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Aims

Methods
and results

A significant increase in congestive heart failure (CHF) was reported when the anti-ErbB2 antibody trastuzumab was
used in combination with the chemotherapy drug doxorubicin (Dox). The aim of the present study was to investigate
the role(s) of miRNAs in acute Dox-induced cardiotoxicity.

Neuregulin-1-ErbB signalling is essential for maintaining adult cardiac function. We found a significant reduction in
ErbB4 expression in the hearts of mice after Dox treatment. Because the proteasome pathway was only partially
involved in the reduction of ErbB4 expression, we examined the involvement of microRNAs (miRs) in the reduction
of ErbB4 expression. miR-146a was shown to be up-regulated by Dox in neonatal rat cardiac myocytes. Using a luci-
ferase reporter assay and overexpression of miR-146a, we confirmed that miR-146a targets the ErbB4 3'UTR. After
Dox treatment, overexpression of miR-146a, as well as that of siRNA against ErbB4, induced cell death in cardiomyo-
cytes. Re-expression of ErbB4 in miR-146a-overexpressing cardiomyocytes ameliorated Dox-induced cell death. To
examine the loss of miR-146a function, we constructed ‘decoy’ genes that had tandem complementary sequences for
miR-146a in the 3'UTR of a luciferase gene. When miR-146a ‘decoy’ genes were introduced into cardiomyocytes,
ErbB4 expression was up-regulated and Dox-induced cell death was reduced.

These findings suggested that the up-regulation of miR-146a after Dox treatment is involved in acute Dox-induced
cardiotoxicity by targeting ErbB4. Inhibition of both ErbB2 and ErbB4 signalling may be one of the reasons why those

patients who receive concurrent therapy with Dox and trastuzumab suffer from CHF.
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1. Introduction

Neuregulin-1 (NRG-1) is an agonist for receptor tyrosine kinases of
the epidermal growth factor receptor (EGFR) family, consisting of
EGFR/HER1/ErbB1, ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4.
With the exception of ErbB2, which has no ligand, the ErbB proteins
have a ligand-binding ectodomain, a single transmembrane segment,
an intracellular tyrosine kinase domain, and a tyrosine-rich carboxy

terminus.” Among them, ErbB2 and ErbB4 are expressed in differen-
tiated cardiomyocytes.® Binding of NRG-1 to ErbB4 increases its
kinase activity and leads to heterodimerization with ErbB2 or homo-
dimerization with ErbB4 and stimulation of intracellular signal trans-
duction pathways.* Heterodimers with ErbB2 appear to be a more
potent signalling complex than homodimers.

Clinical observations clearly suggested increased cardiotoxicity of
anthracyclines in patients receiving trastuzumab, a monoclonal
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antibody against ErbB2.° Therefore, we first examined changes in
ErbB2 and ErbB4 expression levels after stimulation with doxorubicin
(Dox). Interestingly, Dox significantly reduced the protein expression
of ErbB4 in the heart, although it did not affect ErbB2 expression.
Several reports indicated that WW domain containing E3 ubiquitin
protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated
degradation in breast cancer;’ therefore, we pre-treated neonatal rat
cardiac myocytes (NRCMs) with MG132, a proteasome inhibitor.
However, MG132 could not fully abolish the reduction in ErbB4
expression after stimulation with Dox. This suggested that there may
be other mechanisms for the reduction in ErbB4 protein expression.

MicroRNAs (miRNAs or miRs) are small, non-coding RNAs that
modulate  mRNA stability and post-transcriptional translation.®
miRNAs are of crucial importance for the heart to develop and func-
tion properly. It has already been shown that loss of cardiac miRNA-
mediated regulation by Dgcr8 or Dicer gene deletion lead to dilated
cardiomyopathy and heart failure.”'® Furthermore, specific deletion
of cardiac miR-1 or miR-133 lead to embryonic lethality and heart
failure."""* Recently, DNA-damage-induced up-regulation of pre-
miRNAs and mature miRNAs was demonstrated in vitro."* Therefore,
we speculated that anthracycline-induced injury is partly mediated by
the induction of mMiRNAs that targets ErbB4.

It is well known that reactive oxygen species (ROS) are involved
in Dox-induced cardiotoxicity."*"> Previous reports suggested that
miR-146a is up-regulated by nuclear factor (NF)-kB, which is a
downstream mediator of ROS."®™"® Because miR-146a is abundantly
expressed in the heart and ErbB4 has three potential miR-146a-
binding sites in the 3'UTR, we examined the function of miR-146a
in the heart after Dox treatment. In the present study, we found
that (i) Dox reduced ErbB4 expression in the heart; (i) miR-146a
was up-regulated by Dox and overexpression of miR-146a reduced
ErbB4 expression; (iii) miR-146a enhanced Dox-induced cell death
as well as siRNA against ErbB4; (iv) re-expression of ErbB4 in
miR-146a-overexpressing cardiomyocytes suppressed the increase in
Dox-induced cell death; and (v) the loss of miR-146a function with
‘decoy’ genes up-regulated ErbB4 expression and reduced
Dox-induced cell death.

These findings suggest that the up-regulated expression of
miR-146a after Dox treatment is involved in acute Dox-induced car-
diotoxicity by targeting ErbB4.

2. Methods

2.1 Reagents

Antibodies and reagents used in this study are summarized in the Sup-
plementary methods.

2.2 Isolation of NRCMs

The investigation conformed to the Guide for the Care and Use of Lab-
oratory Animals published by the US National Institutes of Health (NIH
Publication No. 85-23, revised 1996) and was approved by Kyoto Univer-
sity Ethics Review Board (Med Kyo 09280). NRCMs were prepared as
described previously."

2.3 Mice

Male C57BL/6 mice were purchased from Japan SLC Inc. (Shizuoka, Japan)
and maintained in a specific pathogen-free facility.

2.4 Plasmids

Expression vectors for the negative control (miR-control) and the
miRNAs were generated using BLOCK-T™ PolllmiR RNAi Expression
Vector Kits (Invitrogen). The sequences of all constructs were analysed
using an ABI 3100 genetic analyzer. All of the constructs were inserted
correctly into a pLenti6/V5-D-TOPO vector (Invitrogen) driven by a
CMV promoter to stably express genes in NRCMs.?°

2.5 siRNA-mediated knockdown of rat ErbB4

The oligonucleotides used for siRNA of ErbB4 are indicated in the Sup-
plementary methods.

Randomly shuffled forms of the ErbB4 siRNA1 were used as a control
(control-siRNA). Every siRNA construct was made using a pSINsi-mUé
vector (Takara Bio Inc.) and the siRNA constructs were introduced to
a lentivirus vector plasmid and used for transfection of NRCMs.?°

2.6 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide assay

Cells were labelled with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) at afinal concentration of 0.5 mg/mL for at least 4 h at 37°C.*"
Viability was then evaluated by measuring the absorbance at 595 nm using an
El x 800 Microplate Reader (BIO-TEK Instruments, Inc.). The absorbance of
the control cells without treatment was considered as 100% viability, and the
results were expressed as the per cent viability in comparison with the control
cells.

2.7 Western blotting

Cell lysates were prepared as described previously and subjected to
sodium dodecy! sulfate—polyacrylamide gel electrophoresis followed by
standard western blotting procedures."”

2.8 Quantitative real-time-polymerase chain
reaction for mRNA and miRNA

Total RNA was isolated using TRIzol® reagent (Invitrogen). cDNA was
synthesized using SuperScript Il reverse transcriptase (Invitrogen) and
polymerase chain reaction (PCR) was performed with a SYBR Green
PCR master mix (Applied Biosystems), normalized with GAPDH. Gene-
specific primers are indicated in the Supplementary methods. miRNAs
were quantified in accordance with TagMan MicroRNA Assays (Applied
Biosystems), normalized with U6 snRNA. An ABI Prism 7900HT sequence
detection system was used as a thermal cycler.

2.9 Dual-luciferase assays (3’'UTR assay)

PCR fragments were amplified from human or rat cONAs and subcloned
downstream of a CMV-driven Firefly luciferase cassette in a pMIR-
REPORT vector (Ambion). To make wild-type or mutant ErbB4 3'UTR
luciferase reporters, about 100 bp oligonucleotides around binding site
3 were annealed and inserted into a pMIR-REPORT vector. An internal
control reporter, Renilla reniformis luciferase, driven by the thymidine
kinase (TK) promoter (pRL-TK: Promega) was also co-transfected to nor-
malize the transfection efficiency.

2.10 Measurement of mitochondrial
membrane potential by flow cytometry

TMRE dye (100 nM) was added and staining was performed at 37°C for
30 min. Then, the cells were washed once with phosphate-buffered
saline (PBS), re-suspended in PBS at 4°C, and kept on ice. Flow cytometry
was performed immediately using a FACS Aria (Beckman Dickinson).
Appropriate compensation was set. For each sample, data from
>30 000 cells were collected. The ratio of TMRE intensity of cardiomyo-
cytes with Dox compared with cardiomyocytes without Dox for each
group was calculated as a percentage and plotted on the graph.
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2.11 Measurement of apoptosis by flow
cytometry

AnnexinV and propidium iodide (Pl) staining was performed using a
Vybrant® Apoptosis Assay kit #2 (Molecular Probes) in accordance
with the manufacturer’s protocol. The proportions of apoptotic cells
(AnnexinV-positive and Pl-negative: Q2), and the total number of dead
cells (AnnexinV-positive: Q2 + Q4) and live cells (AnnexinV-negative
and Pl-negative: Q3) were analysed by flow cytometry using a FACS
Aria. Appropriate compensation was set. For each sample, data from
>30 000 cells were collected.

2.12 Statistics

Data are presented as means + SE. Statistical comparisons were per-
formed using unpaired two-tailed Student’s t-tests or one-way analysis
of variance with Bonferonni’s post hoc test where appropriate, with a
probability value of <0.05 taken to indicate significance.

3. Results

3.1 ErbB4 expression was decreased by
Dox treatment in vivo and in vitro

We examined the expression of ErbB2 and ErbB4 in the hearts of
mice that had received a single intraperitoneal injection of Dox
(20 mg/g).”> We found that ErbB4 expression was significantly
reduced 1 day after Dox injection and recovered to the control
level 5 days after injection. On the other hand, ErbB2 expression
was not affected (Figure 1A and B). The reduction of ErbB4 expression
was also observed in NRCMs in a time-dependent manner, whereas
ErbB2 expression was not altered (Figure 1C). Figure 1D shows that
Dox did not increase the level of cleaved-ErbB4 (80 kDa) in

Oh 12h 1day 3days

NRCMs. This was the same in the hearts of mice after Dox injection
(see Supplementary material online, Figure S7). These data indicated
that the acute reduction in ErbB4 level after Dox was not the
result of protein shedding. We also examined the possible involve-
ment of the ubiquitin—proteasome pathway in the reduction of
ErbB4 level after Dox treatment. As shown in Figure 1E, MG132,
a proteasome inhibitor, ameliorated the Dox-induced reduction in
ErbB4 levels. However, the effect was limited and ErbB4 expression
did not recover to the basal level. These findings suggested that
there might be other pathways that regulate ErbB4 expression.

3.2 miR-146a was up-regulated in
Dox-treated NRCMs

It is well known that ROS are involved in Dox-induced cardiotoxi-
city."*> Previous reports suggested that miR-146a is up-regulated by
NF-kB, which is a downstream mediator of ROS.'*" 18 Because
miR-146a is abundantly expressed in the heart?® and ErbB4 has three
potential miR-146a-binding sites in the 3'UTR (TargetScan4.0: http:/
www.targetscan.org/; see Supplementary material online, Figure S2A),
we examined the function of miR-146ain the heart after Dox treatment.
We compared the expression of miR-146a between NRCMs and
cardiac fibroblasts and confirmed that miR-146a was predominantly
expressed in NRCMs as well as miR-133a (see Supplementary material
online, Figure S2B and C). As shown in Figure 2A and B, miR-146a was sig-
nificantly up-regulated in a dose-dependent manner, and its level peaked
at 16 h after Dox treatment. Next, we overexpressed miR-146a using a
lentivirus vector in NRCMs.?® The transduction efficiency was always
over 90%, as shown in the Supplementary material online, Figure S2D.
The protein level of ErbB4 was significantly reduced in miR-146a-over-
expressing NRCMs, whereas ErbB2 levels were not altered (Figure 2C
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Figure | ErbB4 expression was decreased after Dox treatment in vivo and in vitro. (A) Immunoblotting for ErbB4 and ErbB2 in the hearts of mice
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Figure 2 ErbB4 is a target for miR-146a. (A) gRT-PCR for miR-146a after Dox for 16 h at the indicated concentrations in NRCMs. Values are the
means + SE of three to four independent experiments (P < 0.05, ##P < 0.01). (B) qRT-PCR for miR-146a after Dox (1 wM) for the indicated times
in NRCMs. Values are the means + SE of three to four independent experiments (*P < 0.05). (C) Immunoblotting for ErbB4 and ErbB2 in miR-
control or miR-146a-overexpressing NRCMs. (D) Densitometry for ErbB4 in miR-control or miR-146a-overexpressing NRCMs (#P < 0.05).
(E) qRT-PCR analysis for ErbB4 in miR-control or miR-146a-overexpressing NRCMs. Values are the means + SE of four independent experiments
(n.s; not significant). (F) ErbB4 3’UTR Firefly luciferase (F-luc) activity at binding site 3 in 293T cells. Values are the means + SE of four independent
experiments (*P < 0.05). (G) ErbB4 3'UTR F-luc activity at binding site 3 in 293T cells. Values are the means + SE of four independent experiments
(*P < 0.05). (H) ErbB4 3'UTR F-luc activity at binding site 3 in NRCMs. Values are the means + SE of six independent experiments (*P < 0.05).

and D). mRNA levels of ErbB4 are shown in Figure 2E. In 293T cells, a
human embryonic kidney cell line, miR-146a overexpression also
reduced ErbB4 expression (see Supplementary material online, Figure
S2E). To verify which binding site was most important, we performed
a luciferase reporter assay in 293T cells. We amplified a ~500 bp frag-
ment of the ErbB4 3’UTR from either human or rat cODNAs and cloned
these into downstream of a CMV-driven luciferase reporter gene. We
found that the most conserved binding site (site 3) was important in
both human and rat (see Supplementary material online, Figure S2F

and G). Figure 2F shows that miR-146a overexpression reduced the
ErbB4 3’UTR luciferase activity (site 3), whereas miR-133a, one of the
most abundant miRNAs in the heart, did not affect luciferase activity.
Introduction of mutations in the miR-146a-binding site abolished the
miR-146a-mediated inhibition of ErbB4 3’UTR luciferase activity
(Figure 2G; see Supplementary material online, Figure S2H). Dox
reduced wild-type ErbB4 3’UTR luciferase activity in NRCMs. Conver-
sely, this reduction was not observed in an ErbB4 3'UTR reporter that
had mutations in the miR-146a-binding site (Figure 2H). These results
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suggested that up-regulation of endogenous miR-146a after Dox
treatment can affect myocardial ErbB4
post-transcriptionally.

expression

3.3 Both miR-146a overexpression and
ErbB4 knockdown reduced NRCM survival
after Dox treatment

To evaluate the effect of miR-146a induction after Dox treatment on
cardiac myocytes, we stimulated miR-146a-overexpressing NRCMs

using Dox. Dox induced more cell death in miR-146a-overexpressing
NRCMs than miR-control (negative control) NRCMs, which was
shown in microscopy images (see Supplementary material online,
Figure S3A) and in cell viability assays using MTT (Figure 3A). These
data suggested that the up-regulation of miR-146a may be harmful in
cardiac myocytes. Dox reduced ErbB4 expression and increased
cleaved caspase 3 expression, which is a sensitive apoptosis marker
(Figure 3B), and miR-146a levels increased at the same time (Figure 2A
and B). Therefore, we speculated that Dox-induced apoptosis resulted
from the down-regulation of ErbB4 by miR-146a. To verify the function
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of ErbB4 in cardiomyocytes, two kinds of siRNA against ErbB4 were
introduced into NRCMs. The knockdown efficiency of these siRNAs
was 50 and 10%, respectively, at the protein level (Figure 3C and D).
Knockdown of ErbB4 exaggerated Dox-induced cell death in the
MTT assay, according to the knockdown efficiency (Figure 3E). Knock-
down of ErbB4 reduced Dox-induced Akt activation and increased the
amount of cleaved caspase 3 (Figure 3F). We also evaluated mitochon-
drial function using TMRE dye. TMRE is a cell-permeant, cationic,
red-orange fluorescent dye that is readily sequestered by active mito-
chondria.”* Fluorescence microscopy images of NRCMs with or
without Dox are shown in the Supplementary material online, Figure
S3B. We measured the intensity of TMRE staining, which indicates mito-
chondrial membrane potential, using flow cytometry. In the basal state,
about 80% of cells resided in the TMRE high population (red) and 20%
cells in the TMRE low population (blue). After Dox treatment, the
TMRE high population and TMRE intensity were reduced in ErbB4
knocked-down NRCMs, according to the knock-down efficiency
(Figure 3G and H).

3.4 miR-146a enhanced Dox-induced
apoptosis in NRCMs

Both overexpression of miR-146a and ErbB4 siRNA2 reduced levels
of ErbB4 expression, Akt phosphorylation, and bcl-2 expression and
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increased cleaved caspase 3 level after Dox treatment in NRCMs
(Figure 4A). The TMRE high population and TMRE intensity after
Dox were more reduced in miR-146a-overexpressing NRCMs than
in control cells (Figure 4B and C). These results indicated that
miR-146a enhanced Dox-induced apoptosis in NRCMs. Following the
transduction of ErbB4 without a 3'UTR in miR-146a-overexpressing
NRCMs, the increase in Dox-induced cleaved caspase 3 was
reduced to the control level (Figure 4D and E). The intensity of
TMRE staining also recovered to the control level (see Supplementary
material online, Figure S4A and B).

3.5 Reduction of endogenous miR-146a
ameliorated Dox-induced apoptosis in
NRCMs

To assess the functional consequences of silencing endogenous
miR-146a in vitro, NRCMs were infected with a lentivirus vector, in
which three or six tandem sequences partially complementary to
miR-146a were linked to a luciferase or GFP reporter gene in their
3'UTRs (see Supplementary material online, Figure S5A and F). The
complementary sequences acted as a decoy, sequestering endogen-
ous miR-146a and other miRNAs with the same seed sequences
(see Supplementary material online, Figure S5H).*%*~%’ Transfection
with a luciferase-decoy gene along with miR-146a reduced the
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Figure 4 miR-146a enhanced Dox-induced apoptosis in NRCMs. (A) Immunoblotting for ErbB4, pAkt, tAkt, bcl-2, and cleaved caspase 3 in NRCMs
transduced with miR-control, miR-146a, or ErbB4-siRNA2 in the presence or absence of Dox for the indicated time periods. (B) Flow cytometric
analysis of TMRE in NRCMs transduced with miR-control of miR-146a with or without Dox for 24 h. (C) The ratio of TMRE intensity with Dox
compared with without Dox for each group. Values are the means =+ SE of three to four independent experiments (*#P < 0.01). (D) Immunoblotting
for cleaved caspase 3 in miR-control or miR-146a-overexpressing NRCMs infected with either lacZ or ErbB4 with or without Dox for 24 h. (E) Den-
sitometry for cleaved caspase 3 in miR-control or miR-146a-overexpressing NRCMs infected with either lacZ or ErbB4 with or without Dox for 24 h.
Values are the means + SE of four independent experiments (*P < 0.05, ##P < 0.01).
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Figure 5 Reduction in endogenous miR-146a ameliorated Dox-induced apoptosis in NRCMs. (A) gqRT-PCR analysis for miR-146a in NRCMs,
infected with control-decoy (no binding site) or decoy-miR-146a (anti-miR-146a x 6) using lentivirus vector. Values are the means + SE of three
independent experiments (*#P < 0.05). (B) Immunoblotting for ErbB4 in NRCMs infected with control-decoy or decoy-miR-146a. (C) Densitometry
for ErbB4 in NRCMs infected with control-decoy or decoy-miR-146a. Values are the means + SE of four independent experiments (P < 0.05). (D)
Immunoblotting for ErbB4, bcl-2, and cleaved caspase 3 in NRCMes infected with control or decoy gene in the presence or absence of Dox for the
indicated time periods. (E) Densitometry for ErbB4 in NRCMs infected with control or decoy gene in the presence or absence of Dox. Values are the
means + SE of four independent experiments (*P < 0.05). (F) Densitometry for cleaved caspase 3 in NRCMs infected with control or decoy gene in
the presence or absence of Dox. Values are the means + SE of four independent experiments (*P < 0.05).

luciferase activity and the extent was more prominent with
anti-miR-146a x 6 than that with anti-miR-146a x 3 in 293T cells,
whereas transfection along with miR-control or miR-133a did not
reduce luciferase activity (see Supplementary material online, Figure
S5B—D). When the same amount of plasmids of control and decoy
gene were transduced into NRCMs, luciferase activity was significantly
reduced (see Supplementary material online, Figure S5E). NRCMs
infected with GFP-decoy (see Supplementary material online, Figure
S4F) reduced the intensity of GFP in flow cytometry (see Supplemen-
tary material online, Figure S5G). These results indicated that endogen-
ous miR-146a specifically bound to the decoy gene and inhibited the
translation of luciferase or GFP in NRCMs. The expression of
miR-146a was significantly reduced in NRCMs infected with

decoy-miR-146a x 6 (Figure 5A). ErbB4 expression was increased sig-
nificantly in NRCMs infected with decoy-miR-146a x 6 (Figure 5B and
C). Decoy-miR-146a ameliorated the Dox-induced reduction of
ErbB4 and Dox-induced increase in cleaved caspase 3 (Figure 5D—
F). TMRE intensity was significantly increased in NRCMs infected
with decoy-miR-146a x 6 compared with control cells (see Sup-
plementary material online, Figure S5/ and J).

3.6 AnnexinV and PI staining of NRCMs

Finally, we stained NRCMs with AnnexinV/Pl and then measured the
numbers of apoptotic cells, dead cells, and live cells using flow cyto-
metry. Figure 6A shows that the numbers of apoptotic and dead cells
were increased after Dox treatment. Transfection of miR-146a or
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Figure 6 AnnexinV and Pl staining of NRCMs. (A) Dot-plot analysis of AnnexinV/Pl staining showed that apoptotic cells (Q4) and dead cells
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dead cells after Dox treatment. (D) The percentages of live cells after Dox treatment. Values are the means + SE of six independent experiments

(*P < 0.05, P < 0.01).

ErbB4 siRNA induced apoptosis and cell death, whereas transfection
of decoy-miR-146a (anti-miR-146a x 6) reduced these in NRCMs
after treatment with Dox (Figure 6B—D).

4. Discussion

Intensive investigations into Dox-induced cardiotoxicity have been
ongoing for decades. In the present study, we have clarified for the
first time that miR-146a-mediated suppression of ErbB4 is a substan-
tial causal mechanism of Dox-induced cardiac toxicity.

NRG-1/ErbB signalling is best known for its indispensable role
during cardiac and neuronal development. The importance of the
physiological role of ErbB signalling in the post-natal heart was
demonstrated by analysing the hearts of conditional mutant mice.
ErbB2-deficient conditional mutant mice were viable; however, phys-
iological analysis revealed the onset of multiple independent par-
ameters of dilated cardiomyopathy?s'29 Conditional inactivation of
ErbB4 in ventricular muscle cells also led to a severe dilated cardio-
myopathy.>® Heterozygous knockout of NRG-1 in mice worsens sur-
vival and left ventricular function in the presence of Dox-induced
cardiac injury.?’ These reports showed the importance of NRG-1/
ErbB signalling not only during development but also after birth.

Observations in patients treated with trastuzumab (Herceptin), an
inhibitory antibody against ErbB2, which is administered with or fol-
lowing anthracyclines in breast cancer, suggested that ErbB-mediated
myocardial protection against cardiotoxic drugs is also prominent in
the human heart.® Despite extensive research, a significant increase
in cardiotoxic effects of concurrent treatment with an anthracycline
and trastuzumab has remained difficult to explain. Trastuzumab cardi-
otoxicity appears to be dose independent and largely reversible,
suggesting a different mechanism from that of anthracyclines.’
From the present results, it is possible that the transient reduction
in ErbB4 expression via miR-146a up-regulation and/or ubiquitin—
proteasome activation by Dox worsens the cardiotoxic effects of

trastuzumab, an inhibitor of ErbB2, by complete shutdown of the
NRG-1/ErbB pathway. Because the reduction of ErbB4 by Dox was
reversible in the present experiments, changing the timing of Dox
and trastuzumab administration may reduce their cardiotoxic
effects. Other strategies for the prevention of side effects may
include limits on the amount of Dox and administration of Dox in
combination with NRG-1.

It is well known that ROS are involved in Dox-induced cardiotoxi-
city, and the generation of ROS can be interpreted by the chemical
structure of Dox, which possesses a tendency to generate ROS
during drug metabolism."*"> Recent findings indicate that the endo-
thelial nitric oxide synthase reductase domain converts Dox to an
unstable semiquinone intermediate that favours ROS generation.”
Because ROS serve as an upstream mediator for the activation of
NF-kB,>*** and a number of previous reports have suggested that
miR-146a transcription is regulated by NF-kB,'®~"® miR-146a induc-
tion by Dox in our experiment may be due to ROS-mediated
NF-kB activation. Several reports suggested that there are inhibitory
kB kinase-dependent or independent pathways for the activation of
NF-kB by Dox in vitro.®3® Further examinations are required in
order to determine the precise mechanisms for the induction of
miR-146a by Dox in vivo.

NRG-1 is reported to be predominantly expressed in the cardiac
microvascular endothelium and to have beneficial effects on cardio-
myocytes through the Akt and Erk pathway.’” NRG-1B8 has been
reported to be 10—100 times more active than NRG-1a.%%%? We
performed immunoblotting and quantitative real-time (qRT)-PCR
for NRG-13 and detected NRG-1B in NRCMs. Therefore, NRG-1
is one of the factors that protect cardiomyocytes in an autocrine or
paracrine manner, although it is possible that NRCMs may express
much more NRG-1 than adult cardiac myocytes. Dox reduced the
expression of NRG-13 (see Supplementary material online, Figure
S6A). miR-146a and knockdown of ErbB4 increased NRG-1f3
expression at the mRNA and protein levels (see Supplementary
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material online, Figure S6B—E). We do not know the reason why
NRG-13 was up-regulated following miR-146a overexpression or
knockdown of ErbB4, but there may be a negative feedback loop
between ErbB4-NRG-13 to compensate for the reduction in ErbB4
expression.

In conclusion, the present results suggest that the up-regulated
expression of miR-146a after Dox treatment is involved in acute Dox-
induced cardiotoxicity by targeting ErbB4. There is emerging evidence
for the involvement of NRG-1/ErbB signals in heart failure. Therefore,
the development of new therapeutic strategies based on NRG-1, such
as the delivery of nucleotides that inhibit miR-146a, is promising for
treating heart failure.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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