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Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor
circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This
study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson’s disease (PD)
and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were
recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP
signal features were extracted by computing instantaneous power related tomotor response in different neural frequency bands. An
innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its
forthcoming laterality.The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and
probabilistic neural networks.Themajority voting rule is used to fuse the decisions of the three base classifiers to generate the final
decision of the ensemble classifier.The overall decoding performance reaches a level of agreement (kappa value) at about 0.729±0.16
for decoding movement from the resting state and about 0.671 ± 0.14 for decoding left and right visually cued movements.

1. Introduction

A fundamental function of the brain-machine interfaces
(BMI) is to decode and interpret the recorded neural poten-
tials to classify the patient’s intentions or intended behaviors.
Such information allows for a better understanding of neu-
ronal circuit mechanisms and enables possible development
of treatment methods for neurodegenerative disorders [1].
Deep brain stimulation (DBS) [2–4] is a functional neuro-

surgical procedure of implanting a miniature medical device
to send electronic signals to certain parts of the brain such
as subthalamic nucleus (STN) or globus pallidus interna
(GPi) in Basal Ganglia (BG) for treatment of movement
disorders such as Parkinson’s disease (PD) orDystonia. At the
same time, DBS devices can be considered for BMI design
and they are able to record the neurosignals called local
field potentials (LFPs) [5–7] for body movement prediction

or interpretation. Deep brain LFPs represent the aggrega-
tion activities of a large population of local synchronous
neurons [5] and can provide neuronal information with
better quality (i.e., high SNR) and greater stability over
time compared with single-unit activity (SUA). The acquired
LFPs from implanted DBS macroelectrodes can be used by
researchers and clinicians to investigate on functioning of the
Basal Ganglia in motor control [8] for better understanding
and more effective treatments of movement disorders [9].
Deep brain LFPs reflect synchronized, subthreshold currents
generated in the somata and dendrites of local neuronal
elements [10] and they can be subdivided into a number of
frequency bands including delta (0–3Hz), theta (4–7Hz),
alpha (8–12Hz), beta (13–32Hz), gamma (31–200Hz), and
high-frequency (>200Hz) [9] bands. During human body
movements, the frequency of the LFP signals can be as high
as 300Hz [7] and is likely to vary due to a varied degree of
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behavioral and disease correlation. For example, in case when
self-paced (voluntary), externally cued movements or any
specified action is intended to be performed, the frequency-
dependent event-related synchronization (ERS) and event-
related desynchronization (ERD) can be found in various
LFP bands recorded in bilateral STNs and/or GPIs [5, 10],
which suggests that these oscillations may be related to the
preparations of motor response.
With the analysis of intra-operative LFP recordings, it

has been found that the frequencies of the synchronized
oscillatory activities generally belong to one of two different
bands for PD patients withdrawn fromdopaminergic therapy
[10]. The first band contains activity frequencies (3–12Hz)
of Parkinsonian rest and action tremor, but the signal in
this band is neither consistent nor a strong feature of LFPs.
However, the second band, called beta band (13–32Hz), is the
frequency range representative of LFP oscillations.This band
is antikinetic in nature and is manifested in single-unit activ-
ity [10]. Furthermore, for PD patients, the improvement in
bradykinesia and rigidity with the subsequent dopaminergic
therapy was shown to be correlated to the signal magnitude
change in the beta band [9]. However, for PD patients, the
oscillatory characteristics of beta frequency band are aug-
mented to such an extent that they dominate overmotor com-
mands used for initializing voluntary movements, leading to
movement disorders [13]. The most consistent of beta band
activities can be found in the untreated, hypodopaminergic
Parkinsonian state [14–16]. Recent study also substantiated
that the strong signal components in beta frequency band
were observed in LFPs recorded from the GPI of PD patients,
whereas, for Dystonia patients, the signal in the same fre-
quency band was much less salient [9]. For Essential Tremor
(ET), the tremor signals are consistently in the frequency
range of 8–27Hz. For cervical Dystonia, the frequency ranges
of 4–10, 11–30, and 65–85Hz of LFPs are highly correlated
to sternocleidomastoid muscle EMG signal frequencies [9].
In addition, ERD in beta band (10–24Hz) was observed
during human movement initiation process and ERS during
cessation ofmovement [9]. At rest and during “OFF”medica-
tion Parkinsonian state, alpha (8–12)Hz and beta (13–32)Hz
oscillatory activities dominate in the LFP frequency spectra,
while they are drastically reduced during “ON” medication
state [7]. Moreover, during “OFF” levodopa, the activity in
gamma band increases bilaterally during active movement
[9] andhigh-frequency oscillations (HFO) (300–350Hz)may
heighten. In addition, it was also reported that, during “ON”
and “OFF’ medication states in PD, the extent of power
in the frequency band of 4–10Hz is lower in contrast to
Dystonia patients [9]. Although the oscillations in gamma
band (>70Hz) in LFPs that is correlated to human move-
ment (prokinetic) were suppressed [13] or absent in PD
patients, during the “ON” medication state, the synchro-
nized oscillatory activity may occur in the STNs and GPIs.
Although the evidence suggests that these frequency activities
would increase when the body changes from rest to move-
ment, the activities above 65Hz appear to be an unreliable
LFP feature for PD patients [10].
Basal Ganglia STNs activity can be modulated, while

patient intends to perform a specified action orwatches visual

images of movements [17]. Such intended movements are
responsible for generating ERS and ERD in Basal Ganglia
which are similar in frequency and time to those during
actual voluntary movement [1]. Although the differences in
the midst of contra- and ipsi-lateral movement-related oscil-
latory changes in the STNs have been unknown, some stud-
ies suggest that theremaynot be substantial differences.How-
ever, it was also reported recently that, during wrist move-
ment tasks, both contra- and ipsi-lateral ERS were observed
in the gamma frequency band [7] but event-related desyn-
chronization (ERD) was found in the low-beta frequency
band (∼10–24Hz) [9].
Therefore, multiple frequency-dependent oscillations in

motor cortex and BG are directly related to the process
of action making, preparations, executions, and imagina-
tions of movements [7]. Recent experimental results showed
that, based on distinct oscillations of LFPs, self-paced hand
movements can be predicted using a pattern recognition
algorithm [18].The result indicates that LFP activity is directly
or indirectly involved in the process of motor preparation.
In addition, it is found that the LFPs can be used to
infer substantial information about specific types of arm
movement parameters such as distance, speed, and directions
for motor disorder patients [19, 20]. A recent study showed
that movement in eight directions can be decoded with the
best recognition rate of up to 92% using the spatial patterns
of LFPs in premotor and primary motor areas [19].
Some studies have been conducted to find the coherence

and causality between cortex and hand movement. In one
study, it was found that noteworthy coherence only exists
between the human sensorimotor cortex and contralateral
hand and forearm muscles. However, no existence of coher-
ence was found in sensorimotor cortices or any ipsi-lateral
hand and forearmmuscle [21]. In another study, it was shown
that voluntary movement can be decoded up to 76.0 ± 3.1%
using causal strength of LFP signal features computed on
neural synchronization of bilateral STNs orGPIs andutilizing
bivariateGrangerCausality [1]. Additionally, it was found that
left and right hand movements are associated with different
spatiotemporal patterns of movement-related synchroniza-
tion and de-synchronization [22]. Therefore, motor control
or bilateral coordination can be predicted by decodingmove-
ment intention from Basal Ganglia neural activities for left
and right hands [1, 7, 12].These research findings have further
demonstrated that LFPs during onset of movement contain
supportive information that may advance our knowledge
towards reliable movement decoding strategies for neuro-
prosthetic device developments, diagnostic assessments, and
possible treatment of some chronic neurological disorders.
For instance, early prediction of onset of tremor of PD
patients may provide the possibility of constructing an
adaptive therapeutic intervention mechanism in using DBS
for optimal neuromodulation effects [3].
Hence, the prediction and classification of human body

movements can be achieved by decoding the recorded BG
LFP signals using pattern recognition algorithms. In this
paper, we have developed an innovative neural network (NN)
based ensemble classifier for effectively decoding the LFP
signals recorded from sequential occurrence of movements
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and identifying whether the movement is left- or right-sided
visually cued in an automated and systematic fashion.
Artificial neural networks (ANNs) [23] are one of the

most effective and commonly used machine learning algo-
rithms. However, different types of ANN algorithms possess
various advantages and disadvantages in classification. For
instance, the FBANN, that is, multi-layer perceptron (MLP),
is relatively efficient in optimization or classification with
limited training data but tends to be stuck in the local
minima and provides less satisfactory classification results
[24]. On the other hand, RBFNN could find the global mini-
mum [25] but requires much larger dataset to train. Alterna-
tively, PNN, derived from the Bayes rule and kernel Fisher
discriminant, is more accurate than MLP networks and
insensitive to outliers in training data [26]. However, PNN
needs more training data and is slower than MLP networks
in classification. Therefore, it is highly preferable if we can
design an ensemble classifier that uses all of the neural net-
works as the base classifiers for their collective advantages.
The ensemble classifier would contain all the advantages of
the above-mentioned networks for better activity decoding
and classification using LFP dataset. Also, to get robust and
consistent movement in decoding performance, we develop
a decision fusion algorithm based on the majority voting
strategy to combine the classification results from three
individual neural networks. The majority voting is simple,
intuitive, and effective ensemble approach for improving
classification performance [27, 28]. Recently, it has been
shown that when seven base classifiers were used in five
different ensemble strategies, including majority voting,
Bayesian, logistic regression, fuzzy integral, and neural net-
work, the majority voting strategy proved to be as effective
as any other algorithm in improving overall classification
performance for the dataset provided [28]. We believe that
identifying visually cued voluntary movements by decod-
ing oscillatory characteristics of LFP activity may provide
ways of developing more advanced neural interface systems
such as BCIs and BMIs to enhance our understandings
of the underlying process of movements and its important
implications in STNs or GPIs for controlling movement
activities.

2. Experimental Framework and Data
Acquisition (DAQ) System

The LFP datasets used in training and testing for movement
recognition were recorded through the DBS devices from
the patients with Parkinson’s diseases (PD) or Dystonia. The
circumstances of the data acquisition are described in detail
in this section.

2.1. Patient Details. In this work, a total of twelve Parkinson’s
disease or Dystonia patients (7 males and 5 females) with
their ages ranging between 23 and 72 years (49.6 ± 13.9,
mean± 1SD)were recruited. Each patient underwent bilateral
implantation of deep brain stimulation (DBS) electrodes in
the STN or GPI for therapeutic stimulation to provide the
LFP signals for recording. Their disease-suffering durations
were between 3 and 38 years (14.8 ± 10.3, mean ± 1SD). The
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Figure 1: Recorded LFP signal from bilateral STNs with chrono-
logical visual stimulus applied to the patient. Time of stimulus is
presented in solid lines and subsequent motor activity is presented
in dotted lines.

corresponding demographics are summarized in Table 1.The
LFP data collection was approved by the local research ethics
board at Oxford University. All participants provided written
consent prior to this study.

2.2. Deep Brain Stimulation (DBS) Electrode Setup. The DBS
macroelectrode (model: 3387,manufacturer:MedtronicNeu-
rological Division, Minneapolis, USA) was implanted bilat-
erally in the left and right STNs or GPIs for treatment of the
patients with Parkinson’s disease orDystonia.Themacroelec-
trode consists of four platinum-iridium cylindrical surfaces
(diameter: 1.27mm, length: 1.5mm, and center to center
spacing: 2mm; contact-0 is the most caudal and contact-3 is
the most rostral). Macroelectrodes were inserted after STN
and had been identified by using ventriculography and pre-
operative magnetic resonance imaging (MRI). Stimulation
spots were chosen as the electrode positions, where lessening
in Parkinsonian symptoms occurred during intra-operative
electrical stimulation and the matching is confirmed by
examining the post-operative MRI scan or the fused images
of pre-implantation MRI with post-implantation CT.

2.3. Movement Activities of the Patients. During LFP record-
ing from STNs (Figure 1) or GPIs, all subjects were instructed
to do a finger pressing task in a random order with a short
resting period between tasks. Each subject was seated 60 cm
(approx.) away from the experimental computer screen. After
that, prior to each motor task, they were instructed to keep
their left or right index fingers on the distinct keys on the left
or right standard keyboard. In addition, all the patients were
asked to look at a 10mm cross that was repetitively displayed
in the center of the screen and letter A (height: 8mm; width:
7mm) on the screen for the duration of 400ms instantly to
the left or right central cross. It was the indication signal to the
patients to move the finger.The interval of cues and laterality
were provided randomly in the experiment.
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Table 1: Recording and clinical details of patients.

Patient # Age Sex Years in disease PD or Dystonia Elec. placed Electrode pair used
1 58 F 10 PD STN L23/R12
2 63 F 3 PD STN L12/R12
3 59 M 7 PD STN L01/R01
4 60 M 13 PD STN L12/R01
5 72 F 21 PD GPI L01/R01
6 55 M 10 PD STN L12/R01
7 36 M 14 Dystonia GPI L12/R12
8 53 M 5 Dystonia GPI L01/R01
9 23 M 7 Dystonia GPI L12/R01
10 54 F 38 Dystonia GPI L01/R01
11 40 M 25 Dystonia GPI L01/R01
12 32 F 24 Dystonia GPI L12/R23

2.4. LFP Signal Acquisition from Patients. The LFP signals
of twelve patients were recorded at STNs and GPIs for 4–6
days via externalized electrode leads post-operatively after all
the patients had been kept “OFF” medication overnight and
high-frequency stimulation pulses were completely turned
“OFF.” Using MRI, the DBS lead contacts at STNs or
GPIs to record LFP signals on both sides were confirmed.
Three adjacent pairs consisting of 4 contacts named 0, 1,
2, and 3, respectively (pair positions are 0-1, 1-2, and 2-
3), were used to record LFPs in the bipolar signal form
and bilaterally. Usually, the bipolar configuration was used
to provide “common mode rejection” to far-field activity
signals against common mode noise contamination. If DBS
stimulation and activity recording are conducted simulta-
neously, the LFP signal recording can be interfered by the
DBS stimulation pulses, leading to inaccurate recording and
decoding results. In this experimental setup, we recorded
the LFP signals well before the stimulation started to avoid
any possible interference of the simulation pulses to activity
recording. DBS macroelectrode pairs were chosen for better
therapeutic effects and anatomical structures. After that,
the segments of the recorded signal containing erroneous,
premature, or no responses were deliberately discarded from
the datasets.The number of trials had to be kept at minimum
to minimize the stress during the experiment imposed on
the PD/Dystonia patients. In the experimental session, 114 ±43.6 trials (mean ± 1SD) consisting of minimum 56 and
maximum 202 trials across all subjects were employed in the
movement decoding process. In addition, for most of the
patients, the number of trials is unbalanced for each class.
The average number of trials of each class is 58.2 ± 23.6
(mean ± 1SD) with a minimum of 25 trials and maximum
of 113 trials and the average difference between the classes
across all the subjects is 14.2% ± 19.0 trials (with a minimum
of 1.2% and a maximum of 57.6%). The DBS surgery was
only warranted if the patient had exhibited motion-related
dysfunction in postural control, gait, and locomotion in
addition to usual motor symptoms such as tremor, rigidity,
and bradykinesia. Under these circumstances, there will be
always challenges with the amount of data with sufficient
neuronal information to be collected; therefore to develop

an analysis method that does not rely on a large number
of trials is of paramount importance. However, for avoiding
rapid repetitive movements and obtaining valid ranges of
inter-movement data, the LFP signals obtained outside the
time range between 1 s and 5 s during a movement were
excluded from the datasets. The contact pair (from bipolar
mode: 0-1, 1-2, and 2-3) in the Basal Ganglia were chosen
for analysis and showed greatest percentage of beta (𝛽) band
(13–32Hz) modulation due to the movement in contrast to
the amplitude of 𝛽 modulation during the baseline activity
period occurring 1-2 seconds before the onset of motor
response. The LFP information obtained from the available
contact pairs of each electrode would be highly correlated
and therefore only one contact pair of each electrode was
used for data recording and analysis. In the recording
scheme, CED 1902 amplifiers (×10,000) were employed to
amplify the initial signals recorded at the DBS contacts. With
tripolar configurations (active-common-reference), surface
EMGs were recorded using disposable adhesive Ag/AgCl
electrodes (H27P, Kendall-LTP, MA, USA). Based on the
recorded EMGs from the index finger, the onset of motor
response and other voluntary and involuntary movements
were determined by timing of the key presses as registration
of motor response. The movement-related artifacts due to
equipment lead were carefully identified and the recordings
containing excessive noises were excluded from analysis.
Contaminated trials with artifact were also removed. In
addition, noise of the recorded data related to patients’
movement were avoided as much as possible by instructing
patients to stay in steady condition during each session
of recordings. In the recorded EMGs, rest and movement
conditions were defined as follows: “rest” is defined as no or
little hypertonic bursts, “voluntary movements” are defined
as regular pulses with a duration of tens of milliseconds, and
“uncontrolled contractions” are defined as phasic spasm over
seconds.The initial signals were amplified using isolatedCED
1902 amplifiers (×10,000 for LFPs and ×1000 for EMGs), low-
pass filtered with a cut-off frequency of 500Hz, and then
digitized using 12-bit CED 1401 mark II with a sampling
rate of 2000Hz. Subsequently, a custom written program in
SPIKE 2 (Cambridge Electronic Design (CED), Cambridge,
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UK) software was used for recording, online monitoring,
and storing the digitized data in the hard drive. Variations
of instantaneous magnitude and frequency for both LFPs
and EMGs were compared to find correlations between them
during movement activities.

2.5. Preprocessing of STN’s LFP Signals. For removing high-
frequency noise and artifacts, a low-pass type-I Chebyshev
filter (zero phase shifting and cut-off frequency 90Hz) was
applied to the STN’s LFP signals. A notch filter at 50Hz was
further applied to the processed signals to remove the single-
frequency noise associated with the power supplies. Then
the LFP datasets were digitally resampled at 256Hz prior to
feature extraction and classification processing.

3. Methodology of Feature Extraction
of LFP Signals Using Wavelet Packet
Transform (WPT) and Hilbert
Transform (HT)

To carry out the identification of finger movements from
the LFP data, we used wavelet packet transform (WPT) and
Hilbert Transform (HT) to extract the LFP signal features
from different frequency bands in the frequency range from
0 to 90Hz. For non-stationary biosignals such as LFPs, WPT
is a better alternative as a data analysis tool than STFT or
standard DWT in extracting relevant signal features for pat-
tern recognition in the time-frequency domain [29].
WPT can decompose both approximation and detail

spaces into further subbands with functionally distinct scales
in a balanced binary tree and has ability to localize any spe-
cific information of interest as compared to DWT [30, 31]. In
carrying out theWPTat decomposition scale of 5, the discrete
Meyer wavelet (demy) was selected and applied to the LFP
data to generate different multi-resolution coefficients. The
WPT coefficients are obtained by recursively filtering out the
coefficients generated in the previous stage with lower resolu-
tions to compute the WPT coefficients at current scale.
After completion of the WPT processing, we segmented

a 4-second time window from each frequency band for LFP’s
left and right clicking event tasks at each motor response
registration (Figures 2(a) and 2(b)). Likewise, we can segment
the resting activity into a total of 2-second time windows
during each stimulus registration.The signal envelope in each
frequency band of the reconstructed signal was computed by
using the Hilbert Transform (HT) [32] and the signal features
were extracted based on the power of each frequency band.
From Figure 2(c), it can be seen that event-related synchro-
nization and desynchronization happened in all frequency
bands but visible amplitude decrement was found in 𝛽 band
at the left and right STNs orGPIs.However, at the event onset,
the signal amplitude in the 𝛿 band was quite large compared
to those in other bands.
For generating the classification features, instantaneous

power was computed by averaging the amplitudes of the
defined windows in each frequency band.Thewindow length
was either 100ms or 50ms and its center locationswere varied
from −500ms to +500ms. Ultimately, based on the left and

right visually cued movements and the oscillatory character-
istics of STN’s or GPI’s LFP signal due to mean energy incre-
ment (synchronization) or reduction (desynchronization),
the average amplitudes of five consecutive windows (from−150ms to 350ms) of length of 100ms were chosen as the
desired period of interest for feature extraction (Figure 2(c)).
Similarly, feature extractions were conducted for the resting
state. The five windows with a window size of 100ms from−750ms to −250ms were selected to extract features for rest-
ing condition (prior to the stimulus applied) of the patients.
Finally, for each patient in each frequency band, vectors of

total seventy bilateral features (2 sides × 7 bands × 5 points in
time) at contra- and ipsi-lateral STNs or GPIs were extracted
for decoding voluntary movement and resting activity.

4. Design of the Neural Network
Based Ensemble Classifiers for LFP
Data Recognition

The objective of the work is firstly to detect if finger move-
ment has happened by decoding deep brain-recorded LFP
signals and, if so, subsequently to determine the laterality of
that movement. The decoding process, which is actually a
two-step three-class classification, consists of LFP data acqui-
sition and preprocessing part, the signal feature extraction
part using WPT and HT, and the ensemble classifier that
includes three base neural network classifiers and a fusion
decision system. The structure of the ensemble classifier for
the decoding process is shown in Figure 3.
The proposed overall decoding process using the ensem-

ble classifier in Figure 3 is illustrated in the state diagram in
Figure 4.The three base neural network classifiers used in the
ensemble classifier will be briefly reviewed and the decision
fusion rules and the performance evaluation approaches will
be introduced in the rest of the section.

4.1. Three Base Neural Network Classifiers. Three different
neural networks that will be used as the base classifiers to
form the proposed ensemble classifier will be discussed very
briefly in this section.

4.2. Feedforward Backpropagation Artificial Neural Network
(FBANN)/Radial Basis Function Neural Network (RBFNN)/
Probabilistic Neural Network (PNN). The FBANN [33, 34]
was originally designed and trained based on the steepest
descent training algorithm. The FBANN network’s overall
output, 0, with an input vector Xq is computed based on the
following equation:

0 = 𝑓( 𝑛∑
𝑝=1

𝑤2𝑝𝑓( 𝑚∑
𝑞=1

𝑊1𝑝𝑞𝑋𝑞 + 𝑏1𝑝) + 𝑏2) , (1)

where𝑊𝑝𝑞 (𝑞 = 1, 2, . . . , 𝑚; 𝑝 = 1, 2, . . . , 𝑛) are the connec-
tion weights, 𝑛 is the total number of hidden nodes, and𝑚 is
the total number of the input nodes used to fully connect with
the hidden layers. Also,𝑓 is the nonlinear activation function.
On the other hand, unlike FBANN, the RBFNN consists of an
input layer, a hidden layer embedded with a nonlinear RBN
activation function, and an output layer [35]. The PNN [26]
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Figure 2: (a) Instantaneous amplitude (left) and spectrogram (right) of the right-sided STNs LFP for all frequency bands of patient #1 in a
4-secondwindow centered at the time of response and visually cued left finger clicking events; the extracted frequency bands of LFP signal are
delta (0–4Hz), 𝜃 (4–8Hz), 𝛼 (8–12Hz), low 𝛽 (13–20Hz), high 𝛽 (20–32Hz), low 𝛾 (32–60HZ), and high 𝛾 (60–90Hz), respectively, where
high 𝛾 band [11] is not the same as the conventional high gamma band (80–200Hz). (b) The instantaneous magnitude of different bands
computed using Hilbert Transform (HT) for all trials of patient #1 during left and right finger visual cued clicking events obtained from deep
brain’s left STN LFPs (motor responses situated at the center of each time scale) [12]. (c)The average instantaneous magnitude (blue line) and
standard deviation (SD) (green shadow area) acquired from STN LFPs of each component for patient #1 and visual cued left and right finger
clicking events within 2 s time window. For each frequency band, LFP signal features were defined with average amplitude in five segments
(area covered by dotted line.)

consisting of input, pattern, and decision layers is capable
of performing classification tasks for multi-class problems.
The decision layer classifies the patterns of the output of the
summation layer according to Bayes optimal decision rule.

4.3. Decision Fusion Rule. To obtain an unbiased decision
on movement identification, we will use the majority voting-
based ensemble classifier for decision fusion processing. For
ensemble classifier, the decisions of the base classifiers are
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Figure 3: Proposed architecture of the ensemble classifier for
training, testing, and evaluation.
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Figure 4: Movement detection and its subsequent laterality decod-
ing process using bilateral deep brain’s (STNs or GPIs) LFP signal.

assumed to be autonomous and the final decisions are derived
from a mixture of all base system’s decisions [36]. Inherently,
in the plurality voting strategy, the ensemble decision picks
class 𝑤𝑗, if there is

𝑇∑
𝑡=1

𝑑𝑡,𝑗 = 𝐶max
𝑗=1

𝑇∑
𝑡=1

𝑑𝑡,𝑗, (2)

where 𝑑𝑡,𝑗 is the decision taken by 𝑡th base classifier (𝑡 =1, 2, . . . , 𝑇 and 𝑗 = 1, . . . , 𝐶); 𝐶 is the number of classes and𝑇 is the total number of base classifiers used. For plurality
voting, if 𝑡th classifier predicts class of 𝑤𝑗, then 𝑑𝑡,𝑗 = 1 or 0
for other cases.
In this work, because three base classifiers FBANN,

RBFNN, and PNN are used, the majority rule dictates that
any two or three base classifiers with the same decision would
decide on the acceptance or rejection of the input data as the
final decision.

4.4. Performance Evaluation. For classification purpose, a
maximum of 28,280 data points from the patients were used

Table 2: The distribution of trials used for each patient.

Patient Number of trials used
Left finger movement Right finger movement Total

1 52 41 93
2 31 37 68
3 71 84 155
4 31 82 113
5 56 54 110
6 25 31 56
7 61 62 123
8 73 72 145
9 34 28 62
10 59 48 107
11 113 89 202
12 80 76 156

for decoding movement versus rest activities. On the other
hand, a maximum of 21,210 data points were employed to
decode left- and right-sided visually cued movement activ-
ities. In our work, we used bootstrap resampling technique
(i.e., random samples were chosen with replacement) in
selecting movement and resting datasets of the patients.
The corresponding number of trials for movement from
each patient is shown in Table 2. Bootstrap is a useful
statistical method widely used for classification performance
assessment [37]. For a class 𝑤𝑗, if the training set is 𝑋𝑗𝑁𝑖 =
{𝑥𝑗1, 𝑥𝑗2, 𝑥𝑗3, . . . , 𝑥𝑗𝑁𝑖}, one can construct the bootstrap samples
as follows. Firstly, one sample, 𝑥𝑗

𝑘0
from 𝑋𝑗𝑁𝑖 , is randomly

selected, and the 𝑟nearest neighbor samples (𝑥𝑗
𝑘1
, 𝑥𝑗
𝑘2
, . . . , 𝑥𝑗

𝑘𝑟
)

from 𝑥𝑗
𝑘0
are found based on the Euclidean distance. Then,

the bootstrap samples are generated using 𝑥𝑏𝑘0 = ∑𝑟𝑖=0 𝑤𝑖𝑥𝑗𝑘𝑖 ,
where 𝑤𝑖 = 𝑐𝑖/∑𝑟𝑑=1 𝑐𝑑; ∑𝑟 𝑤𝑖 = 1; and 𝑟 ≥ 𝑐𝑑 ≥ 0 [38].
Gaussian distribution (GD) used to choose 𝑐𝑑 and the whole
process is repeated until the whole𝑁𝑖 are selected.
To evaluate the overall classification performance of

the proposed ensemble classifier, we used 10-fold cross-
validation (CV) method to carry out the evaluation. For each
design set, CV error was computed according to the following
formula:

CV error = 1𝑁
𝑁∑
𝑝=0

[𝑑𝑝 (𝑛) − 𝑦𝑝 (𝑛)]2 , (3)

where𝑁 denotes the total number of samples and 𝑑𝑝(𝑛) is the
desired output; 𝑦𝑝(𝑛) is the classifier’s output for each test set
and 𝑛 denotes the number of conducted epochs. The design
sets with the lowest error were considered for the base class-
ifier learning and training. The threshold selection methods
for all three base classifiers and the ensemble classifier are
summarized in Table 3. Also, the pseudocode for proposed
decision fusion algorithm for classification of movement or
resting and left or right finger movement activities are listed
in Algorithm 1.
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Threshold value = (FBANN = 1 and RBFNN = 1 ) or (FBANN = 1 and PNN = 1) or (RBFNN = 1
and PNN = 1 );
for 𝑖 = 1 to number of test vector sets do
if sum of sim(𝑖) in (FBANN and RBFNN ) or (FBANN and PNN) or (RBFNN and PNN)≥Threshold value
event activity or left finger movement = 1;
prediction(𝑖) = event activity or left finger movement;
else if sum of sim(𝑖) in (FBANN and RBFNN ) or (FBANN and PNN) or (RBFNN and
PNN) <Threshold value
resting activity or right finger movement = 0;
Prediction(𝑖) = resting activity or right finger movement;
if end
for end{Find performance metrics of movement and its forthcoming laterality activity from
test data.}

Algorithm 1: Decision-based pseudocode for decoding event or resting and left or right finger movement activities.

Table 3: Threshold settings for individual classifier while detecting
the movement and resting activity.

Class Base classifier
threshold setting

Classifier final output
after threshold setting

Event condition ≥0.5 1
Resting condition <0.5 0
Left movement ≥0.5 1
Right movement <0.5 0

The performance of the proposed ensemble classifier
for movement detection and classification was evaluated by
using several standard metrics such as cross-validated clas-
sification accuracy (CVCA), detection rate (DR), specificity
(Table 4), 𝐹-measure, TPR, FPR, FNR, kappa, and AUC val-
ues. These performance metrics are derived from the stand-
ard contingency table based on four commonly used mea-
sures (TP/FP/TN/FN) that are commonly adopted in evalu-
ating medical decision systems.
In the contingency table, true positive (TP) is the correct

classification rate of the LFP signal generated from the
movement state or left movement. True negative (TN) is the
correct classification rate of the LFP signal generated from
the resting state or right movement. However, false positive
(FP) represents the classification rate of the LFP signals as
movement or left movement, while they are actually resting
state or right movement, respectively. False negative (FN) is
the classification rate of the LFP signals as the resting state
or right movement when the actual state is movement or left
movement.
To obtain highest degree of desirability among the base

classifiers to detect movement and resting activity, we have
computed unified desirability measures using the following:

Desirability1 = meanprecisionstdprecision
× meansensitivity
stdsensitivity

× meanspecificity
stdspecificity

,

Desirability2 = mean𝑔mean-1std𝑔mean-1
× mean𝑔mean-2
std𝑔mean-2

× mean𝐹-measure
std𝐹-Measure

,
Desirability = 6√Desirability1 × Desirability2.

(4)

Furthermore, to gauge the correctness of the classifier, we
computed Mathew’s correlation coefficient (MCC), as shown
in (5).MCC in essence is a correlation coefficient between the
observed and the predicted binary classification outcomes.

MCC

= ((TP × TN) − (FP × FN))
√(TP + FP) (TP + FN) (TN + FP) (TN + FN) .

(5)

A value of +1 in (5) represents a perfect prediction; a value of 0
represents no better than random prediction and −1 indicates
a total disagreement between the prediction and the truth.
AUC is the area under the receiver operating characteristic
(ROC) curve which is a useful measure in evaluating the
performances of binary classificationmethods [39].TheAUC
is defined as follows:

AUC = 12 [ TP
TP + FN + TN

TN + FP] . (6)

For the sake of convenience and simplicity in comparison, we
can compute the AUC values only instead of generating ROC
curves, since they would be relatively tedious with the large
number of datasets.
Alternatively, to obtain the inflated and more intuitive

measure of the performance from the unbalanced datasets
of the PD and Dystonia patients, we can use the following
balanced accuracy (BACC) [40]:

BACC = 12 (TPR + TNR) . (7)
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Table 4: Statistical performance measures for decoding of movement and its laterality activity.

Overall accuracy Sensitivity or DR Specificity Overall error rate (OER)
TP + TN

TP + TN + FP + FN TP
TP + FN TN

TN + FP FP + FN
TP + TN + FP + FN
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Figure 5: (a) Overall accuracy during detection of resting versus movement for all patients. (b) Classification accuracy while decoding left
and right movement activity using base and ensemble classifiers.

To further measure the agreement between the predicted and
desired classification results in the presence of unbalanced
datasets, one can use Cohen’s kappa coefficient as the agree-
ment metric [41].
The kappa coefficient (𝜅) is estimated using the following

equation:

𝜅 = 𝑝0 − 𝑝𝑒1 − 𝑝𝑒 , (8)

where 𝑝0 and 𝑝𝑒 denote the classification accuracy and
the expected agreement of chance, respectively, and these
parameters can be calculated from the confusion matrix
obtained from the proposed classifier.
If all values of 𝜅 within the 95% confidence interval (CI)

around the mean are above 0 (𝜅±1.96×𝜑(𝜅) > 0, where 𝜑(𝜅)
is the standard error), then the average kappa value is above
the chance value. The standard error function, 𝜑(𝜅), which is
measuring the disagreement, is defined as

𝜑 (𝜅) = √𝑃𝑒 + 𝑃2𝑒 − ∑𝑖 [𝑛𝑖+𝑛+𝑖 (𝑛𝑖+ + 𝑛+𝑖)]
(1 − 𝑝𝑒)√𝑁 , (9)

where 𝑛+𝑖 and 𝑛𝑖+ are the marginal column and rows sums,
respectively, and𝑁 is the total number of trials.
5. Experimental Results

Comprehensive computations and simulations of the pro-
posed ensemble classifier have been conducted using the

extracted features for detection of finger movement and
subsequent classification of the moving directions. The com-
puter simulations were performed using MATLAB 2012b
environment on a PC with 64-bit Intel Core i7-2600 CPU @
3.40GHz.
Figures 5(a), 6(a), and 6(b) show the average percent-

age accuracy, sensitivity, and specificity of the movement
decoding for individual patients, respectively. The obtained
performance parameters for three base neural networks
(mean ± 1SD) are (a) 84.31% ± 8.56 in accuracy, 84.69% ±
8.60 in sensitivity, and 84.77% ± 8.11 in specificity with
FBANN; (b) 83.94% ± 7.99 in accuracy, 84.77% ± 9.00 in
sensitivity, and 86.25% ± 8.71 in specificity with RBFNN; and
(c) 85.03% ± 8.30 (mean ± 1SD) in accuracy, 84.38% ± 8.59
in sensitivity, and 86.16% ± 8.65 in specificity with PNN.
With the ensemble classifier, we achieved 87.07% ± 7.54 in
accuracy, 87.19% ± 7.14 in sensitivity, and 87.54% ± 8.19 in
specificity. These results are about 2–4% better compared
to individual base classifier. In addition, from the results in
Figures 5(b), 6(c), and 6(d), for laterality ofmovement decod-
ing, FBANN achieved 82.20% ± 10.25 in overall accuracy,
82.19% ± 11.63 in sensitivity, and 82.80% ± 8.00 in specificity;
RBFNN achieved 83.51% ± 7.84 in overall accuracy, 84.78% ±
8.93 in sensitivity, and 87.25% ± 9.41 in specificity; and PNN
achieved 81.62% ± 11.45 in overall accuracy, 81.87% ± 11.82 in
sensitivity, and 83.95% ± 9.70 in specificity.
The ensemble classifier fused the outputs of three base

classifiers (i.e., accuracy in FBANN: 83.042%; in RBFNN:
83.658%; and in PNN: 82.98%) together and achieved
86.073% in detection accuracy, while patients were in resting
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Figure 6: (a) Sensitivity duringmovement versus resting classification obtained from base and ensemble classifier. (b) Specificity of each base
and ensemble classifier and detection of movement and resting activity. (c) Sensitivity during classification of left and right finger clicking
events obtained from base and ensemble classifier. (d) Specificity obtained from both base and ensemble classifiers during decoding laterality
of movement.

state and left or right finger movement activity.Therefore, the
overall improvement in detection accuracy of resting from
left/right finger movement reached about 3.0% (Figure 9(a))
and the overall error rate (OER) of the detection decreased
notably. During movement decoding, RBFNN performed
better than PNN and FBANN classifiers in terms of accuracy
(83.94% ± 7.99 versus 87.07% ± 7.54 (𝑡(22) = −0.9866, 𝑝 <0.05)), sensitivity (84.77% ± 9.00 versus 87.19% ± 7.14 (𝑡(22)
= −0.7300, 𝑝 < 0.05)), and specificity (86.25% ± 8.71 versus
87.54% ± 8.19 (𝑡(22) = −0.3728, 𝑝 < 0.05)). For laterality

decoding, RBFNN still managed to achieve better perfor-
mance than the other two base classifiers in accuracy, sen-
sitivity, and specificity.
Essentially, with various feature set sizes, all the classifiers

managed high degree of classification accuracy. RBFNN
achieved a lower false positive rate (FPR) but has lower detec-
tion rate than PNN classifier in decoding movement. On the
other hand, in movement laterality decoding, RBFNN class-
ifier maintained less intra-subject variability in performance
than the other two base classifiers. Overall, RBFNN achieved
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Figure 7: (a) 𝐹-Measure plot of base and ensemble classifier during movement versus resting classification. (b) Area under the ROC curve
(AUC) for each patient with mean ± 1SD obtained from each base and ensemble classifier during movement versus resting classification. (c)
Area under the ROC curve (AUC) for each patient with mean ± 1SD obtained from each base and ensemble classifier during left and right
finger movement classification.

the highest classification rate as well as highest specificity
among the three base classifiers. It also performs advanta-
geously in comparison to PNN and FBANN in terms of
balanced accuracy (Table 6). Although RBFNN classifier has
achieved lowest FPR for both movement and laterality classi-
fications compared to others, it did have higher value of FNR
compared to FBANN; more importantly it achieved higher
TPR and TNR values than PNN algorithm.

To show the impact of the imbalanced classes on the
performance, we obtained the AUC values for each classifier
inmovement and laterality decoding as shown in Figures 7(b)
and 7(c). It is found that the average value ofAUC (0.873)with
the ensemble classifier is greater than those with any individ-
ual classifier. Similarly, in laterality of movement decoding,
the ensemble classifier achieved better AUC (0.859) values
than any base classifier.
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Table 5: Standardized 1st-order moment of evaluation measures.

Classifiers evaluated F-Measure 𝑔mean-1 𝑔mean-2 Desirability value
During decoding movement and resting

FBANN 9.77 9.92 10.17 9.13
RBFNN 10.41 11.52 11.74 10.25
PNN 10.08 10.57 10.32 10.02
Ensemble 11.08 11.78 11.82 11.22

For decoding left and right finger movement
FBANN 7.27 8.09 8.62 8.25
RBFNN 8.37 11.30 11.90 9.39
PNN 6.88 7.96 8.15 7.58
Ensemble 8.46 9.58 10.98 9.67

Although all the base classifiers performed well in detect-
ing movement and its forthcoming laterality, the ensemble
classifier based on the majority voting algorithm performed
better than the base classifiers in detection, especially in terms
of FNR. The FNR rate of the ensemble classifier is improved
by 2.98% compared with that of any of the base classifiers in
decoding movement versus resting of the patients.
Moreover, we computed other distinctive performance

indicators such as 𝐹-measure (Figure 7(a)), 𝑔mean-1, and𝑔mean-2. Obviously, larger 𝐹-measure values indicate finer
precision and higher sensitivity. 𝑔-mean value measures the
balanced performance of the classifiers between sensitivity,
specificity, and precision.
Standardized 1st-order moments of 𝐹-measure and 𝑔-

mean values for this work are tabulated in Table 5. It is
observed from Table 5 that RBFNN performs the best in
terms of 𝐹-measures. In decoding resting versus movement
and its forthcoming laterality, RBFNN also shows the highest
degree of desirability, since it achieves the highest desirability
value among other base classifiers.
From Table 6, it can be seen that PNN and RBFNN class-

ifiers demonstrated betterMCC results, showing better agree-
ment between the prediction and actual results in detecting
movement and classifying laterality of movement. RBFNN
classifier achieves higher BACC value than other base classi-
fiers. However, with the ensemble classifier, the BACC value
is improved by at least 2.63% compared to any base classifier
in movement and resting classification.
The data from all the patients demonstrated good kappa

coefficient values using each classifier while classifying their
LFP patterns of movement and laterality (overall values
shown in Table 6). The experimental results also showed
that the highest kappa value (0.692 ± 0.17) (mean ± 1SD) is
obtained using PNN classifier in discriminating movement
from resting activity. Formovement laterality classification, it
managed to have a value of 0.590 ± 0.28 (mean ± 1SD), which
indicates a good agreement between actual and predicted
identifications.
Figure 8 shows the kappa values using the ensemble clas-

sifier for the datasets generated from all twelve patients. Indi-
vidual kappa value suitably exceeded 0.4, which is equivalent
to an accuracy of >70%. An accuracy of 70% is considered
necessary for meaningful communication with a 2-class
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Figure 8: Plot of overall kappa value for movement and its laterality
classifications using the ensemble classifier for all participating
patients.

BCI [42]. Additionally, a very good agreement between the
intended and predicted selections (kappa > 0.8 with the peak
at 0.96 equivalent to decoding accuracy > 95%) was achieved
for two participants while detecting movement and its forth-
coming laterality.
Since we do not have enough information such as patient

disease severity and handedness, it is difficult to do correla-
tion analysis between movement decoding performance and
disease situations. However, based on demographic data, as
shown inTable 1, we have computedmovement decoding per-
formances, as shown in Table 7. It can be seen that, according
to disease types, the patients with Parkinson’s disease (PWP)
exhibited much higher movement decoding rate than the
Dystonia patients. Similarly, the decoding activity of LFP
signals recorded throughDBS electrodes fromSTNs achieved
higher average accuracy than GPIs.
To show further robustness of three-class (resting and left

or right hand finger movements) classification performance
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Table 6: Statistical significance measures of the classifiers while decoding movement from the resting.

Classifiers evaluated MCC value Overall kappa value, 𝑘 ± 𝜑(𝑘) BACC
For decoding movement versus resting

FBANN 0.691 0.607 ± 0.25 84.73
RBFNN 0.691 0.599 ± 0.27 85.51
PNN 0.701 0.692 ± 0.17 85.27
Ensemble 0.737 0.729 ± 0.16 87.36

For decoding left versus right finger movement
FBANN 0.647 0.634 ± 0.20 82.49
RBFNN 0.665 0.563 ± 0.23 85.96
PNN 0.636 0.590 ± 0.28 82.91
Ensemble 0.712 0.671 ± 0.14 85.96

Table 7: Comparison of detection performances of the ensemble classifier for disease conditions and groups of patients.

Patient groups/LFP signal collection methods Overall accuracy (%) TPR (%) TNR (%)
Patients with PD 88.79 88.17 92.33
Patients with Dystonia 82.03 81.55 81.81
LFPs from STNs 89.14 86.56 89.87
LFPs from GPIs 84.62 83.95 84.55

Table 8: Statistical performance measures of base and ensemble
classifiers to classify resting and left or right finger movement.

Classifiers F-Measure AUC Kappa False positive rate (FPR)
FBANN 0.8277 83.67 0.6154 16.28
PNN 0.8433 85.29 0.6687 13.95
RBFNN 0.8365 85.42 0.5905 13.26
Ensemble 0.8574 86.63 0.7067 12.88

using the ensemble neural network (NN), we have computed
numerical performance metrics based on available datasets
from 12PDandDystonia patients.The results are presented in
Figure 9. It can be seen that the ensemble classifier has better
performances than any of the base classifiers (accuracy ∼3%
better than individual classifier). Furthermore, the majority
voting also showed greater sensitivity and specificity (Figures
9(b) and 9(c)) as compared to the base classifiers. Other
performance measures for both the ensemble and the base
classifiers are shown in Table 8.

6. Further Discussions

This work investigated the potential advantages of neural
network ensemble classifiers for decoding of human finger
movements or resting activity using deep brain local potential
signals. The aforementioned testing results show that the
average decoding performance during movement and its
laterality decoding process using the proposed ensemble
classifier is very promising and this methodological frame-
work may lead to the development of more effective BMI
applications. With various feature set sizes, it was demon-
strated that RBFNN has been proven to be better decoder

by managing impressive overall classification rate (CR) and
PNNhas shown theworst performance among the threeweak
learners.TheRBFNNclassifier performs advantageously over
PNN and FBANN in terms of balanced accuracy with the
lowest false detection rate. However, a few factors could
have degraded the classifiers’ performance; they are the
unbalanced number of trials in the dataset, the unbalanced
variability within the classes, the higher redundancy, and the
unbalanced variation in the feature sets. Further additional
factors need to be considered such as magnitude variation
among the frequency bands as limited or less expertise of the
participants to execute action according to stimulus applied,
motivation and concentration to respond, and patient insen-
sitiveness due to fatigue, age, and patient’s depth of diseases.
(i)The total number of trials for the clicking events taken

from each patient showed potential variation of decoding
performance [43]. In the experimental session, obtained LFP
datasets were limited in size. 114 ± 43.6 trials (mean ± 1SD)
consisted of minimum 56 and maximum 202 trials across
all subjects employed in the movement decoding process.
For most of the patients, the number of trials is unbalanced
for each class. The average number of trials of each class is58.2 ± 23.6 (mean ± 1SD) with a minimum of 25 trials and
maximum of 113 trials. This unbalancedness of the trials may
contribute to the increase of the overall error rate (OER) for
some participants in decoding. However, recent researches
also suggest that a larger number of trials are needed to more
accurately and robustly assess the predictive model [42].
(ii) It can be seen from Figures 6(c) and 6(d) that

patients rapidly and efficiently responded during visually
cued right hand finger clicking events compared to left finger
clicking events for both STN’s and GPI’s LFP signal (overall
specificity: 87.07% ± 7.21; overall sensitivity: 84.86% ± 9.54
(mean ± 1SD)). Although we had no abundant information
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Figure 9: (a) Overall detection accuracy, (b) sensitivity, and (c) specificity of resting, left, and right finger movement activities obtained from
base and ensemble classifiers.

about handedness of the patients, it can be considered that
right handed patients were better trained than left handed
patients due to generality of right handedness among human
inhabitants.
(iii) LFPs obtained from the patients are more stable than

single-neuron activity or noninvasive EEG; nonetheless it can
contaminate with conspicuous motion artifact and patient
insensitiveness due to fatigue, which ultimately deteriorates
LFP signal momentarily during onset of movement event.
The proposed decoder system has shown its effectiveness by
addressing the aforementioned limitation to a greater extent
by using different types and range of patients.

(iv) Although two-session recordings were obtained from
four of the participants, LFP recordings from each patient
used in this study are involved in a single session only. As
a future work, several sessions will be recorded and single-
session features will be enforced as a test set, while remaining
sessions will be used to train the intelligent classifier to decide
substantial, stable, and trustworthy decoding outcome. How-
ever, we will carry out further research on early prediction of
movement conducted by normal and abnormal people in a
controlled and distraction-free environment that is applicable
in widespread neuro-interface scenario. With consideration
of the above limitations, the performance of the proposed
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ensemble classifier in LFP movement detection and classi-
fication is very encouraging. To the best of our knowledge,
these results achieved in this work are better than those
reported previously in the literature in terms of detection rate
and the number of patients [1]. Theoretically, the proposed
two-layer two-class classifier could be replaced with a three-
class classifier. However, our results showed that two-class
classifiers are more robust for the datasets used in this work.

7. Conclusion

This study explores an innovative neural network ensemble
classifier for effective identification of voluntary movements
extracted from oscillatory activity of LFP signals recorded
bilaterally in the STN or GPI of twelve Parkinson’s dis-
ease and Dystonia patients. A majority voting algorithm
is used in the ensemble classifier to fuse the results from
three individual neural network classifiers. The experimental
results demonstrate that decoding rate of clicking events is
greater than its laterality of clicking (87.07% ± 7.54 versus
85.41% ± 8.68 (mean ± 1SD)) using the ensemble neural
network classifier. The performances of movement decoding
for each base classifier were investigated and evaluated and
it is found that the ensemble classifier is consistently better
than the base classifiers or other similar classifiers in terms of
convergence rate as well as classification accuracy.The results
also demonstrated that PNN achieves the best detection
accuracy (DA) (85.03% ± 8.30 (mean ± 1SD)) among those
three base classifiers in identifying event. In predicting
sequential clicking events, RBFNN (83.51% ± 7.84 (mean ±
1SD)) outperforms FBANN and PNN.The proposed optimal
classifying system may provide a channel for developing
wearable and wireless smart stimulation devices that can
predict involuntary movements (such as tremor) and adap-
tively respond to the onset of abnormal neurological events.
With three different neural networks as the base classifiers,
the classification performance improvement of the ensemble
classifier appeared to be modest and yet noticeable. However,
ensemble classifier was demonstrated to be an effective
approach to improving human finger movement decoding
and interpretation performance. It should be pointed out
that the real-time convergence is a very important issue for
any classification algorithm; however, the investigation of the
proposed ensemble classifier is limited to offline analysis at
this stage. Our future work in this area includes improvement
of better feature extraction algorithms and the optimization
of the base classifiers for the ensemble classifier.
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