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Abstract: There has been a growing interest in the literature on multiple environmental risk factors
for diseases and an increasing emphasis on assessing multiple environmental exposures simultane-
ously in epidemiologic studies of cancer. One method used to analyze exposure to multiple chemical
exposures is weighted quantile sum (WQS) regression. While WQS regression has been demonstrated
to have good sensitivity and specificity when identifying important exposures, it has limitations in-
cluding a two-step model fitting process that decreases power and model stability and a requirement
that all exposures in the weighted index have associations in the same direction with the outcome,
which is not realistic when chemicals in different classes have different directions and magnitude
of association with a health outcome. Grouped WQS (GWQS) was proposed to allow for multiple
groups of chemicals in the model where different magnitude and direction of associations are possible
for each group. However, GWQS shares the limitation of WQS of a two-step estimation process
and splitting of data into training and validation sets. In this paper, we propose a Bayesian group
index model to avoid the estimation limitation of GWQS while having multiple exposure indices
in the model. To evaluate the performance of the Bayesian group index model, we conducted a
simulation study with several different exposure scenarios. We also applied the Bayesian group index
method to analyze childhood leukemia risk in the California Childhood Leukemia Study (CCLS). The
results showed that the Bayesian group index model had slightly better power for exposure effects
and specificity and sensitivity in identifying important chemical exposure components compared
with the existing frequentist method, particularly for small sample sizes. In the application to the
CCLS, we found a significant negative association for insecticides, with the most important chemical
being carbaryl. In addition, for children who were born and raised in the home where dust samples
were taken, there was a significant positive association for herbicides with dacthal being the most
important exposure. In conclusion, our approach of the Bayesian group index model appears able to
make a substantial contribution to the field of environmental epidemiology.

Keywords: mixture analysis; environment; cancer; chemical mixtures

1. Introduction

There are more than 80,000 chemicals on the market in the United States alone and
some are found in many consumer products [1]. Hence, individuals are exposed to chemical
mixtures daily. Traditionally, epidemiologic studies of cancer and environmental chemical
exposures have evaluated chemicals independently using a single-chemical regression
approach [2–8]. More recently, there has been a growing interest in the literature on un-
derstanding the joint effects of multiple environmental risk factors for diseases [9–12] and
an increasing emphasis on assessing multiple environmental exposures simultaneously in
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epidemiologic studies of cancer [13,14]. In this paper, we focus on exposure to multiple di-
verse environmental chemicals and develop a statistical method that expands on weighted
quantile sum regression (WQS) [14] to model cancer risk. WQS regression was developed
to identify the truly “bad actors” when modeling exposure to a chemical mixture in a
risk assessment setting. This constrained regression method is designed to accommodate
highly correlated data that create collinearity issues with traditional regression methods.
In WQS regression, a weighted index of exposures is estimated, where the weights for each
chemical exposure are constrained to be between 0 and 1 and sum to 1. This approach has
been used in many studies of environmental mixtures and health outcomes. For example,
WQS was used to model non-Hodgkin lymphoma risk related to a mixture of 27 chemicals
in the NCI-SEER NHL study [15].

While WQS regression has been demonstrated to have good sensitivity and specificity
when identifying important exposures [14,16], it has certain limitations. One limitation
of WQS regression is that it uses a two-step model fitting process and a splitting of data
into training and validation sets that decreases power and stability with small datasets that
are common in epidemiology. Another limitation of WQS regression is that all chemical
exposures in the weighted index are constrained to have associations in the same direction
with the outcome. This constraint does not allow for the realistic situation when chemicals
in different classes have different associations with a health outcome in both direction and
magnitude. For example, there is evidence that insecticides have a negative association
with non-Hodgkin lymphoma (NHL) [2], while organochlorine compounds such as some
PCB congeners have a positive association with NHL [3]. Considering the multitude of
diverse chemicals to which individuals are exposed daily, more flexible approaches to
modeling environmental cancer risk are needed.

To overcome the single-index limitation of WQS regression, we have proposed
grouped weighted quantile sum (GWQS) regression to enable multiple groups of chemicals
in the model, where each chemical group can have a different magnitude and direction
of association with the outcome [17,18]. GWQS moves the analytical approach to envi-
ronmental risk assessment toward more realistic models of environmental exposures by
estimating a weighted index for each group of exposures. A simulation study of GWQS
demonstrated that it had better power, sensitivity, specificity, and goodness-of-fit than
WQS when there were two or more groups of exposures [19]. GWQS also performed better
overall than lasso and the group lasso with a minimax concave penalty. This simulation
study showed the inability of both lasso and WQS regression to estimate exposure effects
for realistic mixtures with different groups of chemicals that were positively and negatively
associated with risk. Both WQS and lasso produced an effect estimate that averaged over
positive and negative effects, resulting in effect estimates that were biased toward the
null. While this assessment was encouraging for the application of GWQS in studies of
environmental cancer risk, GWQS still has the limitation of a two-step estimation process
and splitting of data into training and validation sets, which can result in reduced power
in small epidemiologic studies.

We propose to use a Bayesian framework to create a more flexible and complex GWQS
model that does not require two-step estimation. We have previously used Bayesian index
regression to create single-index models of neighborhood deprivation and risk of elevated
blood lead levels [20,21] and tobacco retail outlet rates [22]. In this paper, we extend
the Bayesian index model to incorporate multiple exposure indices (similar to GWQS
regression) and term the approach the Bayesian group index model, a new way to estimate
the health effects of chemical mixtures.
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2. Materials & Methods
2.1. Bayesian Group Index Regression

The basic Bayesian index regression model for a binary health outcome yi ∼ Bernoulli(pi)
is specified through the log-odds of disease for the ith subject as

logit(pi) = β0 + β1

(
C

∑
j=1

wjqij

)
+ zT

i φ (1)

where the left-hand side of the equation is the logit of the disease probability pi, wj is
the weight parameter for the jth exposure with quantile score qij for the ith individual,
β1 is the effect for the index, and zT

i is a vector of covariates with corresponding effects
in vector φ. Quantiles are used instead of raw data to reduce the effect of outliers and
account for different concentration scaling for different exposures. Any reasonable def-
inition of quantiles could be used, including deciles. In this regression model there is
one weighted index using C number of exposures. The weights wj represent relative
importance of the exposures and are constrained to be between 0 and 1 and to sum to 1.
Assignment of distributions for the model parameters completes the model specification.
The index weights w1, . . . , wC are given a Dirichlet prior with parameters α = (α1, . . . ,
αc). The Dirichlet prior is convenient because it assures that the weights wj ∈ (0, 1) and
C
∑

j=1
wj = 1. The intercept, index regression coefficient, and covariate regression coefficients

are assigned vague normal priors, β1 ∼ Normal(0, τ1) with precision τ1 = 1/σ2
1 and

σ1 ∼ Uni f orm(0, 100). An improper uniform distribution α ∼ d f lat() could also be used
for the intercept, particularly if random effects are included in the model.

To better model multiple sets of diverse environmental exposures, we extend the
Bayesian index model to a Bayesian group index model that allows for multiple exposure
groups, each with potentially different direction and magnitude of association with the
health outcome. The Bayesian group index model includes a weighted exposure index
and associated effect for each exposure group. For example, a model for three groups of
exposures is

logit(pi) = β0 + β1

(
C1

∑
j=1

wj1qij1

)
+ β2

(
C2

∑
j=1

wj2qij2

)
+ β3

(
C3

∑
j=1

wj3qij3

)
+ zT

i φ (2)

where wj1 is the weight for the jth exposure in the first index, qij1 is the quantile for the jth
exposure in the first index for the ith subject, and the weights and quantiles are defined
similarly for the second and third exposure indexes. There is a variable number Ck of
exposures in each index and each index has a regression coefficient βk (k = 1, 2, 3 in this
example). This model can identify the most important among the groups of exposures
through posterior inference on the index effects β1, β2, β3 and the most important variables
in each index through posterior inference on the weights.

The priors for the parameter in this model are similar to the base Bayesian index
regression model, with the single index priors extended for multiple groups. The weights
for each index follow a Dirichlet prior and the index effect for each group follows a vague
normal prior. Different choices of priors are possible for the index effect parameters. For
example, a mixture prior with a penalty could be used for the index effects to overcome
any model instability due to collinearity [23]. This model could also be extended to include
a subject-level random effect ψi to account for residual confounding at the individual
level, and a natural choice for the prior would be ψi ∼ Normal(0, τψ) with precision
τψ = 1/σ2

ψ and σψ ∼ Uni f orm(0, 100). Markov chain Monte Carlo (MCMC) is used to
estimate the model parameters. Convergence of the MCMC algorithm is done using the
Gelman-Rubin or Geweke diagnostic statistics. Our implementation of the Bayesian group
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index regression model is available in an R package titled BayesGWQS [24] to facilitate use
by other researchers.

2.2. Simulation Study Design

To assess the performance of the Bayesian group index model, we generated chemical
concentration data over several different exposure scenarios, which varied in the amount
of chemical correlation, the number of chemical groups, and the strength of association
between each group and the outcome. There were four scenario sets (A–D) that varied
in total group number and number of chemicals per group. We also considered different
exposure effect strengths (Strengths 1–5). For each scenario set, we started with a null
effect of odds ratio (OR) = 1.00 and then increased the association in strength for each
chemical group (both negative and positive associations). In scenario sets A–C, for positive
associations the strengths 2–5 denote ORs of 1.50, 2.00, 2.50, and 3.00, respectively, while
negative associations were the reciprocals of these ORs (0.67, 0.50, 0.40, 0.33, respectively).
To evaluate the ability of the models to estimate smaller true effects, the positive (negative)
scenario set D had effect sizes of 1.00 (1.00), 1.25 (0.80), 1.50 (0.67), 1.75 (0.57), and 2.00
(0.50), respectively. Moreover, the sample size in scenario set D was reduced to 500 from
1000 in scenario sets A-C to evaluate model performance in smaller studies such as the
California Childhood Leukemia Study (CCLS).

For the correlation amongst the chemicals, a weak, moderate, and strong correlation
structure was considered in each scenario set. These three correlation structures were:
weak (W) with correlation of 0.5 within group and 0.1 across group, moderate (M) with
correlation of 0.7 within group and 0.3 across group, and strong (S) with correlation of
0.9 within group and 0.5 across group. Correlation structures for the chemicals were
specified through a covariance matrix. This covariance matrix was generated via a vector
of means and a vector of standard deviations that also allowed for generation of the data
as multivariate normal. Four quantiles of the exposures were used in all simulations for
computation of the weighted index in each group (e.g., qij = 0, 1, 2, 3).

For the first scenario set with 9 chemicals (Scenario set A), we generated five different
chemicals in one group and four different chemicals in another group. The first group had
a negative association with the outcome and the second group had a positive association
(except for the null effect scenarios). Through setting of the chemical weights, two chemicals
in each group were specified to be important and the remaining were set to be not important.
The important chemicals in each group were given equal weight, with the weights summing
to 1 for each group (e.g., two important chemicals in a group would lead to each having a
weight of 0.5). Unimportant chemicals were assigned a true weight of 0.

For the second scenario set (Scenario set B), there were 14 chemicals allocated among
three groups. Group 1 had a negative association and groups 2 and 3 each had a positive
association with the outcome (excluding the null effects scenario). There was one important
chemical in each group. The third scenario set (Scenario set C) was similar to Scenario set
B except that group 2 had two important chemicals and groups 1 and 3 each had three
important chemicals. Scenario set D had the same group structure as scenario set C. The
different terms used in the simulation scenarios are summarized in Table 1. The terms are
used to succinctly present the simulation study results. Each individual scenario is defined
in Supplementary Table S1.

Based on the defined exposure scenarios, we replicated a case–control study with a
relatively balanced number of cases and controls (50± 10% cases) for a binary outcome y in
every iteration of the data generation. The outcome was distributed as y ∼ Binomial(n, p)
where p = 1

1+eη and η = β∗0 + ∑K
j=1 β∗j [WQS∗j ] and the star notation indicates the true

parameter values. As no covariates were used to generate the data, the term zTφ = 0. We
simulated 100 data sets for each scenario to replicate 100 studies.
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Table 1. Definition of the terms used in the simulation study exposure scenarios.

Terms Levels Definitions

Exposure Scenario Set

A 9 chemicals; 2 groups (5, 4); 2 important in each group; N = 1000

B 14 chemicals; 3 groups (5, 4, 5); 1 important in each group; N = 1000

C 14 chemicals; 3 groups (5, 4, 5); (3, 2, 3) important in each group; N = 1000

D 14 chemicals; 3 groups (5, 4, 5); (3, 2, 3) important per group; N = 500

Strength of Association

Level 1 OR = 1.00 for all groups (Null effect scenario)

Level 2 OR = (0.67, 1.50) for A; OR = (0.67, 1.50, 1.50) for B and C;
OR = (0.75, 1.25, 1.25) for D

Level 3 OR = (0.67, 1.50) for A; OR = (0.50, 2.00, 2.00) for B and C;
OR = (0.67, 1.50, 1.50) for D

Level 4 OR = (0.40, 2.50) for A; OR = (0.40, 2.50, 2.50) for B and C;
OR = (0.57, 1.75, 1.75) for D

Level 5 OR = (0.67, 1.50) for A; OR = (0.33, 3.00, 3.00) for B and C;
OR = (0.50, 2.00, 2.00) for D

Chemical Correlation Structure

Weak 0.5 within group, 0.1 across group

Moderate 0.7 within group, 0.3 across group

Strong 0.9 within group, 0.5 across group

To assess the performance of the Bayesian group index model in comparison to GWQS,
we calculated the power, bias, and mean squared error (MSE) of the exposure effects for
each of the groups, as well as the specificity and sensitivity for identifying unimportant
versus important chemicals. When calculating power, we examined the proportion of
95% credible (or confidence for GWQS) intervals of the odds ratios of chemical group
associations that did not contain 1.00. We calculated sensitivity as the proportion of truly
important chemicals that the model identified as important. This was done by identifying
if the weights of the important chemicals were estimated to be greater than or equal to
1
Cj

. Specificity was defined as the proportion of the truly unimportant chemicals that were
correctly identified as unimportant by the models. We defined a chemical as unimportant
if its weight was estimated to be less than the threshold of 1

Cj
. We fitted the Bayesian group

index models using our R package BayesGWQS [24] and fitted the GWQS models using our
R package groupWQS [18]. A vignette for groupWQS is available on The Comprehensive
R Archive Network [18] that demonstrates use of the package.

2.3. Data Analysis

To apply the Bayesian group index model to observed data, we analyzed childhood
leukemia risk in the CCLS, which is a population-based case–control study conducted in
18 counties in the Central Valley and 17 counties within the San Francisco Bay area and
designed to assess the relationships between genetic factors and environmental exposures
and childhood leukemia [25]. Cases were identified within three days after diagnosis
from 1995 to 2012 from nine pediatric clinical centers in the study area. Inclusion criteria
included: (1) residence in California at the time of diagnosis, (2) without prior cancer
diagnosis, (3) age under 15 years, and (4) having a Spanish- or English-speaking biological
parent. Controls were selected from state birth certificate files and matched to cases on sex,
date of birth, Hispanic ethnicity, and (maternal) race.

Participating parents were initially interviewed to ascertain information about their
children’s exposure to potential risk factors for leukemia. A subset of the families partici-
pated in a second in-home interview during which dust samples were collected. Dust was
collected from homes of controls and cases who were younger than 8 years at the time of
diagnosis (similar reference date for controls) who were living at the diagnosis home. The
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condition of living in the diagnosis home was used so that the dust sample from carpet
would represent the exposures over a significant part of the early life of a child. A total of
n = 583 children participated after the second interview, of which 277 were cases and 306
were controls.

Dust samples were collected from a rug or carpet in the room where the child spent
the most time while awake (commonly the family room) by a high-volume small sur-
face sampler (HVS3) and/or from the household vacuum cleaner. Colt et al. [26] found
the household vacuum to be a valid alternative to the HVS3 for detecting, ranking, and
quantifying concentrations of pesticides and other compounds. After extraction, con-
centrations of 64 organic chemicals were measured using gas chromatography/mass
spectrometry [26]. Nine metals were measured using inductively coupled plasma/mass
spectrometry (ICP/MS) combined with microwave-assisted acid digestion. After excluding
participants due to missing covariate information, 296 controls and 268 cases were included
in this analysis (n = 564). We used exposures for 49 chemicals (Supplementary Table S2
in the Supplementary Materials) where at least one-fifth of the measurements were above
the detectable limit. The chemical concentrations that were below this limit were imputed
between 0 and the limit of detection using univariate imputation with the assumption of a
lognormal distribution.

The concentrations for some of the pairs of chemicals measured in dust were observed
to be strongly correlated. The chemicals that had the strongest correlation with each other
were found to be in the same class of chemical. As an example, several of the PAHs
were highly correlated (e.g., r = 0.90 for chrysene and benzo[a]anthracene). In addition,
congeners or chemicals within the following classes of chemicals were highly correlated:
PCBs, organochlorine insecticides, and pyrethroid insecticides. Such strong correlations
observed between chemicals in these classes makes modeling simultaneous chemical
exposure effects untenable via traditional regression methods. In this case, the use of
mixture analysis methods such as the Bayesian group index model is warranted.

To analyze the association between chemical exposure and childhood leukemia, we
put the 49 chemicals into the following groups: insecticides, PAHs, PCBs, metals, herbicides,
and the tobacco exposure markers of cotinine and nicotine. These groups were based on
their use (e.g., insecticides, herbicides) or structural similarity (PCBs, PAH). The fungicide
ortho-phenylphenol was placed in the herbicide group. We then estimated the risk of
childhood leukemia associated with each of the six exposure groups simultaneously using
the Bayesian group index model while adjusting for the following covariates: child’s sex,
age, ethnicity, annual household income, mother’s age at birth of child, mother’s education
level, and if the child had lived in the dust sampling residence since the time of birth.
In addition, we performed a stratified analysis using the binary variable for whether the
child had lived in the dust sample home since birth as the stratifying variable instead of
an adjustment variable. This was done to determine if the exposure effects were greater
for those whose who lived in the same house (where the dust samples had been taken)
since birth. There were n = 279 children who lived in the same house since birth and
n = 285 who did not. In fitting the models, we used quartiles of exposures and 15,000
Markov chain Monte Carlo (MCMC) iterations with two chains and 5000 iterations as a
burn-in sample. Convergence of all parameters in the model was verified via the Gelman-
Rubin diagnostic statistic (i.e., upper CI was less than 1.10). We summarized the results
through posterior mean estimates of the ORs and 95% credible intervals for each exposure
group and also with forest plots. We identified the important chemical exposures in each
chemical group using the posterior mean weight estimates and visualized them via weight
plots. Model fitting was done using our R package BayesGWQS [24]. Study protocols
involving research with human participants were approved by the institutional review
boards at the University of California, Berkeley, the National Cancer Institute, and Virginia
Commonwealth University.
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3. Results
3.1. Simulation Study

We present results for scenarios set D in the main paper, while scenario set A–C results
are in the Supplemental Materials. The estimated odds ratios and power for the Bayesian
group index model and GWQS regression in scenario set D are listed in Table 2. Both the
Bayesian group index and GWQS models accurately estimated the odds ratio across different
strengths of association and chemical correlations. In scenario sets A-C, GWQS was slightly
closer to the true odds ratio (Supplementary Tables S3–S5), particularly when there was weak
or moderate chemical correlation and strong association (true OR = 3.0). In these scenarios,
the Bayesian model tended to estimate higher odds ratios for the positive association chemical
groups than did GWQS. Type I error rates were similar, but slightly higher for GWQS. The
most notable different between models was in power, where the Bayesian group index model
was consistently more powerful than the GWQS model in scenario set D. For example, with
moderate correlation structure and OR of 1.50 or 0.67, the power for each of the chemical group
coefficients is around 0.91 to 0.95 for the Bayesian group index model while it is between
0.62 and 0.69 for the GWQS regression model. However, when the sample size and effect
sizes were larger in scenario sets A-C, differences were smaller and both methods reached a
power of (or near) 1.00 with larger true strengths of association (Supplementary Tables S3–S5).
As expected, true stronger associations led to higher power in both models. These findings
were consistent with the results for scenario set A and B in Supplementary Tables S3 and S4,
respectively. The models in scenario set C and D had greater power than scenario set B due to
increased signal from having multiple rather than a single important chemical(s).

Table 2. Estimated odds ratio (OR) and power values for the Bayesian group index model and group weighted quantile
sum (GWQS) regression for Scenario D.

Parameter Bayesian Group Index GWQS

Weak Correlation Estimated OR Power Estimated OR Power
exp(β1) = 1.00 1.004 0.06 1.0306 0.1
exp(β2) = 1.00 1.0027 0.07 1.0198 0.06
exp(β3) = 1.00 0.9999 0.04 1.0313 0.06
exp(β1) = 0.80 0.8364 0.27 0.868 0.13
exp(β2) = 1.25 1.2438 0.4 1.2535 0.26
exp(β3) = 1.25 1.2506 0.38 1.2304 0.21
exp(β1) = 0.67 0.6971 0.77 0.7123 0.53
exp(β2) = 1.50 1.5288 0.88 1.5117 0.74
exp(β3) = 1.50 1.4756 0.81 1.4867 0.57
exp(β1) = 0.57 0.5842 0.98 0.6181 0.8
exp(β2) = 1.75 1.8097 1 1.7561 0.91
exp(β3) = 1.75 1.6757 0.98 1.6248 0.78
exp(β1) = 0.50 0.5096 1 0.5383 0.93
exp(β2) = 2.00 2.0995 1 2.0609 0.98
exp(β3) = 2.00 1.9448 1 1.9232 0.95

Moderate Correlation
exp(β1) = 1.00 1.001 0.03 1.014 0.04
exp(β2) = 1.00 1.0059 0.06 1.0206 0.05
exp(β3) = 1.00 1.0024 0.1 1.0079 0.07
exp(β1) = 0.80 0.8236 0.44 0.8209 0.29
exp(β2) = 1.25 1.2556 0.53 1.2713 0.35
exp(β3) = 1.25 1.2339 0.42 1.2313 0.25
exp(β1) = 0.67 0.6873 0.91 0.7258 0.62
exp(β2) = 1.50 1.5014 0.94 1.4503 0.67
exp(β3) = 1.50 1.4834 0.95 1.4836 0.69
exp(β1) = 0.57 0.5748 1 0.6094 0.88
exp(β2) = 1.75 1.7783 1 1.7019 0.93
exp(β3) = 1.75 1.7679 1 1.7434 0.94
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Table 2. Cont.

Parameter Bayesian Group Index GWQS

exp(β1) = 0.50 0.5056 1 0.5369 0.97
exp(β2) = 2.00 2.0673 1 2.0541 1
exp(β3) = 2.00 2.0072 1 2.0196 1

Strong Correlation
exp(β1) = 1.00 1.0137 0.03 1.0198 0.06
exp(β2) = 1.00 0.9879 0.08 1.0023 0.07
exp(β3) = 1.00 1.0023 0.03 0.9988 0.06
exp(β1) = 0.80 0.8175 0.48 0.8252 0.26
exp(β2) = 1.25 1.249 0.52 1.2629 0.35
exp(β3) = 1.25 1.2494 0.56 1.2621 0.3
exp(β1) = 0.67 0.6705 0.94 0.6847 0.7
exp(β2) = 1.50 1.4993 0.96 1.4783 0.71
exp(β3) = 1.50 1.5217 0.99 1.5407 0.82
exp(β1) = 0.57 0.5797 0.99 0.6078 0.88
exp(β2) = 1.75 1.7978 1 1.7951 1
exp(β3) = 1.75 1.7145 1 1.6813 0.93
exp(β1) = 0.50 0.4987 1 0.5248 0.95
exp(β2) = 2.00 2.0279 1 1.9909 0.98
exp(β3) = 2.00 2.0217 1 2.0027 1

Table 3 compares the bias and MSE of both models for scenario set D. Supplementary
Tables S6–S8 in the Supplemental Materials contain the bias and MSE for scenario sets A–C.
Most of the associations with true OR > 1 had positive bias in the Bayesian group index
model in scenario sets A–C, but this did not occur as often in scenario set D. While the bias
appears to be slightly larger in the Bayesian group index model, the MSE is also smaller.
The slightly larger bias found in the Bayesian index model reflects the estimated odds ratio
findings. As expected, in both models a larger true odds ratio generally led to larger MSE
values across scenarios.

Table 3. MSE and bias for effect estimates from the Bayesian group index model and group weighted quantile sum (GWQS)
regression for Scenario D.

Parameter Bayesian Group Index GWQS

Weak Correlation MSE Bias MSE Bias
exp(β1) = 1.00 0.0148 −0.0034 0.0411 0.0088
exp(β2) = 1.00 0.0146 −0.0045 0.0312 0.0041
exp(β3) = 1.00 0.0148 −0.0076 0.0302 0.0155
exp(β1) = 0.80 0.0146 0.0379 0.0354 0.0663
exp(β2) = 1.25 0.0148 −0.0123 0.031 −0.0127
exp(β3) = 1.25 0.0166 −0.0080 0.0349 −0.0327
exp(β1) = 0.67 0.0231 0.0339 0.0348 0.0503
exp(β2) = 1.50 0.0145 0.0119 0.0256 −0.0049
exp(β3) = 1.50 0.019 −0.0258 0.0328 −0.0257
exp(β1) = 0.57 0.0209 0.0119 0.0421 0.06
exp(β2) = 1.75 0.0142 0.0267 0.029 −0.0113
exp(β3) = 1.75 0.0194 −0.0518 0.0459 −0.0828
exp(β1) = 0.50 0.0203 0.009 0.041 0.0546
exp(β2) = 2.00 0.0168 0.041 0.028 0.0162
exp(β3) = 2.00 0.0213 −0.03824 0.0429 −0.0598
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Table 3. Cont.

Parameter Bayesian Group Index GWQS

Moderate Correlation MSE Bias MSE Bias
exp(β1) = 1.00 0.0086 −0.0033 0.0238 0.0015
exp(β2) = 1.00 0.0118 0 0.0219 0.0097
exp(β3) = 1.00 0.0111 −0.0031 0.0254 −0.0049
exp(β1) = 0.80 0.0122 0.0234 0.0217 0.0151
exp(β2) = 1.25 0.012 −0.0016 0.0195 0.0073
exp(β3) = 1.25 0.0107 −0.0183 0.0209 −0.0252
exp(β1) = 0.67 0.0134 0.0241 0.0332 0.0706
exp(β2) = 1.50 0.0144 −0.0063 0.0244 −0.0449
exp(β3) = 1.50 0.0103 −0.0161 0.0207 −0.0211
exp(β1) = 0.57 0.0161 −0.0020 0.0301 0.0501
exp(β2) = 1.75 0.0132 0.0095 0.0228 −0.0384
exp(β3) = 1.75 0.0151 0.0026 0.0244 −0.0158
exp(β1) = 0.50 0.0192 0.0016 0.0402 0.0525
exp(β2) = 2.00 0.0166 0.025 0.0288 0.0122
exp(β3) = 2.00 0.0174 −0.0052 0.0372 −0.0091

Strong Correlation MSE Bias MSE Bias
exp(β1) = 1.00 0.0089 0.0091 0.0228 0.0084
exp(β2) = 1.00 0.0133 −0.0187 0.0268 −0.0112
exp(β3) = 1.00 0.009 −0.0022 0.0258 −0.0142
exp(β1) = 0.80 0.0118 0.016 0.0253 0.0188
exp(β2) = 1.25 0.0114 −0.0065 0.0252 −0.0023
exp(β3) = 1.25 0.0102 −0.0055 0.0228 −0.0019
exp(β1) = 0.67 0.0131 −0.0007 0.0241 0.0148
exp(β2) = 1.50 0.0105 −0.0058 0.023 −0.0258
exp(β3) = 1.50 0.0092 0.0098 0.0198 0.0168
exp(β1) = 0.57 0.0123 0.0083 0.0301 0.0477
exp(β2) = 1.75 0.0126 0.0208 0.0245 0.013
exp(β3)= 1.75 0.013 −0.0266 0.0267 −0.0522
exp(β1) = 0.50 0.0151 −0.0102 0.0327 0.0323
exp(β2) = 2.00 0.0132 0.0073 0.032 −0.0204
exp(β3) = 2.00 0.0141 0.0036 0.0258 0.0118

Table 4 compares the sensitivity and specificity found in GWQS and the Bayesian
group index models for scenario set D, while Supplementary Table S9 displays these for the
remaining scenario sets (A–C). We see similar patterns in both models when the correlation
structure gets stronger. Outside of the null effect, as the correlation structure gets stronger
both the sensitivity and specificity for Bayesian group index model and GWQS decrease.
This is because stronger correlation in the predictors makes identification of the important
chemicals more difficult. As expected, a larger odds ratio led to larger values in sensitivity
and specificity in both models. Outside of the null effect and small effect sizes, sensitivity
and specificity were better with the Bayesian group index model overall. When there
were multiple important chemicals in each group (scenario sets C and D) instead of one
important chemical per group (scenario set B), the specificity increased. When going from
two groups (scenario set A) to three groups (scenario set B) in the mixture, the specificity
decreased. This suggests that the model performance decreases with increasing number of
groups in the mixture, but that it increases as the number of important members in each
group increases.
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Table 4. Sensitivity and specificity for the Bayesian group index model and group weighted quantile
sum (GWQS) regression for simulation scenario D.

Bayesian Group Index GWQS

Effect Size Correlation Sensitivity Specificity Sensitivity Specificity

OR = 1.00
Weak 0.381 0.62 0.419 0.618

Moderate 0.423 0.627 0.4 0.637
Strong 0.425 0.542 0.38 0.605

OR = 1.50
Weak 0.523 0.793 0.493 0.697

Moderate 0.504 0.727 0.43 0.695
Strong 0.496 0.677 0.429 0.693

OR = 2.00
Weak 0.625 0.903 0.618 0.827

Moderate 0.581 0.835 0.521 0.76
Strong 0.525 0.753 0.47 0.718

OR = 2.50
Weak 0.685 0.945 0.698 0.873

Moderate 0.606 0.89 0.574 0.775
Strong 0.543 0.813 0.523 0.753

OR = 3.00

Weak 0.729 0.963 0.739 0.907

Moderate 0.673 0.933 0.638 0.842

Strong 0.583 0.853 0.534 0.757

3.2. Application to Childhood Leukemia Risk Estimates

A summary of the demographics for children with and without leukemia from the
CCLS study is presented in Table 5. Child’s age, sex, and mother’s age were equally
distributed between cases and controls, while more control children were in the highest
household income bracket (53.7%) compared to cases (39.9%). In addition, mothers of cases
had slightly lower rates of post-secondary education (39.2%) compared to controls (45.6%).
A larger proportion of controls resided in the same residence since birth (53.7%), compared
to cases (44.8%).

Table 5. Characteristics of childhood leukemia cases (n = 268) and controls (n = 296) with measure-
ments of chemicals in house dust in the CCLS.

Variable Controls Cases

Child’s age, Mean (SD) 3.84 (1.90) 3.77 (1.81)
Female, N (%) 110 (41.0) 121 (40.9)

Child’s Ethnicity, N (%)
130 (43.9) 119 (44.4)White Non-Hispanic

Hispanic 101 (34.1) 87 (32.4)
Other Non-Hispanic 65 (22.0) 62 (23.1)

Household Income, N (%)
6 (2.0) 37 (13.8)Less than USD 15,000

USD 15,000–29,999 37 (12.5) 27 (10.1)
USD 30,000–44,999 36 (12.2) 44 (16.4)
USD 45,000–59,999 29 (9.8) 33 (12.3)
USD 60,000–74,999 29 (9.8) 20 (7.5)
USD 75,000 or more 159 (53.7) 107 (39.9)

Mother’s education, N (%)
14 (4.7) 16 (6.0)Less than high school

High school 60 (20.3) 68 (25.4)
Some college 87 (29.4) 79 (29.5)

Bachelor’s or higher 135 (45.6) 105 (39.2)
Mother’s age, mean (SD) 30.42 (6.30) 30.89 (5.80)

Lived at residence since birth, N (%) 159 (53.7) 120 (44.8)
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The odds ratios for childhood leukemia associated with each of the six exposure groups
calculated from the Bayesian group index model for the CCLS are in Table 6. Insecticides had
a significant negative effect indicated by an odds ratio of 0.64 (95% CI: 0.40, 0.99). PCBs, PAHs,
and herbicides had positive effects that were not significant according to the 95% credible
intervals. Metals and tobacco markers had inverse but not statistically significant effects. The
pattern in effects is clearly visible in the forest plot of the estimates in Figure 1. The variability
was greatest for herbicides according to the credible intervals. The estimated weights of the
chemical components for each group are plotted in Figure 2. Among insecticides, carbaryl
was overwhelmingly the most important chemical with a posterior mean weight of 0.144.
The highest category of household income (USD 75,000 or more) was associated (OR = 0.36)
with significantly reduced leukemia risk, while living in the sampling household since birth
(OR = 0.69) was associated with lowered likelihood of childhood leukemia. Age (child
and mother’s), sex, ethnicity, and mother’s education were not significantly associated with
childhood leukemia incidence.

Table 6. Bayesian group index model odds ratios and 95% credible intervals for chemical groups and demographic variables
for childhood leukemia in the CCLS. Bold indicates significant effects according to 95% credible intervals.

Variable Odds Ratio 2.5% CI 97.5% CI

PCBs 1.15 0.91 1.45
Insecticides 0.64 0.40 0.99
Herbicides 1.19 0.87 1.67

Metals 0.89 0.68 1.15
PAHs 1.16 0.94 1.44

Tobacco 0.85 0.69 1.03
Child’s age 1.01 0.92 1.11

Female 1.00 0.71 1.41
Child’s Ethnicity

Hispanic vs. White Non-Hispanic 1.22 0.79 1.96
Other Non-Hispanic vs. White Non-Hispanic 1.36 0.88 2.18

Household Income
USD 15,000–29,999 vs. Less than USD 15,000 0.93 0.42 1.94
USD 30,000–44,999 vs. Less than USD 15,000 0.77 0.35 1.56
USD 45,000–59,999 vs. Less than USD 15,000 0.71 0.30 1.51
USD 60,000–74,999 vs. Less than USD 15,000 0.42 0.17 1.02
USD 75,000 or more vs. Less than USD 15,000 0.36 0.16 0.77

Mother’s education
High school vs. Less than high school 1.23 0.61 2.73
Some college vs. Less than high school 1.20 0.58 2.73

Bachelor’s or higher vs. Less than high school 1.21 0.57 2.87
Mother’s age 1.02 0.98 1.05

Lived at residence since birth 0.69 0.47 1.01
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Figure 1. Forest plot of odds ratios and 95% credible intervals for chemical groups for childhood leukemia from the Bayes-
ian group index model with a line at the null value of 1.0. 
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Figure 1. Forest plot of odds ratios and 95% credible intervals for chemical groups for childhood leukemia from the Bayesian
group index model with a line at the null value of 1.0.

Results of the stratified analysis with only children with a different residence since
birth show that no chemical groups were found to have a significant association with child-
hood leukemia, although household income was still inversely associated with childhood
leukemia risk (Supplementary Table S10). However, for children that had the same resi-
dence since birth (Table 7), herbicides had a significant positive association with childhood
leukemia (OR = 2.22, 95% CI: 1.45, 3.61). In addition, insecticides were found to have a
stronger (yet more variable) negative association with childhood leukemia (OR = 0.50, 95%
CI: 0.23, 0.99) than with the non-stratified analysis. Forest plots visualize the chemical
group associations for childhood leukemia for children who changed residence since birth
in Figure S1 and for children with the same residence since birth in Figure 3. The estimated
weights of the chemical components for the stratified analyses are plotted in Figure S2
(changed residence since birth) and Figure 4 (same residence since birth). Among the
harmful herbicides in the latter stratum, dacthal was the most important with a posterior
mean weight of 0.646. For insecticides, weights were evenly distributed across chemicals,
as most chemicals had posterior mean weights between 0.035 and 0.060 and cis-Permethrin
had the largest posterior mean weight of 0.065.
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Figure 2. Weights for chemicals in each of the chemical groups from the Bayesian group index model for childhood leukemia
in the CCLS.
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Table 7. Odds ratios and 95% credible intervals for chemical groups and demographic variables from the Bayesian group
index model for subjects with same residence since birth. Bold indicates significant effects according to 95% credible intervals.

Variable Odds Ratio 2.5% CI 97.5% CI

PCBs 1.19 0.86 1.67
Insecticides 0.50 0.23 0.99
Herbicides 2.22 1.45 3.61

Metals 0.75 0.45 1.61
PAHs 1.15 0.83 1.61

Tobacco 0.91 0.67 1.22
Child’s age 0.87 0.74 1.02

Female 0.99 0.57 1.71
Child’s Ethnicity

Hispanic vs. White Non-Hispanic 1.27 0.63 2.69
Other Non-Hispanic vs. White Non-Hispanic 1.62 0.84 3.33

Household Income
USD 15,000–29,999 vs. Less than USD 15,000 1.59 0.48 5.81
USD 30,000–44,999 vs. Less than USD 15,000 0.87 0.26 2.70
USD 45,000–59,999 vs. Less than USD 15,000 0.99 0.28 3.26
USD 60,000–74,999 vs. Less than USD 15,000 0.87 0.23 3.13
USD 75,000 or more vs. Less than USD 15,000 0.37 0.11 1.14

Mother’s education
High school vs. Less than high school 2.13 0.71 7.96
Some college vs. Less than high school 2.25 0.73 8.79

Bachelor’s or higher vs. Less than high school 1.66 0.51 6.76
Mother’s age 1.04 0.99 1.10
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4. Discussion

In this paper, we proposed the Bayesian group index model for chemical mixture
analysis for the realistic situation of multiple groups of exposures each with a potentially
different magnitude and direction of association with the health outcome. We conducted
a simulation study to evaluate the relative performance of the Bayesian group index
model and the frequentist approach of GWQS regression and found that the two meth-
ods performed similarly for larger studies (n = 1000), but that the Bayesian group index
model performed better for smaller studies (n = 500) with smaller strengths of association
(OR < 2.0). The Bayesian group index model had more power to find significant exposure
effects in smaller studies (with power differences of 0.2 or more). In addition, the Bayesian
group index model was more sensitive and more specific than GWQS, particularly for
studies with small sample sizes. While the Bayesian approach was more powerful, it
also had larger positive bias in effect estimates in the larger studies. Based on the sum
of the findings, we recommend use of the Bayesian index model over the GWQS model,
particularly for small studies.

For the implementation of the Bayesian group index model in this paper, we used
our BayesGWQS R package [24] on The Comprehensive R Archive Network (CRAN). In
addition to the BayesGWQS package, our implementation of the GWQS model is also
available as an R package entitled GroupWQS [18] along with a vignette on CRAN. From
the user’s perspective the packages are similar, utilizing the same workflow and providing
tools to organize and then analyze data as well as visualize results. However, the estimation
is very different in the two packages. The GroupWQS package first splits the data into
training and validation sets, next estimates the index weights of the GWQS model with
bootstrap samples of the training set, and then estimates the other model parameters using
the validation set. Parameter estimation is done through nonlinear optimization available
in the solnp function of the Rsolnp R package. BayesGWQS estimates model parameters by
implementing MCMC available in Just Another Gibbs Sampler (JAGS) using all the data.
The two packages each offer distinct advantages to researchers depending on the context
of their work. GroupWQS tends to have faster runtime, but uses a two-step estimation
process. BayesGWQS has a longer runtime, but allows researchers working with smaller
sample sizes to maximize power by avoiding data splitting. Currently, both packages
require the user to specify the groups of exposures, which could be done based on chemical
family, empirical correlations, or another approach to group similar exposures.

The Bayesian framework for the group index model also allows for more straight-
forward extension to more complex models that include individual and spatial random
effects [20–22]. We have previously used both exchangeable and spatially correlated
random effects in Bayesian single index models. In addition, imputation of chemical
concentrations below the limit of detection can also be accounted for within the Bayesian
index model approach. We are currently working on approaches for imputing missing
chemical concentrations within the Bayesian group index model.

When applying the Bayesian group index model to observational data from the CCLS,
we found a negative and significant association between insecticides (OR = 0.50) and
leukemia, with carbaryl (weight = 0.14) being the most important chemical. This finding
is consistent with our previous analysis using the frequentist GWQS approach, where
we found an OR = 0.43 for insecticides and weight = 0.21 for carbaryl [19]. This finding
is similar to results from individual insecticide logistic regression models; however, in
both the individual insecticide model and the model adjusted for multiple insecticides, the
inverse association with carbaryl was not statistically significant [27]. Additionally, similar
were positive yet not significant associations for PCBs (OR = 1.15) and PAHs (OR = 1.16),
where we previously found OR = 1.29 for PCBs and OR = 1.31 for PAHs. In the current
paper, we conducted a stratified analysis based on the duration of the child’s residence in
the home from which the dust sample was collected. We found stronger exposure effects
for the children who had lived their entire lives in the home where dust samples were
taken. In this set of residentially stable children, there was a strong and significant effect
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for herbicides (OR = 2.22), with dacthal being the most important exposure in this chemical
group (weight = 0.65). This adds to our previous findings about the contribution of dacthal
exposure (weight = 0.31 in the full study population) among the herbicides to increased
risk (OR = 1.79) of childhood leukemia [19]. However, we did not previously evaluate
risk among this group due to the decreased power of GWQS for stratified analyses. In
addition to our previous mixture analysis finding, there was significantly elevated risk of
acute lymphocytic leukemia (ALL) associated with the presence of dacthal in house dust
(detected vs. not detected OR=1.52, 95% CI:1.03, 2.23) in a previous analysis of herbicide
exposures in the CCLS [28]. Logistic regression analyses using individual chemicals yielded
a positive yet not significant association between dacthal concentration quantiles and ALL
risk [28]. While our results suggest some significant associations with environmental
chemicals and childhood leukemia, more studies are needed to determine if these findings
generalize to other geographic areas. In addition, while we adjusted for several potential
risk factors and confounders, residual confounding cannot be ruled out in our analysis.

5. Conclusions

In conclusion, our approach of the Bayesian group index model has the potential to
make a substantial contribution to the field of environmental epidemiology, particularly
for chemical mixture analysis. The method allows for multiple groups of environmental
chemical exposures each with a potentially different magnitude and direction of association
with the health outcome, and allows for a richer assessment of environmental exposures.
Simulation study evaluation shows that it compares favorably with other methods for
mixture analysis, especially GWQS regression, and is easily extended to include more
complexity in the model. While we applied the method in an environmental chemical
risk analysis of childhood leukemia considering different classes of chemicals, it should
be applicable to many other diseases with suspected environmental causes. Hopefully,
this method will enable investigators to uncover multiple environmental determinants of
disease in future studies.
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.3390/ijerph18073486/s1, Table S1: Individual scenarios in the scenarios sets of the simulation study,
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index model and group weighted quantile sum for Scenario C, Table S6: MSE and for the Bayesian
group index model and group weighted quantile sum for Scenario A, Table S7: MSE and bias for
the Bayesian group index model and group weighted quantile sum for Scenario B, Table S8: MSE
and bias for effect estimates from the Bayesian group index model and group weighted quantile sum
regression for Scenario C, Table S9: Sensitivity and specificity for the Bayesian group index model
and group weighted quantile sum regression for simulation scenarios A-C, Table S10: Odds ratio
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weights for chemical groups from the Bayesian group index model for childhood leukemia in the
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Author Contributions: Conceptualization, D.C.W.; methodology, D.C.W.; software, D.C.W., S.R.
and M.C.; validation, D.C.W. and S.R.; formal analysis, D.C.W. and S.R.; investigation, D.C.W.
and S.R.; resources, D.C.W., C.M. and M.H.W.; data curation, C.M., T.P.W. and M.H.W.; writing—
original draft preparation, S.R. and D.C.W.; writing—review and editing, S.R., M.C., D.C.W., C.M.,
T.P.W. and M.H.W.; visualization, S.R.; supervision, D.C.W.; project administration, D.C.W.; funding
acquisition, D.C.W., C.M., and M.H.W. All authors have read and agreed to the published version of
the manuscript.

Funding: Research reported in this publication was supported by the National Cancer Institute of
the National Institutes of Health under Award Number R21CA238370. The content is solely the

https://www.mdpi.com/article/10.3390/ijerph18073486/s1
https://www.mdpi.com/article/10.3390/ijerph18073486/s1


Int. J. Environ. Res. Public Health 2021, 18, 3486 18 of 19

responsibility of the authors and does not necessarily represent the official views of the National
Institutes of Health. The CCLS dust sample study was financially supported by subcontracts 7590-S-
04 (University of California, Berkeley) and 7590-S-01 (Battelle Memorial Institute) under National
Cancer Institute (NCI) contract N02-CP-11015 (Westat); and National Institute of Environmental
Health Sciences grants R01ES009137 and P42ES04705-18 (University of California, Berkeley). This
research was also supported by the Intramural Research Program of the National Institutes of Health
and the NCI.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of Virginia Commonwealth
University (HM20002035, 31 January 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The CCLS data presented in this study are available on request from
the senior author. The data are not publicly available due to privacy restrictions.

Acknowledgments: We thank the CCLS families for their participation. We also thank the clinical
investigators at the following collaborating hospitals for help in recruiting patients: University of
California Davis Medical Center (Jonathan Ducore), University of California San Francisco (Mignon
Loh and Katherine Matthay), Children’s Hospital of Central California (Vonda Crouse), Lucile
Packard Children’s Hospital (Gary Dahl), Children’s Hospital Oakland (James Feusner), Kaiser
Permanente Oakland (Daniel Kronish and Stacy Month), Kaiser Permanente Roseville (Kent Jolly and
Vincent Kiley), Kaiser Permanente Santa Clara (Carolyn Russo, Denah Taggart, and Alan Wong), and
Kaiser Permanente San Francisco (Kenneth Leung). Finally, we acknowledge the entire California
Childhood Leukemia Study staff for their effort and dedication.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reuben, S.H. For President’s Cancer Panel. 2008–2009 Annual Report in President’s Cancer Panel. Reducing Environmental

Cancer Risk: What We Can Do Now. Available online: https://deainfo.nci.nih.gov/advisory/pcp/annualReports/pcp08-09rpt/
PCP_Report_08-09_508.pdf (accessed on 8 January 2021).

2. Colt, J.S.; Severson, R.K.; Lubin, J.; Rothman, N.; Camann, D.; Davis, S.; Cerhan, J.R.; Cozen, W.; Hartge, P. Organochlorines in
Carpet Dust and Non-Hodgkin Lymphoma. Epidemiology 2005, 16, 516–525. [CrossRef]

3. Colt, J.S.; Davis, S.; Severson, R.K.; Lynch, C.F.; Cozen, W.; Camann, D.; Engels, E.A.; Blair, A.; Hartge, P. Residential Insecticide
Use and Risk of Non-Hodgkin’s Lymphoma. Cancer Epidemiol. Biomark. Prev. 2006, 15, 251–257. [CrossRef]

4. De Roos, A.J.; Hartge, P.; Lubin, J.H.; Colt, J.S.; Davis, S.; Cerhan, J.R.; Severson, R.K.; Cozen, W.; Patterson, D.G.; Needham, L.L.;
et al. Persistent Organochlorine Chemicals in Plasma and Risk of Non-Hodgkin’s Lymphoma. Cancer Res. 2005, 65, 11214–11226.
[CrossRef] [PubMed]

5. Brown, L.M.; Blair, A.; Gibson, R.; Everett, G.D.; Cantor, K.P.; Schuman, L.M.; Burmeister, L.F.; Van Lier, S.F.; Dick, F. Pesticide
exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res. 1990, 50, 6585–6591.

6. Ward, M.H.; Colt, J.S.; Metayer, C.; Gunier, R.B.; Lubin, J.; Crouse, V.; Nishioka, M.G.; Reynolds, P.; Buffler, P.A. Residential
Exposure to Polychlorinated Biphenyls and Organochlorine Pesticides and Risk of Childhood Leukemia. Environ. Health Perspect.
2009, 117, 1007–1013. [CrossRef]

7. Zahm, S.; Ward, M. Pesticides and childhood cancer. Environ. Health Perspect. 1998, 106, 893–908. [PubMed]
8. Purdue, M.P.; Hoppin, J.A.; Blair, A.; Dosemeci, M.; Alavanja, M.C. Occupational exposure to organochlorine insecticides and

cancer incidence in the Agricultural Health Study. Int. J. Cancer 2006, 120, 642–649. [CrossRef] [PubMed]
9. Everett, C.J.; Mainous, A., III; Frithsen, I.L.; Player, M.S.; Matheson, E.M. Association of polychlorinated biphenyls with

hypertension in the 1999–2002 National Health andNutrition Examination Survey. Environ. Res. 2008, 108, 94–97. [CrossRef]
10. Patel, C.J.; Bhattacharya, J.; Butte, A.J. An Environment-Wide Association Study (EWAS) on Type 2 Diabetes Mellitus. PLoS ONE

2010, 5, e10746. [CrossRef] [PubMed]
11. Patel, C.J.; Cullen, M.R.; Ioannidis, J.P.A.; Butte, A.J. Systematic evaluation of environmental factors: Persistent pollutants and

nutrients correlated with serum lipid levels. Int. J. Epidemiol. 2012, 41, 828–843. [CrossRef]
12. Park, S.K.; Tao, Y.; Meeker, J.D.; Harlow, S.D.; Mukherjee, B. Environmental Risk Score as a New Tool to Examine Multi-Pollutants

in Epidemiologic Research: An Example from the NHANES Study Using Serum Lipid Levels. PLoS ONE 2014, 9, e98632.
[CrossRef]

13. Bobb, J.F.; Valeri, L.; Henn, B.C.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine
regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16, 493–508. [CrossRef] [PubMed]

14. Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly
Correlated Data in a Risk Analysis Setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [CrossRef] [PubMed]

https://deainfo.nci.nih.gov/advisory/pcp/annualReports/pcp08-09rpt/PCP_Report_08-09_508.pdf
https://deainfo.nci.nih.gov/advisory/pcp/annualReports/pcp08-09rpt/PCP_Report_08-09_508.pdf
http://doi.org/10.1097/01.ede.0000164811.25760.f1
http://doi.org/10.1158/1055-9965.EPI-05-0556
http://doi.org/10.1158/0008-5472.CAN-05-1755
http://www.ncbi.nlm.nih.gov/pubmed/16322272
http://doi.org/10.1289/ehp.0900583
http://www.ncbi.nlm.nih.gov/pubmed/9646054
http://doi.org/10.1002/ijc.22258
http://www.ncbi.nlm.nih.gov/pubmed/17096337
http://doi.org/10.1016/j.envres.2008.05.006
http://doi.org/10.1371/journal.pone.0010746
http://www.ncbi.nlm.nih.gov/pubmed/20505766
http://doi.org/10.1093/ije/dys003
http://doi.org/10.1371/journal.pone.0098632
http://doi.org/10.1093/biostatistics/kxu058
http://www.ncbi.nlm.nih.gov/pubmed/25532525
http://doi.org/10.1007/s13253-014-0180-3
http://www.ncbi.nlm.nih.gov/pubmed/30505142


Int. J. Environ. Res. Public Health 2021, 18, 3486 19 of 19

15. Czarnota, J.; Gennings, C.; Colt, J.S.; De Roos, A.J.; Cerhan, J.R.; Severson, R.K.; Hartge, P.; Ward, M.H.; Wheeler, D.C. Analysis of
Environmental Chemical Mixtures and Non-Hodgkin Lymphoma Risk in the NCI-SEER NHL Study. Environ. Health Perspect.
2015, 123, 965–970. [CrossRef] [PubMed]

16. Czarnota, J.; Gennings, C.; Wheeler, D.C. Assessment of Weighted Quantile Sum Regression for Modeling Chemical Mixtures and
Cancer Risk. Cancer Inform. 2015, 14, 159–171. [CrossRef] [PubMed]

17. Wheeler, D.C.; Czarnota, J. Modeling Chemical Mixture Effects with Grouped Weighted Quantile Sum Regression. In Proceedings
of the 28th Annual Conference of the International Society for Environmental Epidemiology (ISEE), Rome, Italy, 1–4 September
2016.

18. Wheeler, D.C.; Carli, M. groupWQS: Grouped Weighted Quantile Sum Regression. R Package Version 0.0.3. Available online:
https://cran.r-project.org/web/packages/groupWQS/index.html (accessed on 8 January 2021).

19. Wheeler, D.C.; Rustom, S.; Carli, M.; Whitehead, T.; Ward, M.H.; Metayer, C. Assessment of grouped weighted quantile sum
regression for modeling chemical mixtures and cancer risk. Int. J. Environ. Res. Public Health 2021, 18, 504. [CrossRef]

20. Wheeler, D.C.; Raman, S.; Jones, R.M.; Schootman, M.; Nelson, E.J. Bayesian deprivation index models for explaining variation in
elevated blood lead levels among children in Maryland. Spat. Spatio-Temporal Epidemiol. 2019, 30, 100286. [CrossRef]

21. Wheeler, D.C.; Boyle, J.; Raman, S.; Nelson, E.J. Modeling elevated blood lead level risk across the United States. Sci. Total Environ.
2021, 769, 145237. [CrossRef]

22. Wheeler, D.C.; Do, E.; Hayes, R.; Fugate-Laus, K.; Fallavollita, W.; Hughes, C.; Fuemmeler, B. Neighborhood disadvantage and
tobacco retail outlet and vape shop outlet rates. Int. J. Environ. Res. Public Health 2020, 17, 2864. [CrossRef]

23. de Vocht, F.; Cherry, N.; Wakefield, J. A Bayesian mixture modeling approach for assessing the effects of correlated exposures in
case-control studies. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 352–360. [CrossRef] [PubMed]

24. Wheeler, D.C.; Carli, M. BayesGWQS: Bayesian Grouped Weighted Quantile Sum Regression. 2020. R Package Version 0.0.2.
Available online: https://cran.r-project.org/web/packages/BayesGWQS/index.html (accessed on 11 March 2021).

25. Whitehead, T.P.; Metayer, C.; Ward, M.H.; Colt, J.S.; Gunier, R.B.; Deziel, N.C.; Rappaport, S.M.; Buffler, P.A. Persistent organic
pollutants in dust from older homes: Learning from lead. Am. J. Public Health 2014, 104, 1320–1326. [CrossRef] [PubMed]

26. Colt, J.S.; Gunier, R.B.; Metayer, C.; Nishioka, M.G.; Bell, E.M.; Reynolds, P.; Buffler, P.A.; Ward, M.H. Household vacuum cleaners
vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children. Environ. Health
2008, 7, 1–9. [CrossRef] [PubMed]

27. Madrigal, J.M.; Jones, R.R.; Gunier, R.B.; Whitehead, T.P.; Reynolds, P.; Metayer, C.; Ward, M.H. Residential exposure to carbamate,
organophosphate, and pyrethroid insecticides in house dust and risk of childhood acute lymphoblastic leukemia. Environ. Res.
2021. submitted.

28. Metayer, C.; Colt, J.S.; Buffler, P.A.; Reed, H.D.; Selvin, S.; Crouse, V.; Ward, M.H. Exposure to herbicides in house dust and risk of
childhood acute lymphoblastic leukemia. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 363–370. [CrossRef] [PubMed]

http://doi.org/10.1289/ehp.1408630
http://www.ncbi.nlm.nih.gov/pubmed/25748701
http://doi.org/10.4137/CIN.S17295
http://www.ncbi.nlm.nih.gov/pubmed/26005323
https://cran.r-project.org/web/packages/groupWQS/index.html
http://doi.org/10.3390/ijerph18020504
http://doi.org/10.1016/j.sste.2019.100286
http://doi.org/10.1016/j.scitotenv.2021.145237
http://doi.org/10.3390/ijerph17082864
http://doi.org/10.1038/jes.2012.22
http://www.ncbi.nlm.nih.gov/pubmed/22588215
https://cran.r-project.org/web/packages/BayesGWQS/index.html
http://doi.org/10.2105/AJPH.2013.301835
http://www.ncbi.nlm.nih.gov/pubmed/24832145
http://doi.org/10.1186/1476-069X-7-6
http://www.ncbi.nlm.nih.gov/pubmed/18291036
http://doi.org/10.1038/jes.2012.115
http://www.ncbi.nlm.nih.gov/pubmed/23321862

	Introduction 
	Materials & Methods 
	Bayesian Group Index Regression 
	Simulation Study Design 
	Data Analysis 

	Results 
	Simulation Study 
	Application to Childhood Leukemia Risk Estimates 

	Discussion 
	Conclusions 
	References

