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Abstract

Fat grafting can reduce radiation-induced fibrosis. Improved outcomes are found

when fat grafts are enriched with adipose-derived stromal cells (ASCs), implicating

ASCs as key drivers of soft tissue regeneration. We have identified a subpopula-

tion of ASCs positive for CD74 with enhanced antifibrotic effects. Compared to

CD74− and unsorted (US) ASCs, CD74+ ASCs have increased expression of hepa-

tocyte growth factor, fibroblast growth factor 2, and transforming growth factor

β3 (TGF-β3) and decreased levels of TGF-β1. Dermal fibroblasts incubated with

conditioned media from CD74+ ASCs produced less collagen upon stimulation,

compared to fibroblasts incubated with media from CD74− or US ASCs. Upon

transplantation, fat grafts enriched with CD74+ ASCs reduced the stiffness, dermal

thickness, and collagen content of overlying skin, and decreased the relative pro-

portions of more fibrotic dermal fibroblasts. Improvements in several extracellular

matrix components were also appreciated on immunofluorescent staining.

Together these findings indicate CD74+ ASCs have antifibrotic qualities and may

play an important role in future strategies to address fibrotic remodeling following

radiation-induced fibrosis.
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1 | INTRODUCTION

Radiation-induced skin fibrosis (RIF) is a complication of radiation

therapy (RT) reported in up to 20% of all breast cancer patients.1-7

Characterized by skin pigmentation, reduced elasticity, microvascular

obliteration, and dermal thickening,8,9 RIF can be painful and dis-

figuring, and can significantly impair tissue function.10 Autologous fat

grafting is a surgical technique able to improve the quality of skin
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damaged by RT.11-15 Fat grafting restores a more “normal” skin archi-

tecture by decreasing dermal collagen content and overall dermal

thickness, creating greater alignment of collagen fiber networks,9,16,17

and increasing skin perfusion.9,17 The beneficial effects of grafted fat

on tissue texture, color, and elasticity cannot be explained through tis-

sue expansion alone,18,19 and the adipose-derived stromal cells (ASCs)

within the stromal vascular fraction (SVF) of lipoaspirate are thought

to orchestrate tissue regeneration, primarily via the secretion of

growth factors with potent adipogenic, angiogenic, and antifibrotic

effects.13,20-25

Recent work has highlighted the existence of multiple distinct

subpopulations of stem and progenitor cells contained within the SVF.

For example, ASCs with low expression of the surface marker endo-

glin (CD105)26 or those expressing the surface receptor Thy-1

(CD90)27 possess enhanced osteogenic capacities. Similarly, bone

morphogenetic protein receptor-1A marks ASCs with enhanced

capacity for adipogenesis,28 while endosialin (CD248) characterizes

ASCs with angiogenic potential.29 Although ASCs have been

described to have antifibrotic effects within transplanted tissue, a spe-

cific ASC subpopulation characterized by an ability to reduce soft tis-

sue fibrosis has yet to be described. Recent work has highlighted

CD74 as a surface marker present on cells with antifibrotic qualities in

a number of tissue types. CD74−/− mice show increased liver fibrosis

when treated with carbon tetrachloride (CCl4) in vivo,30 and also

develop spontaneous lung injury by 6 months of age.31 Given these

findings, we hypothesized the existence of a subpopulation of CD74+

ASCs with enhanced antifibrotic actions able to restore irradiated soft

tissue defects and modify both critical cell subpopulations and molec-

ular signals involved in radiation fibrosis.

2 | MATERIALS AND METHODS

2.1 | Human SVF isolation

Human lipoaspirate samples were obtained from healthy female

patients (n = 5) with informed consent under a protocol approved by

Stanford Institutional Review Board (IRB #2188). Fat was harvested

from the abdomen, flank, and/or thigh under local or general anesthe-

sia using the Coleman technique. The SVF of adipose tissue was iso-

lated as previously described.17,32,33 In brief, the lipoaspirate was first

washed with 1X sterile phosphate-buffered saline (PBS, #10010023,

Thermo Fisher Scientific, Waltham, Massachusetts), and allowed to sit

for 30 minutes at 4�C for separation into layers of blood/debris, fat,

and lipid. The layer of fat was retrieved by aspiration and digested

using collagenase (Collagenase from Clostridium histolyticum,

#C6685, Sigma-Aldrich, St. Louis, Missouri) dissolved in digest buffer

(0.75 mg/mL) of 5% fetal bovine serum (FBS, Gibco, #10082147,

ThermoFisher), 100 U/mL DNase I (Worthington, Lakewood, New

Jersey), 0.1% Poloxamer 188 (#P5556-100ML, Sigma-Aldrich), 20 mM

HEPES (#15630080, Sigma-Aldrich), and 1 mM CaCl2, in Medium 199

(#SH30223.02, HyClone, GE Healthcare, Chicago, Illinois) for

30 minutes at 37�C in a shaking water bath (150 rpm). The enzyme

was then quenched using fluorescence-activated cell sorting (FACS)

buffer (PBS with 2% FBS, 1 mM EDTA [#15575020, Invitrogen, Ther-

moFisher], and 1% penicillin-streptomycin solution [Pen-Strep, PS,

#15140122, ThermoFisher]), filtered through a 100 μm nylon cell

strainer, and centrifuged (450g, 5 minutes, 4�C). The supernatant was

aspirated and the SVF pellet was resuspended in 500 μL of FACS

buffer and carefully placed onto Histopaque (Histopaque-1077 ster-

ile-filtered, density: 1.077 g/mL, #10771, Sigma Aldrich) by pipette,

and then centrifuged at 1500 rpm (27�C, 30 minutes, no decelera-

tion), to remove the red blood cells and cellular debris. The SVF cell

layer (buffy coat) was then retrieved, washed in FACS buffer, and cen-

trifuged (450g, 5 minutes, 4�C) to leave the purified SVF cell pellet.

2.2 | Flow cytometry and cell sorting

Human ASCs were isolated from the SVF according to surface marker

expression profiles by FACS. The SVF pellet was resuspended in

100 μL for staining with the following anti-human fluorescent anti-

bodies: CD45-Pacific Blue (PB) (#304029, Biolegend, San Diego, Cali-

fornia) to label hematopoietic cells; CD235a(Glycophorin A)-

eFluor450 (#48-9987-42, eBioscience, San Diego, California) to label

erythrocytes and erythroid progenitors; CD31(PECAM-1)-eFluor450

(#48-0319-42, eBioscience) to label endothelial cells; CD34-Fluores-

cein Isothiocyanate(FitC) (#555821, BD Biosceinces, San Jose, Califor-

nia) to label ASCs; and CD74-Allophycocyanin(APC) (#326811,

BioLegend) to label the antifibrotic subset of ASCs. All primary anti-

bodies were diluted 1:100. After 30 minutes incubation with primary

antibodies shielded from light, cell suspension solutions were diluted

with FACS buffer, centrifuged (450g, 5 minutes, 4�C), resuspended in

500 μL of FACS buffer, and filtered through a 70 μm nylon mesh. 4',6-

diamidino-2-phenylindole (DAPI) (#62248, ThermoFisher) was added

as a live-dead stain (1:10 000). FACS (BD II Aria) was then used to iso-

late ASCs (CD45−, CD235a−, CD31−, CD34+ live single cells) that

were CD74+ (CD45−, CD235a−, CD31−, CD34+, CD74+), CD74−

(CD45−, CD235a−, CD31−, CD34+, CD74−), and “unsorted” (US,

CD45−, CD235a−, CD31−, CD34+ only).

2.3 | Gene expression

CD74+, CD74−, and US ASCs were FACS sorted directly into TRIzol

lysing solution (#15596026, ThermoFisher) and immediately frozen in

Significance statement

CD74+ adipose-derived stromal cells have antifibrotic quali-

ties both in vitro and in vivo and may play an important role

in future strategies to address fibrotic remodeling following

radiation-induced fibrosis.

1402 BORRELLI ET AL.



dry ice and kept at −80�C until processing. RNA was harvested using

RNeasy Mini Kit (#74104, Qiagen, Hilden, Germany). Reverse tran-

scription was performed using TaqMan Reverse Transcription

Reagents (#4304134, Invitrogen, ThermoFisher) and an ABI Prism

7900HT Sequence Detection System (#4317596, ThermoFisher) was

used to perform quantitative real-time polymerase chain reaction to

evaluate expression levels for genes known to be associated with

antifibrotic activity—hepatocyte growth factor (HGF), fibroblast

growth factor 2 (FGF2), and transforming growth factor β3 (TGF-β3)—

and the pro-fibrotic growth factor TGF-β1. All experiments were run

in triplicate and data were standardized to glyceraldehyde 3-phos-

phate dehydrogenase expression for statistical analysis. Significant

differences in gene expression levels between the CD74+, CD74−,

and US ASCs were determined using the relative threshold cycle

method.34 To obtain ΔCT values, averaged CT values of the reference

transcripts were subtracted from CT values of the candidate tran-

scripts. ΔCT values of each gene in the analysis were compared to

determine statistically significant differences.

2.4 | Stimulated collagen production

FACS-sorted CD74+, CD74−, and US ASCs were directly plated

(10 000 cells/gelatin [0.1%]-coated 24-well) and expanded at low oxy-

gen conditions in growth media until 4 million cells under passage 3

were obtained. Culture media was then collected for use as conditioned

media on human dermal fibroblasts. Human skin was digested to obtain

primary cultures of human dermal fibroblasts. Human skin samples were

obtained from healthy patients (n = 3) with no underlying comorbidities.

Informed consent was obtained under a protocol approved by Stanford

Institutional Review Board (IRB #45219). The skin was first washed in

PBS and cut into 2 mm thick strips using scissors and submerged in

Dispase (25 units/mL [#CB40235, Corning, Fisher scientific]) in

Dulbecco's Modified Eagle Medium (DMEM) GlutMax (#10566-016,

Thermo Fisher Scientific) for 18 hours at 4�C for enzymatic separation

of the epidermis from the dermis. The epidermis was then removed

using sterile forceps and discarded. The remaining dermal tissue was

mechanically digested using sterile curved scissors until uniform consis-

tency was reached, and then enzymatically digested using Collagenase

(type IV, 1500 U/mL, #17104019, Fisher Scientific) in Hanks Buffered

Saline (HBSS, #14025076, Thermo Fisher Scientific) under constant agi-

tation at 37�C for 30 minutes. FACS buffer was added to neutralize the

enzyme (1:1), and the digest was filtered through a 100 μm nylon filter.

Cell suspensions were pelleted (200 g, 5 minutes, 4�C), resuspended in

500 μL of FACS buffer, carefully pipetted onto 1 mL of Histopaque, and

centrifuged. The “buffy coat” of dermal cells was retrieved by pipette,

washed, repelleted, and resuspended in 500 μL of fibroblast media (10%

FBS, 1% antibiotic-antimycotic [Gibco, #15240062], 1% GlutMax in

DMEM) and expanded in gelatin (0.1%)-coated wells at low oxygen con-

ditions (2% O2 and 7.5% CO2) until confluence in 60 mm wells. All cells

were kept below passage 3. The media was then aspirated, washed, and

dermal fibroblasts were then incubated with media from the cultured

CD74+, CD74−, and US ASCs. An amount of 10 ng/60 mm well of

transforming growth factor β1 (TGF-β1, R&D Systems) was added and

protein production was assessed following 24 hours.

2.5 | Protein expression

FACS isolated CD74+, CD74−, and US ASCs were analyzed for produc-

tion of TGF-β3 and TGF-β1 and dermal fibroblasts were analyzed for

production of Procollagen type 1, Collagen type 1, and Collagen type 3

by Western blots. Cells were lysed with RIPA buffer and centrifuged at

10 000g for 30 minutes. Proteins were loaded and run on a BioRad 4-

20% mini-PROTEAN TGX precast gel (BioRad Laboratories, Hercules,

California). Proteins were then transferred to an Immobilon-P membrane

and probed overnight at 4�C with primary antibodies in 5% milk (poly-

clonal rabbit anti-TGF-β3 [ab15337, Abcam, Cambridge, United King-

dom; 1:1000], polyclonal rabbit anti-TGF-β1 [ab92486, Abcam; 1:1000],

polyclonal rabbit anti-pro-collagen type 1 [abt257, Sigma-Aldrich;

1:500], monoclonal mouse anti-collagen 1 [ab6308, Abcam; 1:1000],

monoclonal mouse anti-collagen 3 [ab6310, Abcam; 1:1000], and mono-

clonal mouse anti-beta Tubulin [E7-S, DSHB, Iowa City, Iowa; 1:2000]).

Incubation with an appropriate horseradish peroxidase (HRP)-linked sec-

ondary antibody and enhanced chemiluminescence were used for pro-

tein detection (#34075 SuperSignal West Dura Extended Duration

Substrate, ThermoFisher).

2.6 | Mice scalp irradiation and fat grafting

Mice received irradiation to the scalp, using methodology previously

described.9,17 A total of 30 Gy was delivered, fractionated into six 5 Gy

doses on alternate days over a total of 12 days. Lead shielding was used

to ensure only the scalp was irradiated. A 4-week recovery period

followed irradiation to allow for the chronic fibrotic effects of radiation

to develop (Figure 1A). ASC-enriched grafts were prepared by mixing

10 000 FACS-sorted CD74+, CD74−, or US ASCs with 200 μL of fresh

human lipoaspirate, based on previous titration studies evaluating

effects of supplemental stromal cells.35 Control mice received 200 μL of

fresh human lipoaspirate not enriched with ASCs (n = 5 mice/group for

a total n = 20). Fat was grafted subcutaneously, directly beneath the

irradiated scalp skin. A subcutaneous tunnel was first created, and the

grafts were delivered by using a 1 cc syringe and a 16-gauge needle in a

retrograde fashion. Fat was injected within 2 hours of original harvest.

Injection sites were closed with 6-0 Vicryl suture (Ethicon, Inc., Somer-

ville, New Jersey). All animal studies were performed in accordance with

Stanford University animal guidelines, under the Stanford Institutional

Review Board approval (APLAC #31212; Figure S1).

2.7 | Microcomputed tomography and fat volume
rendering

Microcomputed tomography (microCT) was performed immediately fol-

lowing injection and every other week for 8 weeks total. Mice were

THE ANTIFIBROTIC ASC 1403



F IGURE 1 Isolation of adipose-derived stromal cell subpopulations and analysis of effects. A, Schematic of overall experimental design used
to explore antifibrotic effects of CD74+ ASCs within irradiated soft tissue beds. Mice were grafted with fat (n = 5/group): (1) enriched with CD74
+ ASCs; (2) enriched with CD74− ASCs; (3) enriched with US ASCs; or (4) not enriched with ASCs. B, Isolation of CD74+ ASCs. Flow cytometry
plots showing gating strategy used to isolate CD74+ ASCs. ASCs were defined as CD34+ live single cells, negative of lineage markers CD45,
CD235a, and CD31. CD74+ ASCs comprised 4.5% of all ASCs within SVF. C, Quantitative real-time reverse transcription polymerase chain
reaction-PCR showing differentiation expression of antifibrotic growth factors—HGF, FGF2, and TGF-β3—and pro-fibrotic growth factor TGF-β1.
CD74+ ASCs had significantly increased expression of HGF, FGF2, and TGF-β3 and decreased TGF-β1 compared to both CD74− ASCs (*P < .05)
and US ASCs (*P < .05). D, Representative Western blots of TGF-β3 (top) and TGF-β1 (middle) from US, CD74+, and CD74− ASCs with beta-
Tubulin loading control (bottom). E, Representative Western blots of Procollagen type 1 (top), Collagen type 1 (second from top), and Collagen
type 3 (third from top) synthesized by stimulated human dermal fibroblasts (control) and fibroblasts incubated in conditioned media from US,
CD74+, and CD74−, ASCs with beta-Tubulin loading control (bottom). ASC, adipose-derived stromal cell; FGF2, fibroblast growth factor 2; HGF,
hepatocyte growth factor; SVF, stromal vascular fraction; TGF-β1, transforming growth factor β1; TGF-β3, transforming growth factor β3; US,
unsorted
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anesthetized with isoflurane (3% induction, 2% maintenance, inhalation)

and imaging was performed with animals in the prone position using

the Bruker SkyScan 1276 microCT (Billerica, Massachusetts). The imag-

ing protocol involved the Bruker SkyScan 1276 software (Billerica,

Massachusetts). The microCT duration was 73 seconds with a voxel

resolution of 41.1 μm and a relative mouse irradiation dose of 64 mGy.

Data were subsequently reconstructed into cross sections using the

Bruker NRecon software (Billerica, Massachusetts) in blinded fashion to

each treatment group. Cross-sectional images were analyzed for vol-

ume using the Bruker CTAn software (Billerica, Massachusetts) by limit-

ing to sections with the fat graft. On the cross-sectional images, fat

could be distinguished from other tissues by gating −500 to 500

Hounsfield units. A region of interest was drawn surrounding the fat

graft every 10 slices for the length of the graft. Using three-dimensional

(3D) cubic spline interpolation, a resulting 3D region of interest was

generated, and the volume measured.36 3D surfaces were rendered

using the Bruker CTVol software (Billerica, Massachusetts) by gating

−500 to 500 for fat and 3500 to 10 000 for bone. All analyses were

performed by a single person (R. A. P.) blinded to the experimental

group of the mice, in order to eliminate interuser variability.37

2.8 | Skin mechanical strength testing of
irradiated skin

Eight weeks postgrafting, the mice were sacrificed and the full-thick-

ness scalp skin overlying the grafted fat was harvested for mechanical

strength testing (MST), histological assessment of skin structure, and

FACS-sorting of fibroblast subpopulations. MST was performed using

methodology previously described.7 In brief, the skin tissue was

attached to custom grips of a microtester (model 5848, Instron, Nor-

wood, Massachusetts) equipped with a 100 N load cell using double-

sided tape to provide a gauge length of 1 cm. The tissue specimen

was stretched until a break in the skin was detected, observed as a

decrease in stress despite increasing strain. Change in length divided

by gauge length was used to calculate true strain. True stress was

determined by dividing force by the original tissue cross-sectional

area. Ultimate tensile strength corresponds to the greatest true stress

achieved prior to breakage.

2.9 | Histological staining of irradiated skin and fat
explants

The skin and explanted fat explants were immediately fixed in 4% para-

formaldehyde for 16 hours at 4�C. Samples were then washed with

PBS, dehydrated in gradients of alcohols, and embedded in paraffin

blocks. Blocks were sectioned into 8-μm slices and fat was stained with

H&E (#H-3502, Vector Laboratories, Burlingame, California) for assess-

ment of integrity, and skin was stained with H&E to assess dermal

thickness and with Masson's Trichrome (#HT15-1KT, Sigma Aldrich)

and Picrosirius Red to determine collagen content. Slides were imaged

using a Leica DM5000 B Light microscope (Leica Microsystems, Buffalo

Grove, Illinois) using a ×10 objective. Dermal thickness was defined as

the distance from the epidermis to the hypodermis, and measurements

were made on 10 stained samples from each specimen using image J

software (https://imagej.nih.gov/ij/, NIH, Bethesda, Maryland). Colla-

gen content was determined using ImageJ based upon pixel-positive

area per high power field using the same intensity threshold for all

images. Five measurements were made per sample, and the mean of

the total 10 measurements per sample was recorded as the value for

that sample. Images of H&E-stained fat explants were imaged using a

×20 objective, and 10 random sections were chosen for each mouse

for each group for histological analysis and scoring. Four blinded, inde-

pendent investigators (M. R. B., R. A. P., A. H. S., N. M. D. D.) evaluated

fat graft quality in terms of: (a) integrity (presence of intact, nucleated

fat cells); (b) cyst/vacuoles; (c) inflammation; and (d) fibrosis, following

the methods of a previously published protocol.38

2.10 | Immunostaining

The skin was also prepared for immunostaining by fixing in 4% para-

formaldehyde for 16 hours at 4�C. Samples were then washed with

PBS and soaked in 30% sucrose in PBS for 3 to 5 days in preparation

for embedding. Tissue blocks were prepared by embedding in Tissue-

Tek O.C.T. (Tissue-Tek* O.C.T Compound, 25608-930) frozen in a dry

ice/ethanol bath. Frozen blocks were sectioned at a thickness of 8 μm

and then transferred to Superfrost Plus microscope slides

(Fisherbrand). Slides were treated with a blocking reagent (HK083-

5 K, Power Block, BioGenex) and then incubated for 1 hour at room

temperature with primary anti-mouse antibodies against elastin

(ab21610, Abcam), fibrillin (ab53076, Abcam), and versican (MA5-

27638, ThermoFisher). Specimens were then washed in PBS, incu-

bated with Alexa-dye conjugated secondary antibodies for 1 hour at

37�C, and mounted in DAPI Fluromount-G (#00-4959-52, Invitrogen).

Fluorescent images were taken using the LSM 880 inverted confocal

microscope (Airyscan, GaAsP detector, 880, Beckman) and quantified

by determining percent positive pixel counts per high power field.

2.11 | FACS analysis of fibroblast subpopulations
within the irradiated skin

To explore the effect of fat grafts on the fibroblast subpopulations

within the overlying skin, mouse skin was digested and prepared for

FACS analysis as described above. Cell suspensions were stained with

the following anti-mouse fluorescent antibodies: CD45-PB (#103125,

BioLegend) to label primary hematopoietic cells; Ter-119-PB

(#116231, BioLegend) to label erythrocytes and erythroid progenitors;

Tie-2(CD202b)-Biotin (#124005, BioLegend) to label pericytes;

CD324(E-Cadherin)-Biotin (#324120, BioLegend) and CD326

(EpCAM, epithelial cell adhesion molecule)-Biotin (#118203, Bio-

Legend) to label epithelial cells; CD31-PB (#102421, BioLegend) to

label endothelial cells; Dlk-1-APC (#FAB8634A-025, R&D Systems,

Minneapolis, Minnesota); Sca-1(Ly-6A/E)-Brilliant Violet(BV)605
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F IGURE 2 CD74+ ASC-enrichment improves fat graft quality. A, Average volume retention, expressed as a percentage with respect to
baseline volume, measured over 8 weeks. B, Representative reconstructed microcomputed tomography images of enriched fat and fat only at 8-
weeks postgrafting. There was a trend toward greater fat retention in mice receiving grafts of fat enriched with CD74+ ASCs, compared to fat
grafts enriched with CD74− or US ASCs and fat alone. C, Representative H&E-staining of explanted fat grafts 8 weeks after implantation at ×10
magnification. D, Scoring of graft architectural characteristics based on H&E-stained sections. Explanted fat grafts enriched with CD74+ ASCs
had greater integrity (****P < .001), less inflammation (****P < .0001), and were less fibrotic (****P < .001) compared to the fat grafts enriched
with CD74− or US ASCs and fat alone. Scale bar = 100 μm. *P < .05; **P < .01; ****P < .0001. ASC, adipose-derived stromal cell; US, unsorted
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F IGURE 3 CD74+ ASC-enriched fat grafts improve radiation-injured skin. A, Tensile strength of irradiated skin overlying enriched and
unenriched fat grafts with calculated Young's modulus (*P < .05), and, B, Representative stress-strain curves demonstrating measurement of
Young's Modulus showing that skin overlying fat enriched with CD74+ ASCs was less stiff than skin in mice of all other groups. C, Histological

assessment of skin stained with H&E (top) and Masson's Trichrome (bottom). Representative images are shown at ×20 magnification. D, Dermal
thickness of skin overlying fat grafts enriched with CD74+ ASCs was significantly thinner (****P < .0001) and (E) had significantly less collagen
(***P < .001) than the skin overlying fat grafts enriched with CD74− and US ASCs and fat alone at week 8. Scale bar = 100 μm. **P < .01;
***P < .001; ****P < .0001. ASC, adipose-derived stromal cell; US, unsorted
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(#108133, BioLegend), CD26-PerCP/Cyanine(Cy)5.5 (#100623, Bio-

Legend), and platelet derived growth factor receptor alpha (PDGFRα,

CD140a)-PE-Cy7 (#135911, BioLegend) to label fibroblasts. All pri-

mary antibodies were diluted (1:100) in FACS buffer and incubated

for 30 minutes at 4�C. Cell suspensions were then diluted in FACS

buffer, centrifuged (450g, 5 minutes, 4�C), and resuspended in 100 μL

of FACS buffer for staining with eFluor 450-conjugated streptavidin

(#48-4317-82, Thermofisher) on ice for a further 20 minutes. Samples

were then washed in FACS buffer, centrifuged (450g, 5 minutes, 4�C),

resuspended in 500 μL for FACS, filtered through a 70 μm nylon

mesh, and stained with DAPI as a live-dead stain to determine by

FACS the relative percentages of the fibroblast subpopulations (all

PDGFRα+Lin-Live single cells): papillary (CD26+Sca−), reticular (Dlk

+Sca−), lipofibroblast (Dlk+Sca+), and zigzag (CD26−) (Figure S2).39

2.12 | Statistical analysis

Data are presented as means ± SD, depicted by error bars. GraphPad

Prism (GraphPad Software, La Jolla, California) was used to perform all

statistical analyses. Differences between means were compared by anal-

ysis of variance (ANOVA) and Bonferroni correction for post hoc group

comparisons. A P value of <.05 was considered statistically significant.

3 | RESULTS

3.1 | CD74 marks an antifibrotic subset of ASCs

Flow cytometry of fresh human lipoaspirate (n = 5) confirmed exis-

tence of a subpopulation of CD74+ ASCs that comprised almost 5%

of the SVF (Figure 1B). Compared to CD74− ASCs and US ASCs, the

CD74+ ASCs had significantly increased expression of HGF, FGF2,

and TGF-β3 (all *P < .05), growth factors with potent antifibrotic

actions (Figure 1C).40-42 Conversely, TGF-β1 expression was found to

be lower in CD74+ ASCs compared to CD74− and US cells (Fig-

ure 1C). These findings were confirmed by Western blot which rev-

ealed greater TGF-β3 protein and decreased TGF-β1 protein levels

with CD74+ ASCs (Figure 1D). Primary cultures of human dermal

fibroblasts incubated in conditioned media from CD74+ ASC

exhibited decreased production of procollagen type 1 as well as colla-

gen type 1 upon stimulation with TGF-β1 (Figure 1E). Though less

marked, Collagen type 3 production was also found to be decreased

with CD74+ ASC conditioned media (Figure 1D). These data are con-

sistent with potential antifibrotic activity by CD74+ ASCs which may

be mediated by paracrine signaling.

3.2 | CD74+ ASCs improve retention and the
histological quality of grafted fat

To explore the antifibrotic potential of CD74+ in vivo within irradi-

ated tissue, the irradiated scalp of female 60-day-old (Adult) CD1-

Nude mice (Crl:CD1-Foxn1nu, Charles River Laboratories Interna-

tional, Inc., Hollister, California) with chronic fibrosis was grafted

with fat: (a) enriched with CD74+ ASCs; (b) enriched with CD74−

ASCs; (c) enriched with US ASCs; or (d) not enriched with ASCs (fat

alone) (n = 5/group) (Figure 1A). Radiographic monitoring of the fat

grafts over 8 weeks showed a tendency toward greater retention of

grafts enriched with CD74+ ASCs, compared with fat grafts

enriched with CD74− and US ASCs or fat alone (Figure 2A,B). The

fat grafts were then explanted for histological assessment, which

F IGURE 4 Dermal fibroblast
subpopulation composition in
irradiated skin overlying fat grafts.
There were significantly fewer
papillary (top left) (****P < .0001) and
reticular (top right) (****P < .0001)
fibroblasts, and significantly greater
lipofibroblasts (bottom left) (**P < .01)
and zigzag (bottom right)
(****P < .0001) fibroblasts in skin
overlying CD74+ ASC-enriched fat
compared to skin overlying fat
enriched with CD74− and US ASCs
or fat alone. ASC, adipose-derived
stromal cell; US, unsorted
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showed grafts enriched with CD74+ ASCs had greater integrity

(****P < .001), reduced inflammation (****P < .0001), and were less

fibrotic (****P < .001) than fat grafts enriched with CD74− and US

ASCs or fat alone (Figure 2C,D).

F IGURE 5 Immunofluorescence staining for elastic fibers. A, Staining for elastin (red, far left column), fibrillin (yellow, second column), and
versican (green, third column) highlights how fat grafting alters components of irradiated extracellular matrix. Merged image with 4',6-diamidino-
2-phenylindole (DAPI) counterstain (blue) on the far-right column. B, Pixel positive-percent quantification of elastin staining, C, fibrillin staining,
and, D, versican staining. Note mice grafted with fat enriched with CD74+ ASCs had improvement in staining for fibrillin (***P < .001, **P < .01,
*P < .05), with a concomitant decrease of versican (**P < .01, *P < .05). Scale bar = 100 μm. ASC, adipose-derived stromal cell
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3.3 | Fat grafts enriched with CD74+ ASCs
reduced fibrosis in overlying skin

To explore whether fat grafts enriched with CD74+ ASCs had an

antifibrotic influence on surrounding irradiated skin and soft tissue,

the skin overlying the fat grafts was harvested for biomechanical test-

ing and histological assessment 8-weeks postgrafting. Calculation of

Young's modulus indicated that the skin overlying fat grafts enriched

with CD74+ ASCs was less stiff (*P < .05) (Figure 3A,B), had reduced

dermal thickness (****P < .0001) (Figure 3C,D), and had significantly

less collagen (***P < .001) (Figure 3C,E) than the skin of mice receiving

fat grafts enriched with CD74− and US ASCs or fat alone.

3.4 | Fat grafts enriched with CD74+ ASCs
reduced fibrosis in overlying skin

Recent work investigating fibroblast heterogeneity has highlighted

the existence of distinct fibroblast subpopulations with diverse roles.

Papillary and reticular fibroblasts are both hypothesized to be pro-

fibrotic. Papillary fibroblasts are positive for CD26, a surface marker

associated with fibroblasts with pro-fibrotic phenotype in the mouse

dorsal dermis,7 and reticular fibroblasts reside deep within the der-

mis,39 the location of maximal scar production. Lipofibroblasts and zig-

zag fibroblasts, on the other hand, are hypothesized to be more

antifibrotic; lipofibroblasts are adipocyte-precursors, and fat is recog-

nized for its ability to minimize scars19,43-45 and soft tissue fibro-

sis.44,46-48 Zigzag fibroblasts are located at the base of hair follicles in

healthy nonfibrotic skin but are absent in scars. To explore the influ-

ence of grafted fat enriched with CD74+ ASCs on the cellular compo-

sition of overlying irradiated skin, FACS was used to assess the

relative proportions of these four fibroblast subpopulations in the skin

overlying grafted fat enriched with CD74+, CD74−, US ASCs, and fat

alone. Interestingly, CD74+ ASC-enriched fat decreased the propor-

tion of the more fibrotic papillary (****P < .0001) and reticular

(****P < .0001) fibroblasts, and significantly increased the proportions

of the more antifibrotic zigzag (****P < .0001) and lipofibroblasts

(**P < .01), compared to skin overlying fat enriched with CD74− fat or

fat alone (Figure 4). These results are consistent with an antifibrotic

effect of CD74+ ASCs within grafted fat on the surrounding soft tis-

sue at recipient sites.

3.5 | Fat grafts enriched with CD74+ ASCs
promote regeneration of elastic fibers

Radiation is known to alter several different fibers within the extracel-

lular matrix.36 To explore whether fat grafting had a beneficial effect

on these components in addition to the collagen content and dermal

thickness, we stained for elastin, fibrillin, and versican. While we

observed no significant change in elastin fibers between any of the

groups, there were notable differences in fibrillin and versican fibers.

Radiation is known to impact the integrity of fibrillin fibers which

interacts with TGF-β1.49,50 Importantly, mice grafted with fat enriched

with CD74+ ASCs had the greatest improvement in fibrillin staining

relative to irradiated soft tissue (***P < .001) (Figure 5). Immunofluo-

rescent staining for versican, a pro-fibrotic modulator, was also

decreased with CD74+ ASC-enriched fat compared to all other groups

(*P < .05, **P < .01) (Figure 5).

4 | DISCUSSION

Significant soft tissue fibrosis following RT can distort skin form,

impair skin function, and negatively impact patient quality-of-life.1-6

Despite these negative consequences, RT remains an important anti-

cancer treatment, and is used to cure or palliate over 50% of cancer

patients.51,52 With increasing numbers of patients surviving cancer

and increasing risks of patients experiencing the long-term effects of

RT, it is of paramount importance to prevent or reverse the pathologi-

cal fibrotic process.22,53 Fat grafting can improve the quality, hyper-

pigmentation, and thickness of irradiated skin.8,11-15 ASCs within the

grafted fat are thought to drive tissue regeneration, and recent work

has identified numerous subpopulations of ASCs with distinct proper-

ties.26-29 Here, we describe an additional subpopulation of ASCs, posi-

tive for the surface marker CD74, with enhanced antifibrotic qualities.

CD74 is a nonpolymorphic type II transmembrane glycoprotein

which functions as a major histocompatibility complex class II chaper-

one and has a high affinity for the macrophage inhibitory factor (MIF)

receptor. CD74 is thought to be anti-inflammatory via its interaction

with MIF; in hematopoietic stem cells MIF binds CD74, and this insti-

gates intracellular signaling culminating in phosphorylation of AMP-

activated protein kinase (AMPK). AMPK, in turn, inhibits platelet

derived growth factor induced migration and proliferation of hepatic

stellate cells.54 This pathway may also mediate the antifibrotic activity

of cells known to express the CD74 surface marker in other tissues,

such as adipose tissue.

In our study, we observed ASCs positive for the surface marker

CD74 to have antifibrotic qualities. Though this may derive, in part,

from an anti-inflammatory function, we also found CD74+ ASCs to

express antifibrotic genes and media from cultured CD74+ ASCs

reduced collagen production, particularly collagen type 1 which has

been shown to be significantly increased relative to collagen type III in

fibrosis/scar,55 in stimulated human dermal fibroblasts in vitro. Fat

grafts enriched with CD74+ ASCs had greater improved histological

quality, underwent less resorption, and had an antifibrotic influence

on surrounding irradiated soft tissue. Specifically, CD74+ ASC-

enriched fat grafts decreased stiffness, thickness, and collagen con-

tent of overlying skin, and decreased the proportions of fibrotic fibro-

blast subpopulations. Furthermore, this was also associated with

enhanced staining for fibrillin which may play a role in modulation of

TGF-β1 activity. Fibrillin may interact with latent TGF-β150 and

murine knockouts of fibrillin-1 have been found to have greater inter-

stitial fibrosis secondary to increased TGF-β1 activation.56,57 Finally,

versican, a chondroitin sulfate proteoglycan known to promote

fibrogenic cellular functions,58 was noted to be lower in irradiated soft
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tissue grafted with CD74+ ASC-enriched fat compared to CD74−

ASC or US ASC-enriched fat.

The transforming growth factor beta (TGF-β) superfamily are criti-

cal regulators of tissue repair and fibrosis and three isoforms of TGF-β

(TGF-β1, 2, and 3) are known to possess distinct roles.59 Interestingly,

all TGF-β isoforms act through the same receptors, suggesting antago-

nizing functions.59 Differential activation of downstream small

mothers against decapentaplegic (SMAD) signaling intermediates may

also contribute to their contrasting functions. In particular, recent

studies have shown Smad7 to suppress fibrosis in multiple organs,

and further exploration of this may be warranted with respect to our

observations with CD74+ ASCs.60,61 In our study, we found that

CD74+ ASCs express greater levels of TGF-β3, the isoform with the

most antifibrotic activity,62 and had decreased levels of TGF-β1 tran-

scripts, which is known to mediate fibrosis.63 Supporting our findings,

recent reports have shown that ASCs can inhibit fibroblast prolifera-

tion by decreasing TGF-β1 expression, and promote collagen remo-

deling by increasing TGF-β3.64,65 Furthermore, connective tissue

growth factor has been implicated as a cofactor with TGF-β1 in medi-

ating fibrosis,66,67 and it may be of interest to evaluate the impact

CD74+ ASCs may play in production of this growth factor in subse-

quent studies.

Identification and isolation of ASC subpopulations with

antifibrotic potential can both expand the current understanding of

adipose tissue biology and expedite the application of specific ASC

subpopulations for therapeutic benefit. While enrichment of fat grafts

with ASCs (cell-assisted lipotransfer or CAL) can improve retention

rates, enhance the quality of grafted fat, and further attenuate radia-

tion-induced dermal thicknening9,68-72 compared to fat alone, we

demonstrate here that these effects are more pronounced when

grafted fat is enriched with CD74+ ASCs, relative to CD74− or US

ASCs. Thus CD74+ ASCs may have a potentially important role in the

treatment of radiation-induced soft tissue fibrosis. While the CD74+

subpopulation comprised a small fraction of the SVF and may require

substantial in vitro expansion prior to for grafting in the clinical set-

ting, one option may be to expand or enhance the activity of the

CD74+ within lipoaspirate in vivo using targeted molecules. And aside

from this consideration, our findings of a potential role CD74+ ASCs

may play in improving fibrosis also help to begin explaining the regen-

erative effects of fat grafting already observed clinically.8,11

5 | CONCLUSION

In summary, CD74 marks a subpopulation of ASCs with antifibrotic

qualities both in vitro and in vivo. CD74+ ASCs may attenuate pro-

duction of pro-fibrotic extracellular matrix components by fibroblasts

and promote improvement of detrimental histologic and biomechani-

cal changes to skin following radiation injury. The findings in our

mouse study thus raise the potential for use of lipoaspirate enriched

with CD74+ ASCs in the clinical setting to reduce the damaging

effects of RT.
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