion. The acceptor site model contains 1362 compositional
features and 1638 positional features, while the donor
site model contains 764 compositional features and
836 positional features. We call these sets of features
the acceptor model feature set and the donor model
feature set.
The model feature sets then are used as input for the

learning algorithm. The learning algorithm we use is
C-modified least squares (CMLS), described by Zhang
and Oles in (9). CMLS is a max-margin method similar to
support vector machines. Relative to standard support
vector machines, CMLS has a smoother penalty function
which allows calculation of gradients that provide faster
convergence (9).
For the splice-site prediction problem, two separate

CMLS classifiers are required, one for acceptor and one
for donor sites. After the training phase of these classifiers,
each feature fi in the model feature sets is assigned a
weight wi. These weights define the decision boundary of
the linear classifier that optimizes the performance.
We also use these weights to derive feature ranking.
When the classification model is given a new input

sequence (the sequence is in the format [80 nt +AG/GT
+80nt]), initially it checks whether it is a candidate
acceptor (AG) or a candidate donor (GT) splice-site

sequence. Then, the classifier checks the sequence if it
contains any of the features previously identified by the
FGA algorithm in the corresponding model feature set.
The classifier produces a final score for the input sequence
adding the weights of each present feature. This score,
assigned by SplicePort and displayed in the output, is best
understood in terms of the splice-site classification
problem itself.

In Figure 1, we use the B2hum data set supplied by the
GeneSplicer team to show the sensitivity and specificity
differences for different FGA score thresholds. We also
provide a quantitative comparison between the two
algorithms. Figure 1A depicts acceptor splice sites and
Figure 1B depicts donor splice sites.

SPLICEPORT

This feature generation and classification model is the
core of the SplicePort web server (http://www.cs.umd.edu/
projects/SplicePort and http://www.spliceport.org). From
the SplicePort initial page, the user has two options:
splice-site prediction and motif exploration. The splice-site
predictor receives the user’s input sequence and reports all
the predicted constituent splice sites. The motif explorer
can be used to investigate acceptor and donor model
feature sets identified in the input sequence or the sets of
features FGA has discovered in the training sequences.
The latter allows the user to browse the entire collection of
positional features identifiable during the training phase.
We believe our motif exploration is novel and useful.
While we illustrate its use on the FGA selected features,
we believe this interface is general and can be used to
explore other feature types (10–12), and features selected
by other learning algorithms (13,14). In Figure 2, we
summarize the functionality of SplicePort and we describe
its components in greater detail in the following sections.

SPLICE-SITE PREDICTION

Using the splice-site predictor is straightforward. The user
inputs a sequence in FASTA format. The sequence can be
cut and pasted directly into the window, or uploaded as a
FASTA file. The server is case insensitive and accepts
either DNA (T) or RNA (U) sequences as input. The
length of the submitted sequence determines the time
required for prediction (�1 s/kb of submitted sequence).
The predictor uses a splice-site neighborhood of
80 nt upstream and 80 nt downstream for a constituent
splice-site. After the user submits the input sequence file,
the results of splice-site prediction are displayed in
a tabular format. Figure 3A shows a sample output.
The information listed for each prediction is: donor/
acceptor splice site, the location in the sequence, a short
subsequence centered at that location and the FGA score.
The sensitivity value can be changed by entering a new
score threshold. This value by default is 88.5% for donor
sites and 88.8% for acceptor sites (corresponding to
score=0). After each change, the new sensitivity and false
positive rate values are calculated and displayed to the
user, as shown in Figure 3B. Finally, the user can select
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Figure 1. Sensitivity, specificity, false positive rate and precision vary with FGA score. (A) Acceptor sites. (i) Sensitivity, TP/(TP+FN), and
Precision, TP/(TP+FP), vs FGA score. (ii) Specificity, TN/(TN+FP), and False Positive Rate, FP/(TN+FP), vs FGA score; (iii) FGA results are
compared with those of GeneSplicer. False positive rate is shown as a function of sensitivity. These results show that FGA produces fewer false
positives for every sensitivity threshold. (iv) Precision is shown as a function of sensitivity. These results show that FGA produces higher precision for
every sensitivity threshold. These differences are highly statistically significant. (B) Donor sites (Graphs are as in A).
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one of the predictions to investigate the identified signals,
as described in the following section.

BROWSING FEATURES ON WHICH A SELECTED
PREDICTION IS BASED

SplicePort allows the user to explore potential splicing
signals in the vicinity (160 nt) of any particular splice site
(AG or GT) by examining the features that contribute to
the score assigned to that potential site. The signals of the

acceptor model feature set or the donor model feature set
can be listed, browsed and visualized by selecting the
Browse Features option.

Features are grouped into compositional features and
positional features. Compositional features comprise
general, upstream and downstream k-mers. They can all
be listed, clustered and sorted by their weight. Positional
features comprise position-specific nucleotides, position-
specific k-mers and conjunctive positional features in the
160 nt neighborhood. There are a variety of browsing
possibilities for this set of features. The user specifies an
interval within the 160 nt window by giving the start and
the end points. All the positional features that are
associated with positions within this interval are listed.
They are shown relative to the splice-site location,
providing the user with a visual representation of the
position of the feature and are ordered by the absolute
value of their individual weights. SplicePort supports a
rich catalog of visualization tools; the user may further
group these features, draw histogram and WebLogo (15)
frequency plots, search by motif and set weight threshold.

As an example shown in Figure 4, we used SplicePort to
examine exon 7 of the homologous SMN1 and SMN2
genes, a well-studied case where a single nucleotide
difference at position 6 of the exon accounts for reduced
inclusion of this exon in SMN2 (see (16) for review).
SplicePort scores the SMN1 exon 7 acceptor and donor
1.78 and 0.02, respectively and the single nucleotide
change in SMN2 reduces these numbers to 1.61 and

Figure 2. Organization of the SplicePort interactive interface. On the
starting page a user chooses between splice-site prediction and motif
exploration. After potential splice sites are predicted and scored, the
features on which those predictions are based can then be explored.

Figure 3. Typical output example of the predicted splice sites. (A) For each input sequence SplicePort displays the sensitivity value (circled in the
figure). From this screen, the user can select a predicted site (we have selected the donor site at location 139 for illustration) and click on Browse
Features, which we show with the arrow, to explore the present features. (B) This figure depicts the situation when the user prefers to explore
acceptor or donor splice-site locations separately. The user can browse the features that are present in the checked sequence by clicking on Browse
Features, which we show with the arrow. The user can change the score threshold, which we have circled on this screen, and list all the sites that
score higher than the threshold. The sensitivity and false positive rate values are shown below the FASTA sequence description line.
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�0.18. The feature browser shows that the difference in
donor scores is primarily due to the negatively scoring
upstream feature TAG (�0.18).

MOTIF EXPLORATION TOOL

Users can explore general features discovered by FGA for
human RefSeq sequences using the Motif Exploration
Tool. In order to facilitate motif discovery, the Motif
Exploration Tool presents a much richer set of features
than the sequence-specific feature browser (which presents
only those features used to score the submitted sequence).
We use a much richer set of features than existing splice-
site tools, and focus on these rather than the simple
compositional features. Each feature set we considered is
the conjunction of a k-mer and a number of arbitrary
position-specific nucleotides. We denote a specific set
using the notation K-mer+X; for example, 4-mer+2 is
the set of 4-mers together with two position-specific
nucleotides.

Features of this type may be useful to discover non-
adjacent correlations between the different nucleotides in
different positions. Each of these sets contains 5000 top
ranking features according to the Information Gain
criterion.

Figure 5 illustrates a portion of the Motif Explorer.
The figure on the top shows how the user selects a feature
set and specifies an interval to browse the features.
The figure on the bottom shows the results. The features
are shown with respect to the splice-site location, and they
are ordered according to the absolute value of their
weight. The weight of a feature is learned by the
classification algorithm during training. These weights
can be used to order and group the features. A positively
weighted feature is a feature mostly found in splice-site
sequences, and a negatively weighted feature is a feature
more commonly found in non-splice-site sequences.
Figure 6 shows the results of WebLogo and Histogram
functions. The user can view a depiction of the positively
and negatively weighted features in the specified interval
by generating a WebLogo frequency plot. The histogram
allows the user to visualize the role of each nucleotide for
each position in the specified interval. We represent this
with four different bars, one for each nucleotide, for each
position. The height of each bar is the accumulated weight
for that position-specific nucleotide and is calculated using
the weights of all the features that have that nucleotide at
that position.
Because the features generated with the FGA algorithm

are position-specific features, we may find the same
pattern of nucleotides repeated in a given interval.

Figure 4. Splice-site prediction output of SplicePort for SMN1 (A) and SMN2 (B) exon 7 gene sequences with 1kb nucleotides flanking region. The
acceptor site of exon 7 is at position 1,000 and the donor site is at position 1,054. We see that the single nucleotide difference at position 6 of the
exon reduces the acceptor score from 1.78 to 1.61 and the donor score from 0.02 to �0.18.
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Interval Features refer to a set of features which share the
same pattern of nucleotides but differ in starting positions.
The user can list all the interval features for a specified
interval and feature set. SplicePort displays the number of
individual features as well as their average weight. To
obtain the list of all individual features shown relative to a
splice site in their respective locations, the user can use the
Search by Motif option. This option also facilitates the
search for known motifs or partial motifs. The user enters
a short sequence and is returned a list of all features in the
specified interval that contain that sequence.

In addition, for each feature set and specified interval
we perform a clustering procedure based on edit distance.
We identify similar features and the tool groups them
together generating WebLogo frequency plots to represent
them. The user can browse these identified clusters
and their individual elements by selecting Identified
Motifs. This option may help the user identify known
functional motifs and may guide them in the search for
new ones.

An illustrative example inspired by the case of SMN1
and SMN2 is a comparison of TAG and CAG among
5-mer features located in the �60 to �30 interval relative
to donor sites. Features containing TAG are all negative,
with multiple examples of TTTAG. Conversely, CAG
shows primarily positive features. This example is shown
in Figure 7.

SUMMARY

The SplicePort server is a versatile tool with two main
functions. First, the user can perform accurate splice-site
prediction on a sequence which they input to the tool,
with the flexibility of exploring all the putative splice-
site locations, their score, corresponding sensitivity and
false positive rate values. Second, the user can explore the
motifs for the requested location in the input sequence
and browse the complete collection of identified motifs
for both acceptor and donor splice sites. This tool can
both help a user decide whether there is a splice site in
the given sequence, and it can also allow the user to
identify elements of functional motifs. An additional
benefit of a computational exploration approach such as
SplicePort is that it can be readily implemented in other
genomes.

Figure 5. Motif Exploration Tool. This figure shows initially the
selection of the feature set 4mer+2 in the branch site interval.
SplicePort outputs the list of features in the specified interval. Each
feature is aligned to the splice-site position and has a weight assigned to
it by the FGA algorithm. The acceptor splice site is depicted in the
output with the capitalized dinucleotide AG.

Figure 6. Typical outputs for motif exploration. These are features generated for acceptor splice-site prediction: (A) shows WebLogo frequency plots
of features when we select the interval [�20,1], and (B) shows the histogram generated from accumulated weights of features when we select the
interval [�15, 6]. The little arrows denote the location of acceptor splice-site consensus dinucleotide AG
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In summary, SplicePort allows the user to discover useful
insight in pre-mRNA splicing signals. This data analysis
tool provides the community of researchers investigating
pre-mRNA splicing with a powerful and flexible resource
for the identification of functional elements. Motif explora-
tion enables researchers to rapidly explore the space of
computationally identified signals and effectively pose
hypotheses for experimental test and validation.
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