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Abstract: We report that the pincer nickel complexes display prostate cancer antitumor properties
through inhibition of cell proliferation. Notably, they display better antitumor properties than
cisplatin. Mechanistic studies reveal that these pincer nickel complexes trigger cell apoptosis, most
likely due to cell cycle arrest. Interestingly, these complexes also inhibit androgen receptor (AR)
and prostate-specific antigen (PSA) signaling, which are critical for prostate cancer survival and
progression. Our study reveals a novel function of pincer nickel complexes as potential therapeutic
drugs in prostate cancer.
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1. Introduction

Prostate cancer (PCa) is the first and most common form of cancer and the second
leading cause of cancer-related death among men in the United States. One in five men is
expected to be diagnosed with PCa during his lifetime [1]. It is also the most rapidly in-
creasing cancer type among men in China [2]. Although the 5-year survival rate of localized
PCa is nearly 100%, metastatic PCa remains a deadly disease. While most advanced types
of PCa initially respond to androgen deprivation therapy (ADT) with tumor regression, a
majority of them eventually progress to a resistant disease referred to as castration-resistant
prostate cancer (CRPC). Recent use of new-generation antiandrogens such as abiraterone
and enzalutamide (Enz) further prolonged patient lives for several months to a year; nev-
ertheless, resistance inevitably develops, ultimately leading to death [3–6]. Sipuleucel-T
(Provenge) is the only FDA-approved immunotherapy vaccine made for prostate cancer
patients [7]. Balancing cost effectiveness, chemotherapy is still the first treatment used for
advanced prostate cancer, although side effects are common. Thus, there is an urgent need
to develop novel chemotherapeutic drugs against PCa.

Metal-based complexes have been used in cancer therapy since the discovery of
the platinum compound (cisplatin) in the 1960s. They have the advantage of potential
chemotherapeutic and cost-effective properties. Cisplatin has been the most successful
anticancer drug used to treat many types of cancer; however, it has an uncertain effect on
PCa and moderately decreases prostate-specific antigen (PSA), mainly due to its cellular
toxicity and acquired resistance [8–12]. For these reasons, anticancer compounds with other
kinds of metal are being investigated. Therefore, ruthenium, gold, and iron anticancer
complexes have been tested to avoid severe side effects. The working mechanism and
toxicity profile of drugs incorporating other metals than platinum may be distinct from
platinum drugs and, thus, offer advantages over existing therapeutic regimens [13–16].
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Nickel is abundant in our environment and ubiquitous in a variety of foods. Although
in a trace amount, it is essential in physiological processes in our body [17]. Nickel
complexes could be applied as valuable alternatives to anticancer platinum agents. Indeed,
nickel-incorporated complexes have shown anticancer properties in prostate, breast, lung,
and colon cancer cells [18–20].

In a previous study, we synthesized and characterized a series of pincer nickel com-
plexes [21]. In the present study, we tested the cell viability of prostate cancer cells after
treatment of these organometallic pincer compounds that have been previously designed,
synthesized, and characterized by our group. Four pincer nickel complexes showed signifi-
cant inhibitory effects in prostate cancer cells, triggering cell cycle arrest and higher levels
of apoptosis with low IC50. This inhibitory effect occurs in both androgen-sensitive and
androgen-insensitive prostate cancer cells. The mechanism of reduced cell growth is due to
the repression of AR/PSA survival signaling, which is vital in promoting prostate cancer.

2. Results
2.1. Chemical Synthesis

We previously synthesized a series of pincer metal compounds in order to screen and
test the biological function of these compounds. The synthesis of unsymmetrical chiral
ligand precursors and the pincer nickel metal compounds is shown in Scheme 1 [21].
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Scheme 1. Preparation of unsymmetrical chiral NHC imidazoline ligand precursors and CCN pincer
Ni complexes.

2.2. Cytotoxic Studies

Since these compounds were stable under normal physiological conditions, we as-
sessed the cytotoxic effect of these compounds on two representative prostate cancer
cells−LNCaP (androgen-sensitive) and PC-3 (androgen-insensitive) cells. WST-1 test was
performed with concentrations of compounds at 0, 1, 2.5, 5, and 10 µM on all cell lines.
Four compounds showed significant inhibition of growth in LNCaP cells (Figure 1). It is
interesting to note that these four compounds also showed significant inhibition of cell
growth in PC-3 cells, which are considered androgen-insensitive and cisplatin-resistant
cell lines (Figure 2). In summary, these results indicate that these pincer nickel complexes
have growth inhibitory activity toward prostate cancer cells. Using logistic regression, IC50
concentrations were determined at 48 h of treatment in LNCaP cells (Table 1). Thus, we
chose 5 µM for further mechanism study.
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Figure 1. Synthesized chemicals inhibit LNCaP cell survival in a dose-dependent manner. LNCaP
cells were treated for 48 h with chemicals at different concentrations and analyzed via WST-1 cell
growth assay: (a) chemical 4a; (b) chemical 4b; (c) chemical 4c; (d) chemical 4d.
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Figure 2. Synthesized chemicals inhibit PC-3 cell survival in a dose-dependent manner. PC-3 cells
were treated for 48 h with chemicals at different concentrations and analyzed via WST-1 cell growth
assay: (a) chemical 4a; (b) chemical 4b; (c) chemical 4c; (d) chemical 4d.

Table 1. The IC50 of values of nickel complex in LNCaP cells.

Drugs IC50 (µM)

Chemical 4a 5.23 µM
Chemical 4b 4.68 µM
Chemical 4c 5.33 µM
Chemical 4d 4.33 µM
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2.3. Cell Cycle Analysis

Regulation of the cell cycle is a homeostatic mechanism that maintains proper cellular
function. Many chemotherapeutic drugs have demonstrated their anticancer effects through
disruption of the cell cycle. To reveal the impact of these compounds on the cell cycle,
flow cytometric analysis was performed. LNCaP cells were treated with 5 µM of different
compounds for 48 h. As shown in Figure 3, all four compounds increased the proportion
of sub-G1 stage cells, which are considered to be apoptotic cells. This is consistent with
our previous proliferation assay results. Interestingly, compounds 4a, 4b, and 4d induced
S phase arrest, whereas compound 4c caused G2/M phase arrest. These results indicate
that these pincer nickel compounds are able to induce cell cycle arrest, followed by cell
apoptosis.
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Figure 3. Nickel complexes inhibit cell cycle progression in LNCaP cells. LNCaP cells were treated
with or without 5 µM of chemicals and harvested for FACS analysis.

We performed Annexin V-APC/7-AAD staining analysis to improve our cell death
analysis. As shown in Figure 4A, the early and late apoptotic rates were markedly increased
in cells treated with compounds 4a and 4c, compared with the control. In addition, there
was no significant difference in the number of early apoptotic cells among the groups
treated with compounds 4a and 4c. Notably, there were more late apoptotic cells in the
group treated with 4a (Figure 4B). These results are consistent with our previous cell
cycle analysis.



Molecules 2022, 27, 3106 5 of 9

Molecules 2022, 27, x FOR PEER REVIEW 5 of 9 
 

 

 
Figure 4. Cell apoptosis analysis using Annexin V-APC/7-AAD staining and flow cytometry in 
LNCaP cells treated with complexes: (A) representative image of cell apoptosis analysis with flow 
cytometry. Early-stage apoptotic cells are presented in the lower right quadrants (Annexin V-APC 
positive and 7AAD negative), and late-stage apoptotic cells are presented in the upper right 
quadrants (Annexin V-APC and 7AAD positive); (B) quantitative analysis of early, late-stage, and 
total apoptotic cell percentage in LNCaP cells treated with compounds. All experiments were re-
peated three times for data analysis. (* p < 0.05,*** p < 0.001, ● represents the results obtained from 
three independent experiments). 

2.4. Cell Death Analysis 
Cleaved PARP is one of the most used diagnostic markers for the detection of 

apoptosis. To investigate the effect of the compounds in inducing the intrinsic apoptotic 
pathway, we examined the levels of cleaved PARP protein (Figure 5). LNCaP cells were 
treated with 5 μM of compounds 4a and 4c for 48 h and subjected to Western blot analy-
sis. As expected, the expression of apoptotic-protein-cleaved PARP was high in groups 
treated with compounds 4a and 4c, compared with that in the control group. The activa-
tion of this protein led to cell apoptosis, which is consistent with our proliferation and 
FACS analysis. 

Figure 4. Cell apoptosis analysis using Annexin V-APC/7-AAD staining and flow cytometry in
LNCaP cells treated with complexes: (A) representative image of cell apoptosis analysis with flow
cytometry. Early-stage apoptotic cells are presented in the lower right quadrants (Annexin V-APC
positive and 7AAD negative), and late-stage apoptotic cells are presented in the upper right quadrants
(Annexin V-APC and 7AAD positive); (B) quantitative analysis of early, late-stage, and total apoptotic
cell percentage in LNCaP cells treated with compounds. All experiments were repeated three times
for data analysis. (* p < 0.05, *** p < 0.001, • represents the results obtained from three independent
experiments).

2.4. Cell Death Analysis

Cleaved PARP is one of the most used diagnostic markers for the detection of apoptosis.
To investigate the effect of the compounds in inducing the intrinsic apoptotic pathway,
we examined the levels of cleaved PARP protein (Figure 5). LNCaP cells were treated
with 5 µM of compounds 4a and 4c for 48 h and subjected to Western blot analysis. As
expected, the expression of apoptotic-protein-cleaved PARP was high in groups treated
with compounds 4a and 4c, compared with that in the control group. The activation of this
protein led to cell apoptosis, which is consistent with our proliferation and FACS analysis.

2.5. AR and PSA Expression Analysis

It is well recognized that AR signaling plays a central role in the development and
progression of PCa. Prostate-specific antigen (PSA) expression is the clinically validated
downstream indicator of androgen receptor activity and an important marker for prostate
cancer progression in patients. Thus, we treated LNCaP cells with chemicals 4a or 4c and
examined expressions of AR and PSA. Figure 4 shows that AR was highly expressed in
LNCaP cells. However, in the presence of chemical 4a or 4c, the expression of AR protein
significantly decreased. The PSA expression also decreased, which is consistent with our
observation of cell proliferation.
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3. Discussion

One of the main characteristics of PCa is hormonal reactivity. Androgen receptor
activation is necessary for the normal growth of the prostate. Aberrant AR signaling is
also one of the major reasons for prostate cancer occurrence and progression. Early-stage
PCa initially responds to androgen deprivation therapy (ADT) with tumor regression but
eventually develops into metastatic castration-resistant prostate cancer (mCRPC) [22,23].
In this study, the pincer nickel complexes were screened for their antiproliferative activ-
ity against prostate cancer cells. Interestingly, they showed cytotoxic activity on both
androgen-sensitive prostate cancer cells (LNCaP) and androgen-insensitive prostate cancer
cells (PC-3). Further mechanistic studies suggest that these pincer nickel complexes kill
prostate cancer cells via apoptosis. This is, in part, due to cell cycle arrest and repressed
expressions of AR signaling. The downregulation of PSA observed in LNCaP cells treated
with complexes is consistent with their ability to downregulate AR. Since the PSA gene is
one of the major AR regulated genes, it is speculated that the reduction in AR leads to a
decline in PSA.

4. Materials and Methods
4.1. Chemical Synthesis

Cisplatin (Beyotime Biotechnology, Shanghai, China, S1552) was prepared and used as
suggested by the manufacturers. Chemicals were synthesized as previously described [21].
In a 25 mL two-necked Schlenk tube, compound 3 (0.44 mmol), NaOAc (0.36 g, 4.40 mmol),
and NiCl2 (0.11 g, 0.88 mmol) were added in dry DMAc (10 mL). The mixture was refluxed
under an Ar atmosphere for 24 h. After the mixture was cooled and concentrated in vacuo,
the residue was purified by passing through a short column containing a layer of Celite
and a layer of silica with dichloromethane as eluent. The desired products of 4 (including
4a, 4b, 4c, and 4d) were purified once again by preparative TLC on silica gel plates with
CH2Cl2/EtOAc 1/1 as eluent.
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4.2. Cell Culture and Reagents

PCa cell lines LNCaP and PC-3 were obtained from Stem Cell Bank, Chinese Academy
of Sciences. All cell lines were authenticated and tested free of mycoplasma. LNCaP and
PC-3 cells were cultured in RPMI 1640 with 10% fetal bovine serum and 1% penicillin–
streptomycin. The cells were maintained at 37 ◦C in a humidified incubator with 5%
carbon dioxide.

4.3. Cell Proliferation Assay

The proliferation assay was performed using WST-1 (Beyotime Biotechnology, Shang-
hai, China, C0036), as described by the manufacturer. In brief, 3000 LNCaP or PC-3
cells/well were seeded in 96-well plates. Cells were either treated with vehicle (DMSO)
or different concentrations of compounds, 10 µL of WST-1 was added to the cultures and
incubated for 2 h when harvesting, and the absorbance was measured at 450 nm using a
spectrophotometer.

4.4. Cell Cycle and Apoptosis Analysis

Cell cycle and apoptosis analysis were performed as described by the manufacturer
(Beyotime Biotechnology, Shanghai, China, C1052). Cells were harvested via trypsinization,
fixed in 75% ethanol, stained with propidium iodide solution at a final concentration of
50 ug/mL, and subjected to fluorescence-activated cell sorting (FACS) analysis.

4.5. Antibodies and Western Blots

Antibodies used in the Western blots were GAPDH (Abcam, Shanghai from China,
ab9484), cleaved PARP (Cell Signaling, Shanghai, China. 5625S), androgen receptor (Cell
Signaling, Shanghai, China. 5153S), and PSA (Cell Signaling, Shanghai from China, 2475S);
all antibodies were diluted as suggested by the manufacturers. Western blot analyses were
performed using standard protocols. In brief, cell lysates were dissolved in 1XNP40 sample
buffer, sonicated, and quantified by Bradford Protein Assay Kit (Beyotime Biotechnology,
Shanghai, China, P0006) and then boiled with 1XSDS loading dye for 10 min at 95 ◦C,
separated on a 4–20% Precast PAGE gel for Tris-Gly system (Beyotime Biotechnology,
Shanghai, China, P0468S), and transferred to a PVDF membrane. The membranes were
blocked with 5% milk in PBST for 1h at RT, incubated in primary antibody diluted in
primary antibody dilution buffer (Beyotime Biotechnology, Shanghai, China, P0023A)
overnight at 4 ◦C, washed 3 × with PBST, and incubated for 1 h in a secondary antibody
(Sangon Biotech, Shanghai, China, 1:5000). Membranes were washed 3 × with PBST and
subjected to development.

4.6. Statistical Analysis

Two-tailed paired t-tests were used to assess the statistical significance of cell functional assays.

5. Conclusions

Although various ways have been investigated to treat prostate cancer, chemical
therapy is still the first line of treatment for prostate cancer [23]. In the present study, we
showed that pincer nickel compounds have antiproliferative activity for prostate cancer
cells. Androgen insensitivity is one of the major reasons for prostate cancer therapy failure.
These types of nickel complexes have inhibitory activity toward both androgen-sensitive
and androgen-insensitive cell lines, indicating that pincer nickel complexes can be used in
patients with androgen insensitivity.

Nickel has been reported to induce mitochondrial apoptosis and caspase-dependent
apoptosis [17]. Whether it is the compound or the nickel ion that plays a major role in the
results generated in our study still needs further investigation. We also observed that all
four complexes induced cell cycle arrest and cell death, but complex 13 exhibited significant
mitotic arrest other than S-phase arrest. This may indicate a different mechanism.
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Taken together, we showed that pincer nickel complexes exert antiproliferative activity
via induction of cell cycle arrest. These complexes can also downregulate the protein
expression of AR and PSA in LNCaP cells. Our research suggests a new category of
complexes with anticancer properties.
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