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STUDY QUESTION: Do women with BRCA| or BRCAZ mutations have reduced ovarian reserve, as measured by circulating anti-Mllerian
hormone (AMH) concentration?

SUMMARY ANSWER: Women with a germline mutation in BRCA| have reduced ovarian reserve as measured by AMH.

WHAT IS KNOWN ALREADY: The DNA repair enzymes encoded by BRCA| and BRCA2 are implicated in reproductive aging. Circulating
AMH is a biomarker of ovarian reserve and hence reproductive lifespan.

STUDY DESIGN, SIZE, DURATION: This was a cross-sectional study of AMH concentrations of 693 women at the time of enrolment into
the Kathleen Cuningham Foundation Consortium for research in the Familial Breast Cancer (kConFab) cohort study (recruitment from 19 August
1997 until 18 September 2012). AMH was measured on stored plasma samples between November 2014 and January 2015 using an electro-
chemiluminescence immunoassay platform.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Eligible women were from families segregating BRCA | or BRCA2 mutations and
had known mutation status. Participants were aged 25—45 years, had no personal history of cancer, retained both ovaries and were not pregnant
or breastfeeding at the time of plasma storage. Circulating AMH was measured for | 72 carriers and 2| 6 non-carriers from families carrying BRCA |
mutations, and 147 carriers and | 58 non-carriers from families carrying BRCA2 mutations. Associations between plasma AMH concentration and
carrier status were tested by linear regression, adjusted for age at plasma storage, oral contraceptive use, body mass index and cigarette smoking.

MAIN RESULTS AND THE ROLE OF CHANCE: Mean AMH concentration was negatively associated with age (P < 0.001). Mutation
carriers were younger at blood draw than non-carriers (P < 0.031). BRCA| mutation carriers had, on average, 25% (95% Cl: 5%—41%,
P = 0.02) lower AMH concentrations than non-carriers and were more likely to have AMH concentrations in the lowest quartile for age (OR
1.84,95%Cl: |.11-303,P = 0.02). There was no evidence of an association between AMH concentration and BRCA2 mutation status (P = 0.94).
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LIMITATIONS, REASONS FOR CAUTION: AMH does not directly measure the primordial follicle pool. The clinical implications of the
lower AMH concentrations seen in BRCA| mutation carriers cannot be assessed by this study design.

WIDER IMPLICATIONS OF THE FINDINGS: Women with a germline mutation in BRCA | may have reduced ovarian reserve. This is con-
sistent with other smaller studies in the literature and has potential implications for fertility and reproductive lifespan.
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Introduction

Germline mutations in the BRCA| or BRCAZ genes substantially increase
the risk of breast cancer, high grade serous ovarian cancer, fallopian tube
cancer and primary peritoneal cancer (Antoniou et al., 2003). Less is
known about the non-cancer-related implications, but preliminary data
suggest that ovarian reserve, and hence fertility, may be reduced in
BRCA| mutation carriers (Oktay et al., 2010, 2014; Titus et al., 2013;
Pavone etal., 2014; Wanget al., 2014). If confirmed, this could have clin-
ical consequences for pregnancy planning, reproductive lifespan and
perhaps ovarian function following chemotherapy.

BRCAI and BRCA2 are integral in the repair of DNA double-strand
breaks through homologous recombination, and thus are important
members of the ATM-mediated DNA damage signalling pathway
(Jackson and Bartek, 2009). The importance of inefficient DNA double-
strand break repair in carcinogenesis is well understood (Jackson and
Bartek, 2009) but recently, inefficient DNA repair has also been
shown to contribute to oocyte aging. The protective function of double-
strand DNA repair proteins, including BRCAI, declines with age, leading
to accumulation of lethal DNA double-strand breaks and oocyte apop-
tosis (Titus et al., 201 3). Data from mouse models suggest that inheriting
a BRCA| germline mutation may accelerate this process: BRCA| hetero-
zygous mutant mice have smaller litter sizes, produce fewer oocytes in
response to ovarian stimulation and their oocytes accumulate DNA
damage more quickly than wild-type mice or mice with germline
BRCA2 mutations (Titus etal., 2013).

Circulating anti-Miillerian hormone (AMH) is the best currently avail-
able biomarker to forecast age at menopause and thus the reproductive
lifespan (Sowers et al., 2008; Broeretal., 201 |; Tehranietal., 2013). Itis
widely used to predict ovarian response in assisted reproductive tech-
nologies (lliodromiti et al., 2014), although its relationship to natural fer-
tility is less clear (Steiner et al., 2011; Hagen et al, 2012). AMH
production begins prenatally, peaks in the mid-20s and then declines
to the menopause (Kelsey et al., 201 ). AMH is produced by the granu-
losa cells of growing pre-antral and early antral follicles, but not by the
primordial follicles which are the true arbiter of female reproductive life-
span. Thus AMH directly assesses ovulatory potential within about a
6-month timeframe (Findlay et al., 2015). Nevertheless AMH approxi-
mates primordial follicle number and can be used to assess ovarian
reserve in women aged 25 years and over (Broer et al., 201 |; Hansen
etal.,2011). Circulating levels remain relatively constant across the men-
strual cycle (Tsepelidis et al., 2007) and also between cycles in the same

woman (Fanchin et al., 2005). Current oral contraceptive pill (OCP) use
and cigarette smoking are associated with lower AMH concentrations
(Dolleman et al., 2013), whereas markedly elevated levels are found in
polycystic ovary syndrome (PCOS) (lliodromiti et al., 2013).

This study was conducted to determine whether women with a muta-
tionin BRCA | or BRCAZ have reduced ovarian reserve, as measured by cir-
culating AMH concentrations, compared with women who do not carry a
BRCA| or BRCA2 mutation. It was hypothesized that AMH concentrations
would be lower in mutation carriers compared with non-carriers, that
AMH would be lower in BRCA | mutation carriers than in BRCA2 mutation
carriers, and that the difference between AMH concentrations of mutation
carriers and non-carriers would be greater at older ages.

Methods

Subjects

Eligible women were from Australian and New Zealand families, with mul-
tiple cases of breast cancer, who were enrolled in the Kathleen Cuningham
Foundation Consortium for Research into Familial Breast Cancer
(kConFab) Cohort Study (Mann et al., 2006). Recruitment to that cohort,
which currently includes 1636 families, commenced on 19 August 1997
and is ongoing. Individuals had been recruited to kConFab after at least
one family member attended a clinical consultation in any of 24 Family
Cancer Centres. At the time of cohort entry, participants provided blood
for both genetic testing and storage of plasma. Participants in the cohort
have been followed up every three years (Phillips et al., 2005). All participants
provided written informed consent, and the kConFab Cohort Study has In-
stitutional Review Board approval at recruiting sites.

Women eligible for the study reported here either had a pathogenic mu-
tation, splice site mutation or large deletion in BRCA| or BRCA2 (‘mutation
carriers’), or were a blood relative of a mutation carrier and had themselves
been tested and found not to carry the identified family-specific mutation
(‘non-carriers’). At the time of blood draw, they had to be aged 25-45
years, have two intact ovaries, no personal history of any cancer (apart
from non-melanoma skin cancer), no history of primary amenorrhoea and
not pregnant or breastfeeding. The Institutional Review Board of the Peter
MacCallum Cancer Centre approved this study.

Data collection

At cohort entry, kConFab Cohort Study participants completed an epide-
miologic questionnaire (John et al., 2004). Data collected include demo-
graphics, height and weight, personal and family cancer history,
oophorectomy status, menstrual history, parity, breastfeeding history,
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OCP use and fertility treatment and cigarette smoking. Additional data were
collected on the day of blood draw, including current pregnancy status, date
of commencement of last menstrual cycle, self-reported menopausal status
and current OCP use.

AMH analysis

A blood sample was collected at enrolment into the kConFab Cohort Study.
Plasma aliquots were stored at —80°C within 48 h. AMH measurements,
blinded to participant mutation status, were undertaken between November
2014 andJanuary 2015, atthe Melbourne IVF Endocrine Laboratory utilizinga
fully automated Elecsys® AMH assay on the Cobas e electrochemilumines-
cence immunoassay platform (Gassner and Jung, 2014; Anderson et al.,
2015). The lowest level of detection was 0.07 pmol/| and the intra-assay
and inter-assay imprecision coefficients of variation at 7.0 pmol/| were
4.6 and 5.6% respectively. Plasma samples had been stored for a mean
of 11.4 years (standard deviation [SD]: 3.6) prior to AMH analysis and
none had been previously thawed. Quality assurance testing was per-
formed on 30 non-study samples for which both plasma and serum were
available; AMH concentrations using serum samples were approximately
5% higher than those using plasma. It was considered that this would not
affect the study conclusions given that plasma was used for both the com-
parison groups.

Statistical methods

Comparisons of participant characteristics by carrier status were made by ap-
plying Fisher’s exact test for categorical variables and Wilcoxon rank-sum test
for numerical variables. For each gene (BRCA| and BRCA2), a difference in
mean AMH concentration between mutation carriers and non-carriers
was tested by linear regression, modelling the natural logarithm of AMH as
the outcome variable and carrier status as the explanatory variable. This
log transformation was applied to correct for the asymmetry in the distribu-
tion of AMH values, as consistently reported in other studies (Su etal., 2013;
Whitworth et al., 2015). The exponential of the regression coefficient for
carrier status (and its 95% confidence interval (Cl) limits) was taken as an es-
timate of mean AMH concentration on the natural scale for carriers relative
to non-carriers. For three samples, the AMH concentration was below the
lower limit of detection of 0.07 pmol/I and these were set to a value of
0.07 pmol/I for the purposes of the analysis. Multivariable models incorpo-
rated factors known to affect ovarian reserve, including age at blood draw
(by including a linear and quadratic term for the age range considered, as sug-
gested by Kelsey et al (Kelsey et al., 201 1)), body mass index (BMI) at cohort
entry, cigarette smoking at cohort entry (never/past/current regular cigarette
use), and OCP use at time of blood draw (no/yes). Robust standard errors
were estimated to account for the inclusion of multiple women from the
same families. Sensitivity analyses were conducted, excluding women who
were using the OCP at the time of blood draw and, separately, excluding
women who reported being post-menopausal or had unknown menopausal
status at blood draw. To assess whether any difference in mean AMH concen-
tration between carriers and non-carriers was more pronounced at older ages,
we fit an additional parameter for the interaction between mutation carrier
status and the linear term for age. We also estimated the odds ratio (OR)
for havingan AMH levelin the lowest quartile for age in years, by logistic regres-
sion, with the same covariates as in the primary analysis. All P-values were two-
sided and those less than 0.05 were considered statistically significant. Statistic-
al analyses were performed by R.L.M.

Results

Participants

Atthe time of AMH analysis, there were 102 women aged 25—45 years
enrolled in the kConFab Cohort Study who were blood relatives in a

family with a mutation in either BRCA| or BRCA2. Of these, 328 were
excluded due to: unilateral or bilateral oophorectomy prior to blood
draw (134), a personal history of cancer prior to blood draw (| 66), preg-
nancy or breastfeeding at the time of blood draw (14), pathogenic muta-
tions in both the BRCA| and BRCAZ2 genes (4), or inadequate sample for
AMH testing (10). Thus 693 participants were included in the final study
sample, including 172 carriers of a pathogenic mutation in BRCAI, 216
women who tested negative for the known BRCA| mutation in their
family, 147 carriers of a pathogenic mutation in BRCA2 and 158
women who tested negative for the known BRCA2 mutation in their
family.

Participant characteristics are shownin Table |. The mean age at blood
draw was 35.1 years and mutation carriers were younger than non-
carriers (P < 0.03). Of the subjects, 24% reported current cigarette
use at cohort entry and this did not differ between mutation carriers
and non-carriers (P> 0.31). BRCA| mutation carriers had lower BMI
than non-carriers (P = 0.02), but there was no significant difference in
BMI between BRCA2 mutation carriers and non-carriers (P = 0.99).
There were no significant differences between carriers of BRCA| and
BRCA2 mutations and non-carriers for OCP use at the time of blood
draw (P > 0.08) or for surrogate measures of ovarian function, including
parity (P> 0.33), age at first birth (P > 0.76) and history of infertility
treatments (P > 0.64).

AMH concentrations were negatively associated with age overall
and for both carriers and non-carriers of BRCA| and BRCAZ mutations
(P<0.001). AMH concentrations were, on average, 28% lower
(exp(B) = 0.72, 95% Cl = 0.58-0.89; P=0.003) for current OCP
users compared with non-users. AMH concentrations were not asso-
ciated with the length of time between blood draw and AMH analysis
(P = 0.08), smoking status (P = 0.55) or BMI (P = 0.92).

After adjusting for age at blood draw, BRCA/ carrier status was
associated with AMH concentration (Fig. |); on average BRCA | mutation
carriers had 25% lower AMH concentrations than non-carriers
(exp(B) = 0.75, 95% Cl = 0.59-0.95; P = 0.02). There was no evi-
dence that this association varied with age (P-interaction = 0.61). As
shown in Table Il, further adjustment for OCP use at time of blood
draw, BMI at cohort entry and cigarette smoking ever, had little effect
on these estimates (exp(B) = 0.75, 95% Cl = 0.58-0.97), nor did ad-
justment for length of time from blood draw to analysis (exp(8) =
0.76, 95% Cl = 0.59-0.97) or exclusion of current OCP users and
women who reported they were post-menopausal (exp(8) = 0.74,
95% Cl = 0.58—0.94). Based on the quadratic model fit for age using
our data for non-carriers, the difference in average AMH concentration
was approximately equivalent to that between a 37 year-old compared
with a 35 year-old woman.

There was no difference in average AMH concentrations between
BRCA2 mutation carriers and non-carriers (exp(8) = 0.99, 95% Cl =
0.77—-1.27; P = 0.94), after adjusting for age (Fig. 2), and for OCP use,
BMI and cigarette smoking. Results were consistent after further adjust-
ment for time from blood draw to analysis and the exclusion of current
OCP users and post-menopausal women (P > 0.85).

The estimated OR for having an AMH concentration in the lowest
quartile for age was 1.84 (95% CI |.11-3.03, P = 0.02) for BRCA| mu-
tation carriers and 0.87 (95% CI 0.51—1.47, P = 0.59) for BRCA2 muta-
tion carriers.

Information was not available regarding whether women had PCOS,
whichis known to resultin high AMH concentrations, however excluding
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Table I Sample characteristics.
BRCAI BRCA2
Carriers Non-Carriers Pvalue Carriers Non-Carriers | P-value
n =172 n = 216 n = 147 n = 158
Year of birth* 1968 (7.2) 1966 (6.9) 0.003 1969 (7.0) 1967 (7.0) 0.0/
Age at blood draw (years)* 342(5.7) 35.8(5.8) 0.006 34.4 (5.6) 35.8(5.6) 0.03
Years sample was stored* 11.4(3.9) 11.9(3.3) 0.15 10.8 3.7) 11.4(3.6) 0.17
Cigarette use™, n (%)

Never 84 (49) 97 (45) 75 (51) 76 (48)

Past 39 (23) 64 (30) 45 (31) 46 (29)

Current 49 (28) 55 (25) 0.31 27 (18) 36 (23) 0.65
Body mass index* (kg/m?) 24.8(5.2) 26.2 (6.4) 0.02 25.4 (6.0) 254 (5.3) 0.99
OCP use at blood draw, n (%)

No 150 (87) 183 (85) 118 (80) 139 (88)

Yes 22 (13) 33 (15) 0.56 29 (20) 19 (12) 0.08
Infertility treatment, n (%)

Ever 10 (6) 10 (5) 8 (5) 11 (7)

Never 161 (94) 205 (95) 0.65 135 (92) 142 (90) 0.64

Don’t know (1) | (0.5) 4(3) 53)

Parity, n (%)

Nulliparous 46 (27) 65 (30) 53 (36) 48 (30)

Parous 126 (73) I51 (70) 0.50 94 (64) 110 (69) 0.33
Age at first birth* (years) 249 (4.7) 25.0 (5.1) 0.76 25.7 (4.4) 25.6 (4.7) 0.87

All values <0.05 are statistically significant.
n, number; OCP, oral contraceptive pill.
*Mean (standard deviation).

**Regular cigarette smoking—at least one per day for 3 months or longer.
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Figure | AMH levelsin BRCA| mutation carrier families, by mutation
carrier status. Solid and dashed lines are drawn by locally weighted re-
gression of log-transformed AMH levels. Carriers: crosses and dashed

line; non-carriers: circles and solid line.

women with AMH concentrations in the highest quartile from the ana-
lysis did not substantially change the estimates obtained.

Discussion

BRCA| and BRCA2 mutation carriers are rare in the general population
(about 0.1 and 0.2% respectively) (Antoniou et al., 2008), although they
are much more prevalent in some subgroups due to founder effects, for
example 1.2 and 1.5% respectively in Ashkenazi Jews (Roa et al., 1996).
Whilst the increased cancer risk implications of having these germline
mutations are well-described, much less is known about the non-cancer
implications. This is the first large study to find that BRCA | germline muta-
tions are associated with lower than expected AMH, an established bio-
marker of ovarian reserve. Low AMH concentrations have not been
shown to affect natural fecundability in young women (Hagen et al.,
2012) but are associated with reduced fecundability in older women in
their 30s (Steiner et al, 2011). The reduced concentrations of AMH
observed in this study were equivalent, for example, to a two year age in-
crease for a woman in her mid 30s. Thus it is possible that the findings of
our study might not translate to clinically relevant fertility implications for
younger women, but may be important for the subgroup of BRCA | muta-
tion carriers who wish to conceive in their late 30s or 40s when fertility is
reduced even in the general population.
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Table Il Estimated coefficient () for mutation carriers versus non-carriers from linear regression modelling the natural

logarithm of AMH as the outcome variable.

Model

All women, adjusted for:
— age*only
— age*, OCP use, BMI, smoking

— age*, OCP use, BMI, smoking, time to blood draw

Excluding current OCP users & post-menopausal and unknown menopausal status at

time of blood draw”

BRCAI
B (95% CI), P-value

BRCA2
B (95% CI), P-value

—0.29 (—0.53, —0.05), 0.02
—0.28 (—0.54, —0.03), 0.03
~0.28 (—0.53, —0.03), 0.03
~0.30 (—0.55, —0.06), 0.02

—0.05 (—0.31,0.21),0.71
—0.01 (—0.26, 0.24), 0.94

0.00 (—0.25, 0.25), 0.99
—0.03 (—0.31,0.26),0.85

Cl, confidence interval.
*Adjustment for age included a linear and quadratic term.
#Adjusted for age, OCP use, BMI, smoking.

100 " 5 :

AMH level (pmol/l)

° . e o s @

25 30 35 40 45
Age (years)

non-carriers
non-carriers

carriers °
- carriers

Figure 2 AMH levels in BRCA2 mutation carrier families, by mutation
carrier status. Solid and dashed lines are drawn by locally weighted re-
gression of log-transformed AMH levels. Carriers: crosses and dashed
line; non-carriers: circles and solid line.

Our findings are consistent with pioneering observations in 2010 that
breast cancer patients with germline BRCA| mutations undergoing
ovarian stimulation for fertility preservation prior to chemotherapy
had lower oocyte yields compared with women not known to be
BRCA| mutation carriers or who carried a BRCA2 mutation (Oktay
et al., 2010). Low oocyte yields from ovarian stimulation predict lower
likelihood of pregnancy and earlier age at menopause (de Boer et dl.,
2002). Some studies have suggested that women with BRCA | mutations
experience earlier menopause than non-carriers (Rzepka-Gorska et al.,
2006; Finch et al., 2013; Lin et al., 2013). In a previous study of the
kConFab cohort, we did not find a difference in age at natural menopause
between BRCA| or BRCA2 mutation carriers and their non-carrier rela-
tives (Collins et al., 2013). However, that observation could have been
confounded; for example, mutation carriers who seemed destined for
an earlier menopause (e.g. because their menses were becoming irregu-
lar) may have been more likely to choose cancer risk-reducing bilateral
salpingo-oophorectomy at an early age (and therefore be censored

from the analysis), biasing the study findings toward the null. Another
limitation of our previous study was that only 19% of the cohort had
undergone natural menopause.

Our new findings are consistent with some smaller studies. Wang et al
found lower AMH concentrations in a group of 62 BRCA| mutation car-
riers compared with 54 unrelated non-carriers, but no difference in AMH
levels between 27 BRCA2 mutation carriers and non-carriers (Wang
etal., 2014). Titus et al found similar results in a study of 15 BRCA| mu-
tation carriers, 9 BRCA2 mutation carriers and 60 non-carriers (Titus
etal., 2013). Pavone et al found that AMH concentrations were similar
between 66 BRCA| mutation carriers and 59 non-carriers, but lower
for BRCAI mutation carriers aged 35—39 years (Pavone et al., 2014).
Another study found no difference in the AMH concentrations
between 4| BRCA| and BRCA2 mutation carriers (pooled) and 324 con-
trols (Michaelson-Cohen et al., 2014). Our study overcomes several
methodologic limitations of these previous reports; specifically we had
a larger sample size, detailed information about potential confounders
such as age, OCP use, BMI, and cigarette smoking, and we used non-
carriers (controls) from the same families as mutation carriers (cases)
which, by design, adjusts in part for unmeasured genetic factors that
might influence ovarian reserve.

High-fidelity double-strand DNA break repair is critical to mitosis and
meiosis (Bolcun-Filas et al., 2014), and other genetic diseases character-
ized by deficient homologous recombination and DNA repair are known
to be associated with subfertility due to accelerated oocyte apoptosis
(Titus et al., 2013). A recent large scale genomic analysis by Day et al
(Day et al., 2015) extended the findings of a prior genome-wide associ-
ation study (Stolketal., 2012) and showed that genetic variants in several
DNA repair enzymes, including BRCAI, are associated with age at
menopause in large populations, providing further evidence for the im-
portance of DNA repair processes in determining reproductive lifespan.
Oocyte meiosis is characterized by very prolonged arrest at meiosis |,
from fetal life until ovulation which might be decades later. This pro-
longed arrest highlights the importance of maintaining chromosome/
genetic integrity, which underpins oocyte health and survival over a
very protracted period. Thus our finding of reduced AMH concentra-
tions for carriers of mutations in BRCA [, a gene that s critically important
in the repair of double-strand DNA breaks, has biologic plausibility.
BRCAZ2 has a more limited role in double-strand DNA break repair com-
pared with BRCA| and BRCA2Z mutation carriers tend to develop fewer
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cancers and at a later age, compared with BRCA| mutation carriers
(Antoniou et al., 2003). Thus it is credible that any effect of mutation
status on ovarian reserve would be more pronounced in BRCA | mutation
carriers and this observation has been made in mouse models (Titus
etal., 2013).

BRCA| mutation carriers are at increased risk of ovarian and fallopian
tube cancers and so are advised to consider bilateral salpingo-oophorec-
tomy after completion of childbearing and preferably while premenopausal
(National Comprehensive Cancer Network, 2008) because such timing
also reduces breast cancer risk (Domchek et al., 2010). Some BRCA| mu-
tation carriers may therefore choose early childbearing in order to facilitate
early bilateral salpingo-oophorectomy. Our study found that BRCA | muta-
tion carriers had, on average, 25% (95% Cl: 5-41%, P = 0.02) lower
AMH concentrations than non-carriers and were more likely to have
AMH concentrations in the lowest quartile for age (OR 1.84, 95% CI:
[.11-303, P=0.02). There was no evidence of an association between
AMH concentration and BRCA2 mutation status (P = 0.94). Further
research is required to fully understand the direct clinical implications
of these findings, in terms of fertility, nevertheless they suggest that
BRCAI mutation carriers should try to avoid delaying pregnancy until
later reproductive ages. Our findings also raise the hypothesis that
BRCAI mutation carriers may have a higher than average risk of
chemotherapy-induced menopause (Anderson and Cameron, 201 I);
but this requires further study. Importantly our findings may shed new
light on mechanisms of age-related fertility decline, the most common indi-
cation for assisted reproduction treatment.
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