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Three-quarters of compounds that enter clinical trials fail to make it to market due to safety
or efficacy concerns. This statistic strongly suggests a need for better screening methods
that result in improved translatability of compounds during the preclinical testing period.
Patient-derived organoids have been touted as a promising 3D preclinical model system
to impact the drug discovery pipeline, particularly in oncology. However, assessing drug
efficacy in such models poses its own set of challenges, and traditional cell viability
readouts fail to leverage some of the advantages that the organoid systems provide.
Consequently, phenotypically evaluating complex 3D cell culture models remains difficult
due to intra- and inter-patient organoid size differences, cellular heterogeneities, and
temporal response dynamics. Here, we present an image-based high-content assay that
provides object level information on 3D patient-derived tumor organoids without the need
for vital dyes. Leveraging computer vision, we segment and define organoids as
independent regions of interest and obtain morphometric and textural information per
organoid. By acquiring brightfield images at different timepoints in a robust, non-
destructive manner, we can track the dynamic response of individual organoids to
various drugs. Furthermore, to simplify the analysis of the resulting large, complex data
files, we developed a web-based data visualization tool, the Organoizer, that is available
for public use. Our work demonstrates the feasibility and utility of using imaging, computer
vision and machine learning to determine the vital status of individual patient-derived
organoids without relying upon vital dyes, thus taking advantage of the characteristics
offered by this preclinical model system.

Keywords: patient-derived organoids (PDO), high content imaging, label-free analysis, machine learning,
drug response
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INTRODUCTION

High-throughput screening assays have advanced the drug-
discovery field by greatly increasing the number of compounds
that can be screened and thus the number of positive leads.
However, this improvement has yet to produce a corresponding
increase in the drugs available for treatment as three-quarters of
the drugs that enter clinical trials never make it to market, with a
majority failing due to a lack of efficacy (1, 2). Oncology drugs
have proven especially challenging, with a predicted success rate
of only a 3.4% in clinical trials (3). One important limitation of
traditional in vitro cancer drug screening methods is the use of
oversimplified, immortalized cell lines cultured in 2D, which fails
to capture the in vivo complexity of human tumors including
influences from the surrounding microenvironment and cellular
heterogeneity (4–6). To improve the success rate of identifying
compounds with promising clinical translation, there is a need
for more biomimetic preclinical platforms to carry out these drug
testing studies. In this context, patient-derived organoids
(PDOs), in which cells obtained from a patient’s tumor are
grown in a medium that promotes the formation of cellular
aggregates that recapitulate important aspects of the original
tissue architecture, have gained significant traction in the cancer
research field (7–9). Multiple organoid models of human cancers
have been developed (10), including gastrointestinal (11),
prostate (12), ovarian (13) and pancreatic cancers (14). By
more faithfully representing the original physiological
environment, these tumor organoid models address some of
the limitations of traditional cell line cultures and offer rapid,
scalable approaches for patient-specific molecular and
phenotypic characterization as well as drug screening (11,
15–17).

Two traditional screening methods typically used to determine
compound efficacy are ATP based cell viability assays (18) and vital
dyes (VDs) (19). While valuable, both approaches have significant
drawbacks in the context of 3D organoid screening. ATP based cell
viability assays are disruptive and performed on a pooled
population of organoids: as such they do not allow for repeated
assaying and mask intra-organoid heterogeneity. Unlike cell
viability assays, vital-dye assays are imaging-based and non-
disruptive, and therefore, in principle, allow for analysis at
multiple timepoints and preserve heterogeneity. However, vital
dyes present two significant issues, depending on the specific dye.
First, they can have cytotoxic effects and interfere with the outcome
readout and, second, they can have transient expression, meaning
that the signal indicating a dead cell might peak at a certain
timepoint and disappear afterwards. In addition, the per-cell vital
dye signal needs to be integrated across multiple cells to obtain a
per-organoid viability determination.

Therefore, we propose a label-free high content screening
(HCS) method that involves live-cell imaging of colorectal cancer
(CRC) patient-derived organoids over time in a robust, non-
destructive manner. This approach provides an automated
pipeline to visualize cellular dynamics and extract multi-
parametric data, which is advantageous for phenotypic
screening of PDO models (20). One challenge of HCS
platforms is the vast amount of data produced that must be
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accurately interpreted. To circumvent this bottleneck in analysis
pipelines, machine learning (ML) methods can be applied to
these large-scale biological data sets. The usefulness of
Supervised ML approaches such as linear classifiers and
regression models has been demonstrated in analyzing large
amounts of data in disparate fields and they are now being
used increasingly in the biomedical domain (21–24).
Furthermore, computer vision applications can be applied to
HCS image data to recognize patterns and changes that are not
detectable by the human eye and thus have a huge potential to
streamline drug discovery pipelines through screening at a faster
pace (25).

Previously, we have shown that imaging-based HCS assays
can provide dynamic insight to changes in heterogeneous cellular
populations using 2D culture models with a cell-based image
analysis method (26). In this study, we trained a linear classifier
to discriminate between live and dead PDOs based on a set of
morphological and textural features extracted from brightfield
images, and then used the trained model to determine drug
response of organoids derived from colon cancer patients with
heterogeneous clinical histories. Additionally, by collecting the
vital status of individual organoids over time we can gain insights
into the dynamic aspects of drug response as well as the
heterogeneity of response across organoids and across patients.
This work showcases the possibilities offered by the application
of machine learning approaches to label-free high-content
imaging assays.
RESULTS

Generation of a Label-Free
Imaging-Based Workflow to
Evaluate Patient-Derived Organoids
We established an HCS pipeline that includes label-free temporal
imaging of PDOs (Figure 1A) coupled with quantitative image
analysis using a linear classifier (Figure 1B) and data
compilation and visualization (Figure 1C). To execute this
workflow, we utilized PDOs from our biobank generated from
CRC patient samples, which includes primary and liver
metastatic tumors.

Organoid set up (Figure 1A): Briefly, to generate PDOs that
recapitulate the morphology of the tissue of origin
(Supplemental Figure 1), tissue samples were obtained post-
surgery, processed, seeded in extracellular matrix, and expanded
for future use (see Methods section for details). To set up the
screening assay, organoids were first digested to a single cell
suspension before being seeded into a 96 well plate. Then, using
an HCS platform, the samples were imaged at multiple
timepoints in brightfield to minimize phototoxicity
and photobleaching.

Supervisedmachine learning algorithmused to classify organoids
as live/dead based on phenotypic features (Figure 1B): Image
analysis was subsequently performed on the maximum intensity
projections of multiple z-scan images using a machine learning
algorithm that enables users to build a linear classifier by identifying
December 2021 | Volume 11 | Article 771173
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regions of interest (ROIs) that are part of distinct groups. Using a
trained feature-based textural machine learning algorithm we
divided image regions into two classes: organoid ROIs and
background (the ML algorithm was trained on the segmented
and annotated images, see the Methods section for details).
Morphological and textural features were measured for each
identified object within the organoid class (Supplemental
Table 1). STAR morphology features encompass Symmetry
properties, Threshold compactness, Axial and Radial properties.
Spot-Edge-Ridge (SER) textural features are based on Gaussian
derivative images measuring pixel intensity patterns within each
ROI.Distributionsof all 25STARandSER featuresmeasuredacross
6 different PDOs, in media or treated with staurosporine (positive
control - apoptosis inducer), are depicted inSupplementalFigure2
(seePDOcounts and tissue site inSupplementalTable 2).At day 3,
morphological features are patient-specific and consistent across
replicate wells (Figure 2A) and unsupervised clustering of the data
identified clusters that matched the patient or origin rather than
number of days in culture (Supplemental Figure 3). Using thisML
approach, we can detect morphometric similarities and differences
across PDOs.

Statistical analysis and development of data visualization tool
(Figure 1C): For all 25 textural and morphological features, the
measurements for each detected PDO were first summarized
Frontiers in Oncology | www.frontiersin.org 3
(mean value) across all detected objects within a well. Next, the
mean and standard deviation were computed from technical
replicate wells for each treatment and time-point. A Shiny-based
web tool, the Organoizer, was developed to process the data and
produce plots for organoid-survival and monitor changes in
features over the course of the treatment period (27).

Phenotypic Signatures Correlate
to PDO Viability
To create a training data set, we manually classified 179 objects,
80 live (untreated media control) and 99 dead (5 mM
staurosporine treated positive control), across 41 images of
organoids derived from six different patients at various time
points. When applied to new experimental data each detected
PDOwas assigned to either the “dead” or “live” class by the linear
classifier based on 9 significant morphology and texture features
chosen by the algorithm to delineate between live and dead PDO
categories: SER Valley, SER Edge, SER Ridge, Profile 2/2,
Threshold Compactness 60%, Axial Small Length, Area, Ration
Width to Length, and Threshold Compactness 50% (Figure 2B).
Representative images illustrate selected PDO textural and
morphological features (i.e., Profile 1/2, and 2/2, SER Edge
Ridge and Valley), found to be distinct between live and dead
PDOs (Figure 2C). The signal to noise ratio of the classifier
A

B

C

FIGURE 1 | Workflow schematic (A) At day -4 organoids were digested to single cells and seeded at 5,000 cells/well in Basement Membrane Extract. Plates were
incubated for 4 days allowing organoids to reform. Baseline images were taken at day 0 prior to the initiation of treatment. After initial treatment, plates were re-
imaged at days 1, 3, and 7. Media and treatment are refreshed post imaging on day 3, with final measurements taken at day 7. (B) Using 96 well plates, multiple
patients and/or treatments can be performed with a single assay. Images were obtained in z-stack then combined into a single maximum projection image upon
which all further processing and analysis was performed. A textural algorithm was used to identify organoid regions of interest, with a segmenting algorithm applied
to split organoids in near proximity to each other. A training set was created by identifying live/dead organoids across untreated and treated samples from each
patient. This supervised machine learning algorithm was then applied to experimental data. (C) Classification data was compiled into spreadsheets then uploaded to
a web-based app for data processing and visualization.
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algorithm is expressed as “goodness” based on the distance of the
data points from the classifier line, which is visualized using a
scatter plot (Figure 2D).

As a baseline, we compared our classifier to the visual
assessments of trained cell biology experts. Trained cell
biologists are adept at visually assessing the health of their cell
cultures using brightfield microscopy, however manual
classification not only limits throughput but also introduces
inter-observer variability (23). To generate a ground truth by
visual assessment, we asked 9 scientists to blindly classify images of
individual organoids (18 PDOs) as either “live” or “dead”
(Supplemental Figure 4). Statistical evaluation of inter-rater
reliability indicated only moderate agreement between visual
classifications (Fleiss’ k = 0.451, z = 11.5, p = 0.00; perfect
agreement k=1), highlighting the inherent variability in
subjective manual classification. Using the data set containing
the 18 manually classified organoids, we also performed live/dead
classifications based on vital dye (VD) intensity from DRAQ7
staining. For our purposes we defined a dead PDO as one that
contained at least one DRAQ7+ area ≥ the area of a nucleus. For
each organoid we compared the expert consensus classification
against DRAQ7 staining results and our linear classifier
(Figure 3A). We found 78% (14/18) concordance between the
linear classifier and expert majority, 61% (11/18) between the
linear classifier and DRAQ7, and 61% (11/18) between the expert
Frontiers in Oncology | www.frontiersin.org 4
majority and DRAQ7. In instances where all experts agreed,
concordance between the linear classifier and the expert
majority increased to 100% (8/8), however expert majority
concordance with DRAQ7 only reached 62% (5/8). The strong
agreement between the expert classifications and the linear
classifier reinforces machine learning as a valuable approach for
3D organoid phenotyping. An important note, the 18 PDO images
classified across methods (i.e., experts/ML/VD) were not included
in the training set to ensure that there is no “leakage” of
information between the training and the testing set.

To further evaluate the performance of the linear classifier
using time series data, we compared our algorithm classifications
with those made using DRAQ7 for PDO-12620 (Figure 3B). We
normalized the proportion of live/total PDOs at each timepoint
to the proportion of live PDOs at day 0 for untreated and
staurosporine treated conditions determined by ML or DRAQ7
staining. For the staurosporine treated group, the ML classifier
detected a reduction in the number of live organoids on day 1,
whereas DRAQ7 shows a comparable reduction past day 3
(Figure 3C). In the untreated group, many organoids are
classified as live by both the ML and the VD, with 80%
concordance between the two methods. However, the two
methods started to diverge upon treatment, with concordance
in staurosporine treated organoids dropping to 60% (Figure 3D).
Additionally, our ML approach allows us to follow individual
A B

C

D

FIGURE 2 | PDOs display distinct texture and morphology features related to viability. (A) Heatmap illustrating 25 morphology and texture features (z-score
normalized) across 6 different PDOs in the untreated (media only) condition on Day 3. Columns represent replicates for each PDO. (B) Features discriminating
between live and dead PDOs are listed in order of relevance as indicated by the linear coefficient. (C) Representative PDO images of selected morphology and
texture features that discriminate between live and dead classification. Scale bar is 50 mm. (D) The signal to noise ratio is displayed as goodness of live (blue) versus
dead (orange) PDOs manually classified in the training set. Filled circles denote PDOs included in the training set and open circles are classified by the algorithm.
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A B

C D

E

FIGURE 3 | Comparison of live and dead classification by ML and vital dye. (A) Classification of 18 different organoid images as either live or dead was determined using
three independent methods: tissue culture experts, ML, and DRAQ7, and then compared to determine level of concordance. (B) PDOs treated with staurosporine or
untreated controls stained with DRAQ7 and classified by ML. Scale bar is 50µm. (C) The normalized proportion of live/total organoids (PDO 12620) for the control and
staurosporine treated group as determined by both ML and DRAQ7 was plotted over the course of 7 days (error bars: SD of 3 replicate wells per group per timepoint).
When classified by ML the difference in response between the treated and untreated groups are seen starting on day 1, whereas VD classification does not start to show
separation until after day 3. (D) Percentage agreement of ML and DRAQ7 live/dead classification for untreated and staurosporine treated organoids (PDO 12620; error bars
are SD of 3 replicate wells each). (E) Tracking the vital status of individual organoids (PDO 13154) over 7 days treatment with staurosporine as assessed by our ML
classification (N=114 organoids).
Frontiers in Oncology | www.frontiersin.org December 2021 | Volume 11 | Article 7711735
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organoids over time to determine their vital status (Figure 3E).
To further clarify the discrepancy between the ML-based and
DRAQ7-based classifications we tracked individual PDOs
(PDO-13154, N~900) over 7 days (days 0,1,3 and 7) and
determined their vital status at each time point by each
method (Supplemental Figure 5). While the ML classification
of dead PDOs increased with time, the population of dead PDOs
determined by DRAQ7 decreased. The discordance is most likely
due to clearance of cellular debris over time where a PDO
previously defined as dead is now DRAQ7 negative. Given
staurosporine is an inducer of apoptosis, this result suggests
that our ML method may identify dead or dying PDOs more
accurately including those that have lost their ability to
retain DRAQ7.

Use of Supervised Machine Learning to
Track Patient-Specific Drug Response
Tumors evolve over time in response to various stimuli, such as
organ-specific microenvironments and drug perturbations. Our
approach allows us to characterize the dynamic drug responses
of PDOs from both primary and metastatic CRC tumors over
Frontiers in Oncology | www.frontiersin.org 6
time. To accomplish this, we treated PDOs with standard
chemotherapy agents: irinotecan, a topoisomerase I inhibitor,
and oxaliplatin, an alkylating agent. To interrogate drug specific
phenotypic responses, we used heatmaps to examine
morphological and textural features within the dead class of
PDOs over the course of drug treatment. (Figure 4A). Across all
PDOs, the feature pattern in the staurosporine-treated group is
distinct from the chemotherapy groups. For PDO-12415, the
symmetry features in the media control stand out with generally
higher feature values compared to the drug treated groups. PDO-
12527 and PDO-12911 showed an increase in area and radial
mean over time for all treatments, however the symmetry
properties of all the PDOs did not show distinct variation
across treatment or time. Importantly, the increase in area and
radial mean could be attributed to the loss of structure and
spreading of dead organoids in response to drug rather
than proliferation.

Using our Shiny-based visualization tool we generated box
plots of extracted features of interest over time (Figure 4B and
Supplemental Figure 6). We chose to highlight Regional
Threshold Compactness 60% due to the unique patterns
A 

B 

C 

FIGURE 4 | PDO-specific drug responses over time. (A) Heat maps of dead PDO features under drug perturbations. Z-score normalized averaged feature values
are shown with treatment and time on the x-axis, with features on the y-axis. (B) Boxplots of the feature “region threshold compactness 60%” generated using the
Organoizer show the variation between the classified live/dead groups. (C) Fractions of live/total organoids from untreated media control, irinotecan-treated and
oxaliplatin-treated groups are plotted over time to generate dose response curves. Points indicate the mean and bars show the SD.
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observed across patients; however, our visualization tool is capable
of displaying all features captured. In addition, we plotted dose
response curves for each drug treatment (Figure 4C). While PDO-
12415 (bottom left panel) showed a limited response to irinotecan
at 20 mM, a much stronger effect was measured with 40 mM
irinotecan starting on day 1. Oxaliplatin at 20 mM also elicited a
response with the normalized proportion of live/total dropping
60% by day 7. Analysis of PDO-12527 (bottom middle) revealed a
similar response to both oxaliplatin and irinotecan at 20 mM, while
irinotecan at 40 mM more effectively killed the PDOs. It appeared
that PDO-12911 (bottom right) did not respond to oxaliplatin at
20 mM, as the proportion of live/total PDOs was comparable to the
negative control across all 7 days. A slight difference in response
timing was seen between the two doses of irinotecan, where the 40
mMdose showed a stronger response at day 3 compared to 20 mM,
however by day 7 both showed a response below 40%. Despite
temporal variations in response, all three PDOs showed a 60-70%
reduction in the proportion of live/total PDOs by day 7. Taken
together our ML approach identified PDOs that responded to
chemotherapy early in the dosing regimen, highlighting the ability
to capture patient-specific drug responses.
DISCUSSION

Given the breadth of biological models used in cancer research,
investigations into drug response should span spatial and
temporal scales. However, we continue to apply assays such as
those measuring ATP-viability that capture a single readout from
a sample/well at a fixed timepoint, which results in a limited
understanding of the underlying biology. As seen in Figure 3,
manual classification limits throughput and introduces person-
to-person subjectivity. On the other side, VDs proved
problematic for determining the viability of 3D organoids -
especially once healthy proliferating organoids develop a
necrotic core that contains a substantial fraction of dead cells,
masking drug effects. This issue is more commonly seen in PDOs
that form large structures, which can be the result of rapidly
proliferating organoids. Furthermore, dying cells that initially
stain positive using VDs, eventually lose their ability to retain the
dye and therefore may erroneously be counted as live.

Herewepresent anobject-based image analysis (OBIA)workflow
that is designed to fill the gap between cell and population-level
analyses, to dynamically interrogate heterogeneous object-based
PDOs in response to perturbations including drug treatment. The
non-destructive nature of our platform supports temporal
monitoring of phenotypic changes, which allows us to capture the
appropriate timing of effects. With an OBIA ML approach we can
account for variations in inter-PDOsamples (size, shape, etc.).With a
larger dataset, one could begin to explore possible correlations
between organoid features and patient prognosis (28, 29), shedding
light on the clinical relevance of these features.

The imaging workflow described herein provides significant
advantages; however, it is important to consider the limitations.
Imaging consistency plays a large role in the success of a given assay,
and deviations in the XY sample placement can influence results
Frontiers in Oncology | www.frontiersin.org 7
when drawing conclusions across timepoints. Patient to patient
variability in PDO size influences the parameters needed for proper
segmentation and identification of ROIs; therefore, careful
consideration needs to be placed on splitting and merging factors
during the segmentation algorithm adjustments. Moreover,
additional features and/or separate classification algorithms may
beneeded toaccurately separate live anddeadPDOcategorieswhen
treated with diverse classes of drug compounds.

As many biologists are not computer vision or ML experts,
analysis platforms that are accessible to non-experts are needed
(30, 31). A paper by Falk et al. describes an ImageJ plugin, U-Net,
that enables researchers who are not ML experts to benefit from
its application to biological data (32). Furthermore, while the
computationally intensive parts of the image analysis workflow
are done in a reproducible and automated fashion, biologists are
still faced with the task of summarizing the data for different
timepoints and conditions across thousands of ROIs. To
facilitate this step, we have designed an interactive, web-based
tool where users can upload the output of the ML analysis and
obtain survival curves and feature metrics. Additionally, while
the textural and morphological features that best differentiate
between live and dead organoids are automatically determined
by the linear classifier, it is often useful to be able to visualize
differences across all collected features over time. These tools are
accessible at http://organoizer.eitm.org and available for
download at https://github.com/eitm-org/organoizer.

We focused our attention on the use of a supervised ML linear
classifier algorithm to distinguish live versus dead organoids for
the purposes of understanding drug response; however, there are
many other questions that could be asked using this method.
This workflow enables unrestrained exploration of
multidimensional features of organoid morphology and texture
characteristics to discover new biology within and across patient
samples. Here we demonstrate the utility of our ML image
analysis method using a smaller sample set; however, this
method can be scaled to perform large drug screens on PDOs
generated from different cancer types, providing researchers a
flexible yet robust platform for posing their own biological
questions. Additional artificial intelligence and ML techniques
are being applied to image analysis workflows, including
unsupervised techniques such as neural networks and deep
learning, which recognize outcomes that are not detectable by
humans (21–24). Label-free organoid imaging and batch analysis
methods using trained neural networks have been developed
from several groups (30, 31, 33, 34). Although these approaches
provide highly efficient and precise detection, classification, and
measurement of organoid objects, these often require
programming skills to create a specific code to train the
network and process images. Deep learning-based analysis will
be very powerful with large datasets, but additional data
processing will be needed to extract specific information. Our
ML-based method, with linear classifier and data visualization
tool, showed great performance with a relatively small patient
sample size. Moreover, it generated multiparametric data
including patient-specific organoid morphologies and drug
responses over time to understand patient heterogeneity.
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The rise in patient-derived biobanks, combined with sophisticated
image analysis techniques using ML approaches, presents a valuable
platform for drug screening and discovery.
ONLINE METHODS

Cell Culture and Reagents
Organoid growth medium consists of base medium (ADMEM/
F12 with 10% FBS, 1% penicillin/streptomycin, 1% Glutamax,
and 1% HEPES) supplemented with 1X N2 (Sigma Aldrich,
17502048), 1X B-27 (Sigma Aldrich,17504044), 1mM N-
Acetylcysteine (Sigma Aldrich, A7250) 50 ng/ml EGF (Life
Technologies, PGH 0313), 100 ng/ml Noggin (Tonbo, 21-
7075-U500), 10 mM nicotinamide (Sigma, N0636), 500 nM A
83-01 (Calbiochem, 616454-2MG), 10 mM SB202190 (Sigma
47067), and 0.01mM PGE2 (Sigma Aldrich, P5640).

Tissue digestion solution consists of 1.5 mg/ml collagenase
(Millipore, 234155), 20 mg/ml hyaluronidase, (MP Biomedicals
100740) and 10 mM Ly27632 (Sigma Y0503).

Generation and Expansion of Human
Colorectal Cancer PDOs
Tumor tissue was received from consented patients following
Institutional Review Board (IRB) approval at the Norris
Comprehensive Cancer Center of USC, Los Angeles CA.
Tissue was washed with PBS, minced and digested for 30
minutes at 37°C. Digest suspension was filtered using a 100
mm strainer to remove large residual pieces of tissue, then
centrifuged at 189 x g for five minutes. Pellet was washed in
DMEM/F12 media (ThermoFisher, 11320033) supplemented
with 10% FBS three times and single cells were re-suspended
in BME (Culturex® Reduced Growth Factor Basement
Membrane Matrix Type 2, Trevigen, 3533-005-02). Cell/BME
mixture was plated in 24 well plates with 60 ml per well and
incubated upside down at 37°C until solidified (10-20 minutes).
Then 500 ml of organoid growth media was layered on top and
media was changed as needed. To passage organoids, BME was
dissociated with 500 ml/well TrypLE (ThermoFisher Scientific,
12605028) for 5 minutes at 37°C. Organoid suspension was
pooled and centrifuged at 450 x g, the pellet was re-suspended
in BME and re-plated in a 24 well plate. PDOs used for
experiments were ≤ 20 passages in culture.

Drug Treatment Studies
PDOs were harvested from BME using Gentle Cell Dissociation
Reagent (Stemcell technologies, 07174), pooling all wells and
incubated on ice for 45 minutes then centrifuged for 5 minutes at
189 x g. Supernatant was removed and the pellet was re-
suspended in 50% TrypLE with 10 µM Y-27632 (Stemcell
Technologies, 72302), incubated at 37°C for 10-15 min with
occasional agitation. Alternatively, PDOs were harvested using
500 ml/well TrypLE, incubated at 37°C for 30 minutes. For both
methods, PDOs were centrifuged for 5 minutes at 189 x g.
Supernatant was removed and the pellet was re-suspended in 1
ml of organoid base medium then filtered through a 40 mm
strainer to remove aggregates. Flow through was centrifuged at
Frontiers in Oncology | www.frontiersin.org 8
189 x g for 5 minutes and the pellet was re-suspended in BME. A
96 well m-Plate (Ibidi, 89646) was coated with 5 ml of BME/well
and incubated at 37°C until BME solidified. The m-plate was then
seeded with 5 ml BME/cell mixture at a concentration of 1000
cells/ml and topped with 70 ml organoid growth medium.

I. Image-Based Organoid Drug Response Assay
Image acquisition. Plates were incubated for four days prior to
imaging on the Operetta HCS platform (PerkinElmer). Baseline
images were taken on day 0 followed by respective drug
treatments: irinotecan (Sigma-Aldrich, I1406), oxaliplatin
(Sigma-Aldrich, O9512), staurosporine (Sigma-Aldrich,
569396). Additional images were acquired on days 1, 3, and 7
post drug treatments. Images were acquired in brightfield, with
23 z-stacks ranging from 20-460 mm at increments of 20 mm. On
day 3 of the experiment, imaging medium was changed and
replaced with fresh medium and drugs.

Image Analysis. Z-stack images were combined into single
maximum projection images which were then analyzed using
Harmony (PerkinElmer) image analysis software. ROIs were
generated using the “Find Texture” supervised ML feature.
Training areas of 15 pixels, with texture scaling (2 pixels) were
used to define the distance, and region scaling (6 pixels) defines
the smoothness of region borders. These ROIs were modified as
needed per visual analysis using the “Modify Population” feature
to achieve optimal splitting of objects. Specifically, further
segmentation was performed to partition the organoid area
into multiple, distinct class regions corresponding to individual
organoids, by applying a hole-filling algorithm followed by a
cluster-by-distance method to detect individual objects within
clusters. After objects at the border of the image were removed
from the analysis set, morphological and textural features of
complete organoids (ROIs) were measured and extracted. A final
filtering step based on the object area measurement was applied
to exclude small debris as well as large, unsegmented organoid
clusters from the data set. In addition, the commercially available
PhenoLogic™ ML algorithm (PerkinElmer) was used to classify
organoids as live or dead.

II. VD Dead Cell Labeling, Imaging, and Analysis
DRAQ7 (Biolegend, 424001), at a final concentration of 5 mM,
was added to plates 30 minutes prior to imaging on day 0.
Additional 5 mM DRAQ7 was added on day 3 along with fresh
medium and drug. Images were acquired with excitation at 633
nm. Areas positive for DRAQ7 were detected within each
organoid ROI. ROIs containing one or more areas of DRAQ7
were classified as dead.

Statistical Analysis
Organoid ROIs were counted, and ROI-level morphological
metrics were averaged on a per-well basis at each timepoint
and for each class (“dead” vs. “live”). The mean and standard
deviation were then computed from replicate wells with the same
treatment conditions. Response curves were computed as either
the proportion of “live’ ROIs over “dead” ROIs (ratio) or as “live”
ROIs over all ROIs (proportion). Optionally, the proportion or
ratio of “live” organoids can be normalized to the proportion (or
December 2021 | Volume 11 | Article 771173
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ratio, respectively) on the first day of measurement (usually day
0). Boxplots for each feature across timepoints were also
generated. The code is available at https://github.com/eitm-org/
organoid_drug_response.

Heatmaps were generated by averaging feature values per well,
then taking the average value across wells to get one average value
for each unique group. Rows and columns were grouped using
hierarchical clustering and rows were scaled using the heatmap
package in the R statistical computing language. All analyses were
performed using the R statistical language (v. 4.1.0) using the
following packages: cowplot (v.1.1.1) (35), eulerr (v. 6.1.1) (36),
ggridges (v. 0.5.3) (37), ggthemes (v. 4.2.4), here (v. 1.0.1), irr (v.
0.84.1) (38), knitr (v. 1.33), networkD3 (v. 0.4), pheatmap (v.
1.0.12), plater (v. 1.0.3), readxl (v. 1.3.1), reshape2 (v. 1.4.4), scales
(v. 1.1.1), tidyverse (v. 1.3.1) and viridis (v. 0.6.1) (27, 39–49).
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