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Surface functionalization of metal nanoparticles (NPs), e.g., using peptides and

proteins, has recently attracted a considerable attention in the field of design of

therapeutics and diagnostics. The possibility of diverse functionalization allows

them to selectively interact with proteins, while the metal core ensures

solubility, making them tunable therapeutic agents against diseases due to

mis-folding or aggregation. On the other hand, their action is limited by possible

self-aggregation, which could be, however, prevented based on the full

understanding of their phase diagram as a function of the environmental

variables (temperature, ionic strength of the solution, concentration) and

intrinsic characteristics (size, charge, amount, and type of functional groups).

A common modeling strategy to study the phase behavior is to represent the

NPs as spheres interacting via effective potentials implicitly accounting for the

solvation effects. Their size put the NPs into the class of colloids, albeit with

particularly complex interactions including both attractive and repulsive

features, and a consequently complex phase diagram. In this work, we

review the studies exploring the phases of these systems starting from those

with only attractive or repulsive interactions, displaying a simpler disperse-

clustered-aggregated transitions. The phase diagram is here interpreted

focusing on the universal aspects, i.e., those dependent on the general

feature of the potentials, and available data are organized in a parametric

phase diagram. We then consider the potentials with competing attractive

short range well and average-long-range repulsive tail, better representing

the NPs. Through the proper combination of the attractive only and repulsive

only potentials, we are able to interpret the appearance of novel phases,

characterized by aggregates with different structural characteristics. We

identify the essential parameters that stabilize the disperse phase potentially

useful to optimize NP therapeutic activity and indicate how to tune the phase

behavior by changing environmental conditions or the NP chemical–physical

properties.
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1 Introduction

The interest toward bio-functionalized metal nanoparticles

(NPs) has grown recently for their potential applications in the

nanotechnology fields (Chen et al., 2015), especially nano-

medicine (Vlamidis and Voliani, 2018). In particular, the gold

NPs (Alex and Tiwari, 2015) allow functionalization with

biomolecules via a sulfur-mediated covalent bonding

(Häkkinen, 2012). This results in different types of

functionalization capable of selectively favoring the interaction

with proteins or other specific components of the cell milieu, with

potential therapeutic use (Marcinko et al., 2017). However, their

calibration to this aim is indeed complex (Liao et al., 2012). The

tendency of proteins to aggregate, depending on their internal

state [e.g., misfolding, (Goldschmidt et al., 2010), (Aulić et al.,

2014), (Spagnolli et al., 2021)] and on environmental factors [e.g.,

concentration, temperature, ionic strength of the solution

(Peggion et al., 2017), (Carrillo-Parramon et al., 2016)], must

be contrasted with appropriately affine NPs (Palmal et al., 2014).

The NP–protein interaction also depends on the intrinsic

properties of the particle (especially the type of

functionalization, but also size and charge) and on the

environmental factors. On the other hand, the NP–NP affinity

must be tuned to prevent that they themselves aggregate, which

would reduce their therapeutic efficiency. In order to use the

optimal type and concentration of NPs, it is therefore of

paramount importance to understand the phase behavior of

the single components (NPs and proteins) and of their

mixture as a function of the environmental variables

(temperature, concentration, and ionic strength of the

solution) and of the intrinsic variables (size, charge, and

functionalization).

Computer simulations are a valuable tool to address this

problem accounting for all the variables. In this context, because

atomistic simulations may not suffice to reach the very large time

and size scales into play, the recursion to coarse-grained (CG) or

multiscale models (Palermo et al., 2020), (Tavanti and Tozzini,

2014) emerges naturally. Computationally cheap implicit solvent,

single-residue-level-based [“minimalist” (Trovato and Tozzini,

2012)] models for proteins have been optimized during these

years (Di Fenza et al., 2009), (Delfino et al., 2020), (Delfino et al.,

2019), using parameterization strategies that typically combine

bottom-up with top-down approaches, i.e., including data from

atomistic simulations, as far as thermo-statistic data or large

dataset (Maccari et al., 2013; Spampinato et al., 2014) of

structural data from the experiment, possibly with the aid of

evolutionary algorithms (Mereghetti et al., 2017; Leonarski et al.,

2013). Low resolution models for functionalized NPs appeared

more recently (Angioletti-Uberti, 2017; Brancolini and Tozzini,

2019a) and displayed a large variety of approaches. The presence

of the gold core and surface functionalization naturally suggests a

multi-scale representation (Brancolini and Tozzini, 2019b) by

means of a central large sphere decorated with smaller spheres

(Tavanti et al., 2015a; Tavanti et al., 2015b; Radic et al., 2015),

capable of accounting both of the global size and charge of the NP

and of the surface chemical properties. This allows treating

NP–protein interaction (Brancolini et al., 2019) accounting for

the large variety of possible functionalization types.

On the route of the extreme simplification of the system,

however, an alternative strategy is possible, i.e. treating the NPs

(and proteins) as single spheroidal objects (Vácha et al., 2014),

also called the meso-scale (MS) representation used, e.g., in some

simplified models for the cytoplasm (Trovato and Tozzini, 2014).

At this level of resolution, the considered systems naturally fall

into the category of colloids, characterized by definition by large

size and spheroidal shape, whose states and phase transitions

were widely studied. Clearly, the interaction potential of these

MS-NPs is indeed complex and may display both attractive and

repulsive features (Lopez and Lobaskin, 2015), separated by a

barrier of variable location and height, as an effect of the

electrostatic long-range repulsion possibly coupled to the

hydrophobic short-range attraction. This results in an

extremely complex phase diagram with the emergence of

additional phases.

In this work, we analyze the large amount of studies already

done on the phases of these systems following an historical

perspective, which leads from the hard sphere system to the

colloids with competitive interactions. We analyze the appearance

of each new phase as the effect of the additional new features of the

potential, which often emerge as an effect of the frustration from

repulsion and attraction. This allows us to give indications on how to

tune the competing parts of the potential to control the behavior of

NPs when put in a binary mixture with proteins, in order to

optimize their therapeutic power.

2 Effective potentials for colloids: An
historical perspective

Colloids are particles capable of giving rise to colloidal

suspensions (sometimes called “colloids” themselves). If seen

from a phenomenological point of view, a suspension is

different from a solution because the dispersed particles are

substantially larger than the solvent molecules. A more general

definition is simply based on the size of the particles, regardless

of their nature: to be a colloid, the particles must have a size

between 1 and 1000 nm (Israelachvii, 2017). With this

definition, both proteins (especially the globular ones, which

tend to be spherical and less structured) and NPs can be

considered colloids. While at the macroscopic level, it is

responsible for the typical opalescent aspect, at the

microscopic level, the large size of particles brings

fundamental differences in the effective interaction potentials

with respect to common inter-molecular or inter-atomic

potentials. Consequently, substantially different phase

behaviors may arise with respect to simple mixtures of fluids.
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TABLE 1 A summary of the properties and fundamental relationships of the different types of repulsive and attractive potentials

Potential Parameters and relationships Phases

Hard spheres (HS) Diameter σ Fluid

u � { 0 r≥ σ
∞ r< σ

Packing fraction η � π
6 ρσ

3 FCC

Closed-packing ηc � π
�
2

√
6 glass

Filling factor ϕ � η
ηc
� ρσ3�

2
√

Compressibility factor z � p
ρkT

Soft Spheres with inverse power law (IPL) Diameter σ Fluid

u(r) � ε(σr)n Range ~σ (21/n -1) FCC

Force parameter ε BCC

Reduced temperature τ � kT
ε

Scaling parameter γ � 6
π ητ

−3
n � 6

π η( ε
kBT

)3n

Yukawa with repulsive wall (HSY) Screening (Debye) length λD �
��������

ε0kBT
8πe2(n++n−)

√
Fluid

u �
⎧⎪⎪⎨⎪⎪⎩ kBTλBQ

2e
− r
λD

r
r≥ σ

∞ r< σ

u �
⎧⎪⎪⎨⎪⎪⎩ ε

e−
r−σ
λD

r/σ
r≥ σ

∞ r< σ

FCC

Bjerrum length λB � e2

4πεrε0kBT
BCC

Effective charge Q � Z e
σ

2λD

(1+ σ
2λD

)
Reduced inverse temperature 1

τ � ε
kT � λB(1+ σ

2λD
)2

σZ2e2

Pointlike Yukawa (PY) Accessible sphere radius a � [ 3
4πρ]1/3 Fluid

u(r) � Q2

4πϵ0
e−r/λD

r
Scaling parameter Γ � Q2

kBT4πϵ0a � Q2

kBT4πϵ0 [
4πρ
3 ]

1
3 BCC

Lennard-Jones (LJ) Diameter σ gas

u � 4ε [(σr)12 − (σr)6] Packing fraction η � π
6 ρσ

3 liquid

Generalized α-2α LJ Attractive well ε solid

u α � 4ε [(σr)2α − (σr)α] Reduced temperature τ � kT
ε

Rangeλ ~ 3/α

Hard-core attractive Yukawa (HAY) Diameter σ gas

u �
⎧⎪⎨⎪⎩ −ε e

−r−σ
λ

r/σ
r≥ σ

∞ r< σ

Packing fraction η � π
6 ρσ

3 liquid

Attractive well ε solid

Reduced temperature τ � kT
ε

Range λ � 1/κ
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Here, we will consider only models treating the solvent

(usually water) implicitly. Therefore, particles interact via an

effective potential including all the solvent effects, namely, the

dielectric polarization, the ionic screening, and the

hydrophobicity. The simplest cases analyzed in this section

are defined by a size parameter σ, delimiting a repulsive

short-range wall, and a tail, which is attractive for

hydrophobic particles (usually neutral), and repulsive for

hydrophilic particles (charged or polar). The attractive case

might seem at a first sight similar to its atomistic equivalent,

e.g., the Lennard-Jones (LJ) system, while the repulsive case

resembles a classical plasma, except for the fact that the

particles are not in vacuum but embedded in an implicit

solvent. Simple LJ and Coulomb potentials are not suitable to

describe colloids: additional parameters are needed to correctly

represent the ratio between the size and the interaction range.

These already bring novel and interesting behaviors in the phase

diagram. It is worth, however, analyzing also the behavior LJ,

together with the hard spheres (HS) (Cowen and Carpenter,

2020), as paradigmatic reference systems.

FIGURE 1
Phase diagrams of the repulsive-only systems. (A) Phase diagram and z-η EoS of the HS system, as a function of the packing fraction. Black lines:
CS formula (Eq. 2) for the fluid branch, andWS formula (Eq. 3) for the FCC branch (Ustinov, 2017). The vertical solid lines are located at themelting and
freezing packing fractions from refs (Erpenbeck andWood, 1984; Hoover and Ree, 1968; Ustinov, 2017). The vertical dotted lines are the limits of the
glass phase from refs (van Megen and Underwood, 1993; Rambaldi et al., 2006; Noya et al., 2008; Zykova-Timan et al., 2010; Pieprzyk et al.,
2019; Luo and Janssen, 2020). The inset is a zoom into the coexistence region. The limits of the supersaturated and ramified cluster regions are taken
from refs (Parisi and Zamponi, 2005; Anikeenko and Medvedev, 2007; Pusey et al., 2009; Sanz et al., 2011; Valeriani et al., 2012; Mulero and Tian,
2013;Wang et al., 2018), while the limits for the super-heated region and the approximate location of themetastable crystal phases BCC andHCP are
taken from ref (Grimvall et al., 2012). (B) The phase diagram of the IPL system in the Λ-η plane (Λ= reduced range, see text), at different values of the
reduced temperature. The black dots are taken from ref (Prestipino et al., 2005) for τ = 1 and connected with lines; dots and lines at different τ are
calculated from the scaling law (Eq. 6). The triple point region is zoomed in. (C) The τ-η phase diagram of IPL at given values of Λ (values reported,
colored with the same color of the corresponding curves, HS case is returned with Λ= 0). Themelting and crystallization curves are reported as solid
lines, enclosing the coexistence region; the dotted line visible only in theΛ=0.12 case is the BCC–FCC transition line. The inset reports similar curves
for the HSY case at given values of the Debye Length. (D) ΛD-η phase diagram of the HSY system (Hynninen and Dijkstra, 2003) (reduced temperature
reported). The same data are used to build the inset of panel c. The blue shaded area is the BCC phase existence region, while the shaded line is the
IPL at the corresponding temperature τ = 0.05. (Data in numerical form are extracted from the reported refs and plotted.)
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2.1 Phase diagram of the non-penetrable
spheres

On the conceptual level, the HS is the simplest effective

potential, characterized by a single parameter, the sphere

diameter σ, and a contact potential, null for interparticle

distance r>σ, infinite for r<σ. The potential does not have any

energy-dependent parameter, which implies that the behavior of

the system is completely entropy-driven. It is customary to

describe single-component HS systems by means of the

compressibility factor z � pV/NkT identically equal to 1 for

classical non-interacting particles (perfect gas; for the parameter

definitions and their main relationships, Table 1). For the HS, the

correction to z depends only on the particle density ρ = N/V (or

concentration) and is usually expressed through the

dimensionless parameter “packing fraction” η � π
6 ρσ

3

p

ρkBT
� z(η) � 1 + f(η) � 1 +∑∞

i�2
Bi( η

ηc
)i

(1)

being ηc � π
�
2

√
/6 ~0.740 the maximum possible value of η found

in the closed packed face-centered cubic (FCC) or hexagonal

close packed (HCP) crystal. The last term in (1) is the virial

expansion, with Bi related to the virial coefficients bi by Bi �
biρi−1c and ρc the closed packing density, satisfying

ρcσ
3 � �

2
√ � 1.414. Analogously, the phase diagram does not

depend on T but only on the pressure (or density).

The phases of the HS system as a function of ρ (or η) have

been widely investigated in the last century, both theoretically

and by simulations, starting from the first study by van der

Waals, based on the second virial coefficient. Since then, over

hundred analytical expressions for the equation of state (EoS)

were given, either based on approximate closure theories

[reviewed in Mulero et al., 2001] or on the inclusion of the

accurate values of the largest possible number of calculated virial

coefficients (Clisby and McCoy, 2004; Bannerman et al., 2010).

One of the most used analytical forms is the Carnahan Starling

(CS) (Carnahan and Starling, 1969)

z(η) � 1 + η + η2 − η3(1 − η)3 (2)

(Figure 1A), which, though including only up to 4th virial

coefficient, is quite simple, yet accurate at least in the region of

stability of the fluid phase. At larger densities, in proximity of the

freezing region, most of the simpler analytic expression bring

large errors (e.g., Eq. 2 has an unphysical pole at η = 1). Formulas

accurate up to the freezing or even in the coexistence region with

the solid were obtained including higher virial coefficients at the

expenses of the analytical simplicity (Mulero et al., 2001).

Because of contact-only nature of the interactions, the free

energy per particle in HS is dominated by the entropy, depending

on the accessible volume. This concept is exploited to evaluate the

free energy (and z) for the crystalline solids: it is assumed that the

accessible volume to a particle is basically theWigner–Seize (WS)

cell volume corrected by the volume occupied by the spheres,

leading, for the FCC crystal, to the simple expression (Velasco

et al., 1998)

z(η) � 1

(1 − ( η
ηc
)1

3) (3)

Using the CS and WS free energies, one gets 0.492 and

0.555 as the freezing and melting packing fractions, respectively

(Wu and Prausnitz, 2002), clearly defining a first-order phase

transition and a fluid-crystal phase coexistence region. This

transition has been widely investigated by means of computer

simulations for more than 60 years (Alder andWainwright, 1960;

Adams, 1974; Woodcock, 1976; Erpenbeck and Wood, 1984),

with results nicely superimposing to the theoretical lines (Hoover

and Ree, 1968), and bringing only small corrections to the limits

of the coexistence region, whose values were recently established

at ηf ~ 0.491 (ρσ3 = 0.938) and ηm ~ 0.543 (ρσ3 = 1.038),

respectively (Ustinov, 2017) (Figure 1A).

It should be kept in mind that when HS represents colloids,

the fluid phase corresponds to the disperse state, the solid one to a

precipitate; the coexistence region is the most interesting, for the

possibility of the formation of clusters. Simulations show that the

fluid (dispersed) branch can exist at least up to the middle of the

coexisting region (Zykova-Timan et al., 2010), and even beyond

the melting density as a metastable “supersaturated” fluid

(Pieprzyk et al., 2019), and vice versa, the FCC phase can

extend below the melting (Noya et al., 2008) as a

“superheated” crystal. Along the fluid branch, the mean free

path continuously decreases (Rambaldi et al., 2006) and the

dynamics slows down indicating a glass transition at

η~0.56–0.58 (van Megen and Underwood, 1993; Luo and

Janssen, 2020). The maximum packing fraction for the

amorphous solid was evaluated to be η~0.64 (Richard et al.,

1999; Parisi and Zamponi, 2005). The very nature of the glass

transitions in the HS system is still under debate (Pusey et al.,

2009), but the behavior of the system in the critical regions was

explored by simulations. In spite of the absence of attractive

interaction, in the super-saturated region, crystalline clusters

form as nucleation centers, which can assume ramified or

fractal structures for η> 0.54–0.56 (Valeriani et al., 2012),

while in the glass-forming region, the formation of crystallites

in the disordered phase appears kinetically hindered (Sanz et al.,

2011; Anikeenko and Medvedev, 2007).

Conversely, descending to low η along the crystal line, the

metastable crystal can exist (Mulero and Tian, 2013) down to a

limit recently located at η~0.494 (Wang et al., 2018). Around this

value, the melting from FCC changes from a homogeneous

nucleation to a “catastrophic” transition. Although the body-

centered cubic (BCC) phase appears in the “superheated”

conditions (Tejero and Cuesta, 1993), simulations and
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calculations agree that for the ideally HS, the fluid–solid

transition occurs from the FCC without passing through a

BCC intermediate, which turns out unstable under shear

deformations (Grimvall et al., 2012). In fact, simulations

started from the BCC phase for densities larger than the

melting one exhibits the transition to FCC passing through

metastable phases with HCP and FCC domains, while

between melting and freezing densities, the transition

occurs through the formation of BCC domains slowly

relaxing to FCC–fluid coexistence. However, in order to

observe these transitions, one must always start from a

system in which the BCC crystal is stable, e.g. from soft

spheres (see the next section).

2.2 Effect of the repulsive range: Soft
spheres and screened electrostatics

The simplest possible perturbation to the HS system is the

inclusion of a range in the repulsion. This needs at least one

additional parameter to describe the range of the repulsion, λ (or
k = 1/λ). One typical form used for the “soft sphere”model is the

inverse power law (IPL) potential

u(r) � ε(σ
r
)n

(4)

This potential can describe weakly interacting soft

colloids since the functional form also includes softness,

together with the repulsive tail. Conventionally, the range

is defined as the distance at which the potential is halved with

respect to the value at the particle surface. Using this

definition, for the IPL potential one gets λ1/2 � σ(21/n − 1),
if the range is measured from the surface (or λ’ � λ1/2 + σ �
σ21/n if measured from the center). Conversely, for

hydrophilic colloids, the potential must account for the

Coulomb interaction and for the ionic screening. For

polar ones, it is common to use the Yukawa potential with

repulsive wall (HS Yukawa, HSY)

u(r) �
⎧⎪⎪⎨⎪⎪⎩ ε

e−κ(r−σ)

r/σ
� kBTλBQ

2e
− r
λD

r
r> σ

∞ r< σ

(5)

where Q is the effective charge of the particle, λB �
e2/(4πkBTεrε0) is the Bjerrum length, and the Debye

screening length λD � 1/κ is naturally defined as the range,

although at a distance λD from the particle surface, the

potential is decreased by a factor (λD/σ)e. The HS limit is

recovered when the range vanishes, i.e., n → ∞ for the IPL

potential (Eq. 4) and κ → ∞ for HSY potential (Eq. 5);

however, at variance with IPL, HSY does not include

softness, preserving the hard-core repulsion. The IPL

potential is often considered as a convenient regularized

alternative to the HS (Grimvall et al., 2012), while the

repulsive tail of HSY can be derived on physical bases

within the linearized Poisson–Boltzmann (PB) approach

(Denton, 2010a), returning explicit values for the

parameters. In particular, the Debye length λD �
ε0kBT/(e

����������
8π(n+ + n−)

√ ) inversely depends on the ion

concentration: the larger the ionic strength, the stronger

the screening and the shorter the repulsive tail. The

effective charge Q � Zeσk/2/(1 + kσ/2) is different from the

intrinsic charge Z (Z in turn is the bare charge plus the charge

due to possible counterion stably bound to the particle and

which do not enter the screening density n±) of the colloids

and accounts for the effective counterion-mediated colloid

interactions, at least within the linear screening

approximation and for low colloid densities. The inclusion

of many body effects and counterion correlations at higher

level is very complex, but can be achieved still using within a

renormalization approach consistently re-scaling charges, ion

densities, and colloid radii (Denton, 2010b). It is customary to

assume a Derjaguin–Landau–Verwey–Overbeek (DLVO)

potential and fit experimental data adjusting effective

charge, which normally turns out considerably smaller than

the surface charge determined from titrations. A simple

method for calculating renormalized charges is still missing

(Quesada-Pérez et al., 2002).

The range of the repulsive tail, often described by the

dimensionless parameter λ/σ � 1/κσ � Λ, produces several

effects. The transitions are no more purely entropically driven;

hence, the phase diagram will depend on the temperature T.

Therefore, a more complex phase behavior is expected, with the

possible appearance of new phases. Indeed, the BCC phase was

experimentally observed in charged soft colloids with range

comparable or exceeding their size (Kanai et al., 2015). For

the IPL potential, there are additional symmetries: the

thermodynamic behavior can be expressed as a function of a

single dimensionless parameter (Verma and Ford, 2011)

dependent on a combination of the reduced temperature τ �
kT/ε and of η

γ � ρσ3

τ
3
n
� 6
π

η

τ
3
n
� 6
π
η( ε

kBT
)3

n

(6)

that is a temperature-scaled density. HSY does not display the

scaling properties, being a combination of two different

functional forms; however, the related point-like Yukawa (PY)

without repulsive wall does. In fact, for PY, the role of γ is taken

by another dimensionless parameter

Γ � Q2

kBT4πϵ0a
� Q2

kBT4πϵ0
[4πρ

3
]1
3 � η

1
3

τ
e

1
ΛD (7)

a being the radius of the sphere occupied by a single particle.

Indeed, for n = 1 in IPL and for ΛD � ∞ in PY, one gets the

equivalent relations for (6) and (7), i.e. γ∝ ρ/T3 and Γ∝ ρ1/3/T,
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which is the well-known scaling law for the one component

plasma (Martynova and Iosilevskiy, 2015), since both IPL and PY

return the Coulomb potential in the long-range limit. HSY does

not, preserving the hard-core repulsion. On the other hand, IPL

and HSY return the HS limit for null range, while PY doesn’t. In

general, missing a characteristic length describing the colloid size,

PY is not a good representation of a potential for colloids and is

considered here only as a support to interpret the phase diagrams

of the others.

The phase diagrams of these systems are reported in Figure 1,

panels b–d. The scaling law of IPL allows simulating the system

at, e.g. τ � 1 and then extending the results to other

temperatures. Panel 2) reports the phase behavior in the plane

η − Λ1/2 (with Λ1/2 � λ1/2/σ � (21/n − 1)) for the IPL (data of ref

(Prestipino et al., 2005) for τ = 1, black dots and lines). The

abscissa axis (Λ1/2 � 0) corresponds to the HS system, with the

fluid–FCC transition and coexistence region, as previously

shown. As the range increases (i.e. moving vertically in the

plane), however, the coexistence region becomes thinner and

disappears for Λ1/2 > 0.13. Additionally, when Λ1/2 >0.1–0.12 (or
n < 6–8) (Agrawal and Kofke, 1995), a region of stability of the

BCC phase appears between the fluid and FCC phases, with a

first-order transition between BCC and FCC (see the inset of

Figure 1B). Using Eq. (6), one can obtain the phase diagram at

different τ, shown with colored dots and shaded lines in

Figure 1B (values of τ reported). The fluid–solid transition

lines are not vertical: softness allows transition values of η to

move to larger values due to penetrability of spheres, and the

effect is larger as Λ1/2 and/or τ increase. The effect of softening is
increased at higher temperatures as the transition lines bend

more, moving the melting–freezing and BCC–FCC transition to

larger densities. Conversely, as τ decreases, the transition lines

bend toward lower densities, decreasing the accessible range of

packing fraction to the fluid and narrowing the coexistence

region as Λ1/2 increases.

The same information is reported in the τ–η
(temperature–density) phase diagram in Figure 1, panel c

(main plot), for different values of Λ � Λ1/2 (reported). At

vanishing values of the range, the HS vertical transition lines

are returned (black), while as Λ increases, they lean to the right,

extending the fluid region at high temperatures. Also relevant is

the behavior at low temperatures: the region of stability of the

fluid disappears in favor of the solid phases. This results in the

region of stabilization of the BCC phase enlarging at low

densities, especially for HSY (Rascón et al., 1997) (see the

inset of panel c). The range-density phase diagram of HSY

(Hynninen and Dijkstra, 2003) is reported in Figure 1D.

Qualitatively, it is similar to IPL, in that the BCC phase

appears for large values of ΛD � λD/σ as intermediate between

the FCC and the fluid. Also, the bending of transition lines as a

function of the temperature is similar, and the correspondence

can be made quantitative once recognized that the halving range

in IPL, λ = λ1/2, and the Debye length λD are not exactly

corresponding quantities, the latter being the distance at

which the potential is decreased by a factor e (1+ λD/σ). The

general relationship between λ and λD is derived in the SI,

Supplementary material S1, and is approximately λ~ln (2)λD
for short ranges. Once the quantitative relationship is used, the

lines of phase separation for corresponding τ nicely superimpose

(bold blue lines for HSY, shaded blue band for IPL, τ � 0.05), at

least at short average ranges.

However, at large ranges, the BCC phase appears wider in

HSY, as anticipated. The specific shape of the phase diagram of

this system can be better understood comparing with the point-

like Yukawa (PY; see the SI, Supplementary Figure S2) displaying

the typical “reentrant” form of the transition lines with a

minimum value of η as the range is varied at fixed τ, and the

typical enlarging of the BCC phase, the only one stable for the

purely Coulomb solid. (The line of triple points between fluid,

BCC, and FCC phase can be determined analytically in PY and

works approximately also for HSY.) However, due to the

presence of the impenetrable repulsive wall in HSY, at

variance with PY, the BCC phase cannot exist up to infinite

densities and must bend to adapt to the vertical transition to the

FCC phase at large values of range, besides ending exactly to the

ηf and ηm values as the range vanishes. This also implies that for

intermediate and small-range values, the BCC phase shrinks

disappearing to another critical point located at higher values of

the range.

We can summarize as follows: 1) the softness produces the

leaning of the fluid–FCC transition lines and coexistence region

to higher densities as the temperature increases; 2) the repulsive

range produces the stabilization and enlarging of the BCC phase

at low temperatures, which basically substitutes the fluid phase at

low densities. The two effects are present in the IPL potential,

while only the second is present in HSY. It is important to remind

that when ported to the colloid case, fluid means the completely

dispersed phase. In addition, because the system is always kept at

a constant volume (occupied by solvent), actually the crystal

phases correspond to a complete separation and precipitation of

the colloid at equilibrium. Clearly, the interesting conditions are

those of coexistence or metastable transients, where (ordered)

clusters and/or percolates can form.

2.3 Lennard-Jones and hard-core
attractive Yukawa potentials

Neutral colloids display an—usually weak—attractive well. In

NPs, the degree of attraction can be modulated by the type of

chemical functionalization. If the particle represents a globular

protein, hydrophobicity is always present and variable.

Therefore, an attractive tail must be added to the (soft)

repulsive core. The most studied potential with these features

is the Lennard-Jones (LJ), whose phase diagram is well known

(Ge et al., 2003; Schultz and Kofke, 2018). In the original form
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(i.e. the 12–6 potential), it was used for the neutral and unpolar

particles (such as noble gas atoms). At high temperatures

(Figure 2A), LJ system displays the usual fluid-crystal first-

order transition with transition lines leaning on the right due

to the introduction of softness (by the -12 repulsion), while at a

critical value of the temperature (τc = kTc/ε ~ 1.3), a first-order

transition between two disordered phases (namely gas and

liquid) differing by the density appears, with a coexistence

region that enlarges as the temperature decreases. Lowering

further the temperature, one reaches the triple point (at τ
~0.69), below which the liquid phase cannot exist and only a

gas–solid broader coexistence region persists up to the

crystallization density.

The stabilization of the condensed disordered phase is

specifically due to the attractive well. In fact, the critical

temperature depends on the well depth ε directly through the

combination kTc = τc/ε. We observe that the LJ phase diagram

can be regarded as the superposition of the “leaning”

fluid–crystal transition region typical of the IPL potential

(corresponding to the repulsive part of the potential) and a

reversed parabola-like gas–liquid coexistence region due to the

attractive part. Consequently, the coexistence region is expected

to depend also on the range of attraction. LJ potential has a fixed

range comparable with σ; therefore, in order to explore the

dependence on range, the hard-core attractive Yukawa (HAY)

(Valadez-Pérez et al., 2012; Tuinier and Fleer, 2006) potential

was used

u(r) �
⎧⎪⎨⎪⎩ −ε e

−κ(r−σ)

r/σ
r> σ

∞ r< σ

(8)

(note that in this case the parameter kσ = 1/Λ is not related to

a Debye length in this case but simply represents the range of the

hydrophobic attraction). The possibility of varying—specifically

reducing—the range makes HAY even more appropriate for

colloids since due to their large size they have a generally

relative range Λ shorter than LJ. An alternative to HAY is the

generalized α-2α LJ whose range is, however, not

straightforwardly related to the exponent α (see the

Supporting Information, Supplementary Material S2), roughly

~3/α for large α.
The temperature–density phase diagram for HAY is reported

in Figure 2B. The reduction of the range is seen to have a similar

effect to the reduction of the well depth: for small kσ—largeΛ the

system behaves similarly to standard LJ (except for the exactly

vertical solid–liquid transition lines, due to hard core, in this

case). For kσ~1.8, the gas–liquid curve is quantitatively similar to

LJ. However, as kσ increases (or the range decreases), the critical

temperature lowers and the coexistence curve flattens, so to

progressively reduce the region of stability of the liquid phase.

This kind of behavior was observed to be independent on the

specific kind of potential and is therefore similar in α-2α
potentials: as Λ gets smaller than ~0.15, the critical

temperature falls below the triple point temperature (Lomakin

et al., 1996). In these conditions, the gas–liquid coexistence

region would lye entirely within the gas–solid coexistence

region (see the purple line in panel a of Figure 2) and the

liquid cannot exist as a thermodynamic stable state (Valadez-

Pérez et al., 2012). When ported to the colloidal system, at high

temperature, the system behaves qualitatively as the purely

repulsive one, with a disperse-aggregate transition and a

coexistence region described with the formation of ordered

FIGURE 2
Phase diagrams of attractive potentials. (A) LJ phase diagram in the temperature–density plane (dark blue lines). The purple line represents the
gas–liquid coexistence region for an LJ-like potential with shorter range (indicated). (B) Same for HAY at different values of the range (indicated). Data
for the plots are extracted in numerical form from refs (Schultz and Kofke, 2018; Tuinier and Fleer, 2006).
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clusters and percolates. The “liquid gas coexistence” corresponds

to the formation of disordered clusters, whose morphology is,

interestingly, independent on the specific kind of potential (Soto-

Bustamante et al., 2022). This phase is stabilized by the attractive

part of the potential; therefore, for colloids with particularly

weak/short-ranged attraction may not be present as

thermodynamically stable phase. However, it is indeed

reported in several works as a metastable condition,

sometimes referred to as the “two phase region” (Liu and Xi,

2019), or even “liquid–liquid” coexistence (Wu and Prausnitz,

2002; Stradner and Schurtenberger, 2020a) below the critical

temperature. If conversely the attractive part is stronger (as in

type III, c colloids), the critical point rises and eventually the

disordered clustered phase stabilizes (dark blue line in Figure 2,

panel a).

To summarize these results, we report in Figure 3 the

parametric phase diagrams, using as parameters the inverse of

the strength renormalized temperature 1/τ = ε/kT and the

diameter renormalized range Λ. An expanded version of the

parametric phase diagram as a function of the reduced

temperature and inverse ranges is reported in the SI,

Supplementary Material S3.

The data to build the curves are taken from works using the

Yukawa (attractive (Tuinier and Fleer, 2006) or repulsive

(Makuch et al., 2015)) plus a hard-core repulsion at σ;

however, they are extensible to other attractive or repulsive

potentials with similar characteristics (i.e., a repulsive core, a

repulsion range, or an attractive tail with variable range). The

attractive potential diagram in Figure 3A shows the fluid–solid

(FCC) transition at high temperature (or small attraction) and

small-intermediate range, and the appearance of the liquid phase

in the long-range-intermediate temperature region. At very low

temperature or intermediate temperature and long ranges, the

liquid phase is destabilized in favor of the ordered phase, and the

same happens at any temperature for very short ranges because

the critical line (upper in the plots τ as the y axis) crosses and goes
below the triple point line. However, the plots report the

extension of those lines beyond the crossing (dotted), which

identify the metastable phase coexistence region.

Conversely, without attraction (Figure 3B), the aggregated

disordered phase does not exist; however, the BCC crystal can be

stabilized at a large range and low temperature. Interestingly

enough, for short ranges, attractive and repulsive systems behave

similarly, i.e., with the fluid–crystal transition only, with fluid

stability decreases as the range increases, therefore extending the

coexistence region; in the case of repulsive potential, a part of this

coexistence region is additionally occupied by the FCC phase.

3 Potentials with competing
interactions

As far as other interesting systems, functionalized metal

nanoparticles may display short-range attraction (due, e.g., to

hydrophobic functionalization) and long-range repulsion (due to

possible net charge). Different potentials (collectively named

SALR, Short range Attraction, Long range Repulsion) were

used to represent these conditions, some of them reported in

Table 2. Generally, the potential is expressed as a simple additive

form of a shorter-range attractive part using one of the previously

described, plus a longer-ranged repulsive part generally described

by a Yukawa form because the repulsive wall at σ is brought by

the attractive component pure Yukawa can be used for repulsion.

There were several attempts of classifications depending on

the relative attractive Λ0 and repulsive Λ1 ranges, which are,

however, not fully consistent. In ref (Liu and Xi, 2019), three

FIGURE 3
Phase diagrams of the attractive (A) and repulsive (B) potentials, as a function of the reduced range Λ = λ/σ and of the temperature
renormalized strength ε/kT. Dots are numerical data extracted from (Tuinier and Fleer, 2006; Makuch et al., 2015), Blue lines are guide for the eye.
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classes are identified, namely, I, with attractive and repulsive

short ranges (Λ0 <0.2, Λ1 <1), II, with short attractive and large

repulsive range (Λ0 <0.2, Λ1 >1), and III, with long-range

attraction and average range repulsion (0.2<Λ0 < 1,

Λ1 ~ 1 − 2). In Zhang and Liu (2014), however, while the III

is still the class where the attraction is dominant, the role of I and

II seems interchanged, I being the class with large repulsive range

and II the one with short repulsive range. In other works, the

TABLE 2 A summary of the properties of the different types of repulsive and attractive potentials.

Potential Parameters and relationships Refs

u(r) � ε[4((σr)2α − (σr)α) + a(σξr ) e−
r
σξ] Diameter σ Mossa et al. (2004)

α = 100 → Λ0~ 0.025

Attractive strength ε

Repulsive strength a ε

Repulsive range σξ

Type I or II

u(r) � 4ε((σr)2α − (σr)α) + A(σξr ) e−
r
σξ α = 50 → Λ0~0.06 Mani et al. (2014)

ξ=1.79
A=2kT

ε=1-20 kT

Type II

α = 12 → Λ0~ 0.4

u(r) � ε[4((σr)2α − (σr)α) + a(σξr ) e−
r
σξ] ξ = 50 → Λ0~0.06 Bollinger and Truskett, (2016)

ξ=0.7-4
A ~[1-3]kT

[varied through the effective charge (Z)]

ε=1-6 kT

u(r) � A1((σr)2α − (σr)α) + A2(σξr ) e−
r
σξ Attractive strength A1 Ioannidou et al. (2016)

Repulsive strength A2

α = 50 → Λ0~0.06

u
kT �

⎧⎪⎪⎨⎪⎪⎩
σ (−e−z1(r

σ−1) + λe−z2(r
σ−1))

τ(1 − λ)r r> σ

∞ r< σ

Reduced temperature τ Godfrin et al, (2014)

Inverse attraction range z1 = 1/Λ0

Inverse repulsion range z2 = 1/Λ1

Ratio between the strength of

repulsion and the attraction λ
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phase diagram is studied keeping fixed the ranges and increasing

the attraction–repulsion barrier (Valadez-Pérez et al., 2021),

which, in fact, is also expected to influence the phase

behavior. We observe that, especially in the simple additive

form, the barrier of the resulting potential has a height that

increases both with the intensity (A) and the range (Λ1) of the
repulsive part, while it is always roughly located just after the

attractive well, i.e., at a distance from the repulsive core, which is

one or twice the attractive range, meaning that the effective

“beginning” of repulsive tail is at 1 + cΛ0 with c~1–2. (An

alternative form of the potential involving a switch function

in place of a simple sum would give a better control of the barrier

heigh and location, but it is barely used, because less manageable.

Some comments on this are reported in the SI, Supplementary

Table S2.)

In order to prevent ambiguity, here we adopt the following

novel classification, in classes with increasing global weight of the

attraction with respect to repulsion, either due to range or

strength:

• Class a: short range/weak attraction and long range/strong

repulsion (class II of (Liu and Xi, 2019 or I in Zhang and

Liu, 2014).

• Class b: attraction and repulsion of comparable range/

strength (class I in (Liu and Xi, 2019) or II in Zhang and

Liu (2014)).

• Class c: larger range/strong attraction, average range

repulsion (class III).

The three classes are depicted in Figure 4.

The phase behavior of SALR was studied in the last decades

by different authors with different potential combinations. The

most widely used to describe the short-range attraction is the

2α–α potential with α ~ 50–100 (Bollinger and Truskett, 2016;

Mani et al. 2014) for class a, 15–18 (Mossa et al., 2004) for class b,

and 12 (Ioannidou et al. (2016)) for class c, combined with

repulsive Yukawa (see Table 2). The parametric phase diagram

using α = 100 in the plane (Λ1, A/ε) (i.e., range and relative

strength of the repulsion) was explored in Mossa et al. (2004) and

compared with the attractive only-case with α = 6–18. At small

values of Λ1 and A/ε, they observe the formation of small

spherical clusters resembling homologous of the droplets

forming in the gas–liquid phase coexistence region.

Conversely, for very large values of Λ1 and A/ε, the

completely dispersed phase tends to grow at the expenses of

the liquid one, which can be understood considering the behavior

of purely repulsive potentials. Interestingly, there is an

intermediate region of parameters where the clustered phase

displays linear or lamellar structures with a local crystalline

order, which tend to grow and extend over the whole volume.

Similar results were obtained in Mani et al. (2014), where the

phase diagram of the SALR (α = 50, Λ1 = 1.79 and A = 2 kT) was

extensively explored by means of MD simulations at RT, varying

the strength of attractive well in a wide range (Table 2, second

row) and the density. The authors observe the usual disperse-

FCC transition at low values of ε as η increases. As the attractive
well increases, the colloidal cluster phase is observed, consisting

of compact crystalline clusters, whose size increases with the

colloid density, to eventually form a percolate extending over the

whole volume (gel). Considering that both A and ε are expressed
in units of kT, the ε–η phase diagram can be regarded as a τ–η
phase diagram (with inverted vertical axis) with the repulsive part

decreasing as τ increases. Therefore, the clustered phase can be

interpreted as the homologous of the wide coexistence region

observed in short-range attractive potential (Figure 2 panel a),

within which the long-range repulsion drives a further transition

between small clusters and percolated phase, also reported in

earlier works (Verduin and Dhont (1995)). The phase diagram of

FIGURE 4
SALR ordered by increasing the relative weight of attractive to repulsive parts.
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the same potential was more recently explored varying both the

attractive and repulsive relative strengths and ranges to extend

further the exploration of SALR types a and b by means of

simulations combined with liquid theories (Bollinger and

Truskett, 2016). In this work, the clustered phase is identified

by the presence of an intermediate-range order pre-peak in the

structure factor and observed in a region extending toward large

values of Λ1 and of ε/kT. Later on, even the wider and stronger

attractive range region was explored by simulations at a fixed well

depth and variable barrier height (Ioannidou et al., 2016), so to

explore the clustering-percolation transition for also type-c.

Substantially similar results were obtained exploring the

strong attraction region with a different potentials combining

Yukawa repulsive with Yukawa attractive (Godfrin et al., 2014)

(Table 2) by means of Monte Carlo Simulations and

quantitatively identifying the phases by means of the size

distribution of clusters. As in the previous case, the authors

identify the dispersed fluid phase at high T and low density, the

random percolated at high temperature and high density, the

clustered fluid at low temperature and low density, and the

clustered percolated at low temperature and high density.

The conclusion stemming from these works is that clusters

with self-limiting size are stabilized in rather spherical and low

symmetry forms by the competition between the attractive well

and repulsive tail. As the density increases, the clusters tend to

connect between each other forming a percolate, which can

eventually occupy the whole volume as the density further

increases. Accordingly, theoretical studies based on mean field

theories showed the emergence of regions of excess density of

variable size associable to clusters and identified the conditions,

fulfilled by the SALR potentials, for micro-segregation (Ciach et

al., 2013). A microscopic explanation of these disordered phases

and methods for their possible identification has been discussed

in a recent review (Ruiz-Franco et al., 2021). The “percolation

transition” is observed in basically all types (a,b,c), but it can have

a different character. Considering that it is due to the presence of

the long-range repulsion, it may be regarded as the homologous

of the fluid–solid transition line in the purely repulsive potentials,

but shifted to about σ/(σ+2λ0) on the left, due to the fact that the

long-range repulsion barrier is located roughly at (σ+2λ0); in
addition, this line will be more leaning on the right due to the

larger range of repulsion with respect to the hard-core one. This

line crosses the gas–liquid (or dispersed-aggregate) coexistence

region due to attraction, and therefore four main phases are

identified in all cases: totally disperse and percolate above the

critical temperature, clustered and percolated clusters below the

critical temperature.

As the relative weight of repulsion to attraction changes,

several variants of this scheme can appear. For temperatures

lower than the barrier between attraction and repulsion, if the

range of attraction decreases, the percolation line moves toward

the right, to finally merge to the fluid–solid transition line

(moving from c to a in Figure 4) turning in purely repulsive

diagram. Before this, however, an additional effect can be

observed: the very small attractive range can give rise to the

metastable liquid–liquid coexistence region due to the falling of

the critical temperature below the triple point line (panel a of

Figure 4). Additionally, if the barrier becomes very high

(~ 20kBT) and attractive strength is also kept high (~ 40kBT)

while decreasing the range of attraction, metastable branched

clusters can with a thin backbone and specific aggregate types

such as Bernal spirals can form (Haddadi et al., 2021a).

Conversely, if the range or strength of repulsion decreases (or

relative range/strength of attraction increases), the percolation

line moves toward the left, so to finally disappear leaving the

system to behave as purely attractive. In type c where the

repulsion is still present though weak or short-ranged, besides

the usual disperse and percolate phase, the presence of two

periodically modulated phases (spherical clusters at low

density and spherical voids at higher density) was identified

below the binodal line (Archer et al., 2007) (Figure 4C) or rather

below the λ line identifying the uniform-modulated fluid

transition (Archer et al., 2008). In all intermediate cases (a

and b), percolation line can cross the critical binodal line in

different locations, generally at density smaller than the critical

one. For this reason, in the studies on SALR, only a portion at

small densities of the whole phase diagram is explored. The

considered values of attractive range are generally not so small to

make the two-phase region clearly visible as in Figure 4,a.

However, an intermediate phase between clusters and

percolate below the binodal line is often identified (Valadez-

Pérez et al., 2021) (Figure 4B), which could also be related to the

appearance of additional order due to the large range of

repulsion, homologous to the appearance of the BCC phase in

purely repulsive potentials. At high temperatures, the system is

dominated by the repulsive core at σ, and the percolation line

bends to the right (Valadez-Pérez et al., 2013), with more or less

accentuated curvature depending on the strength of repulsion.

Finally, the effects of the introduction of a second attractive well,

for distances larger than the repulsive range, have been studied in

Perdomo-Pérez et al. (2022). They found that this causes the

binodal line to shift to higher temperatures, as in highly attractive

systems. Interestingly, the increase of the second attractive well

affects some physical properties in a way opposite to the increase

of the repulsive strength, e.g., clusters tend to be more compact,

while highly repulsive systems favor more elongated structures.

The described behavior is analogous to that observed for

porous systems (Lindquist et al., 2017) where a different point of

view is taken, with voids and filled spaces inverted. Even in this

case, the formation of porous phases is found to be associated

with SALR pair potentials. The repulsive strength and the

attractive range are related to the pore diameter and the

attractive strength to the packing fraction. Interestingly

enough, the phase diagram obtained is qualitatively similar to

that described above: for high attraction values, by decreasing the

packing fraction, the pores merge forming ordinate spaces
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isolating clusters of particles with a preferred size, similar to those

identified under the binodal line, while, for lower attraction

strength [or by increasing the temperature (Lindquist et al.,

2016)] spaces tend to be more unstructured until the void

spaces form and percolate and isolated particles coexist with

disordered clusters of different sizes.

We remark that, as for the interpretation of the Lennard-

Jones phase diagram on the basis of the repulsive core + attractive

tail, also in this case, the features of the SALR can be interpreted

on the basis of the combination of those stemming from an

attractive part and a repulsive one, both with variable range. A

more detailed analysis of the possible combination of attractive

and repulsive components including more cases than the SALR

types I–III usually examined in the literature is outlined in the SI,

Supplementary Figure S4.

4 Experimental realization of
potentials with competing
interactions

While purely repulsive potentials and weakly attractive soft-

core potentials of Sections 2.2, 2.3 are commonly realized with

charged and neutral nanoparticles, respectively, the SALR are

often obtained in the case of charged core nanoparticles

functionalized with hydrophobic groups. However, fine tuning

the repulsive to attractive part is not straightforward

experimentally. Recently, De Vivo and co-workers (Franco-

Ulloa et al., 2020) made a step forward in this direction

showing how the interaction between the metallic core NPs

can be tuned to reach the desired pair potential. They

estimated zeta potential (i.e., the potential at the interface

between the mobile ions and dispersant) of citrate-covered

gold NPs using coarse-grained-MD simulations as a function

of two parameters: the surface charge density (σ) of the NPs and
the ionic strength of the medium (I). By mapping the zeta

potential of all systems into a bidimensional plot with contour

delimiting values of the surface charge σ and salt concentration I,

it was possible to separate colloidal stability vs. instability,

comparing the theoretical data with aggregation in

experiments. Also, the well depth of the van der Waals

interaction can be modified by calculating the free energy of

dimerization of the model NPs and this can be compared with

experiments, e.g. the computed dispersion state phase diagram of

citrate-coated metallic nanoparticles in saline solutions can be

compared with ultraviolet–visible spectroscopy experiments to

validate the theoretical predictions.

NPs interacting with SALR potentials can also be realized by

grafting hydrophobic surface layers onto charge-stabilized particles,

e.g. polyethylene glycol-grafted polystyrene particles (Haddadi et al.,

2021b). The relevant parameters of this potential can be

experimentally tuned. The repulsive strength (A) is related to the

charge of the particles, which can be due to the surface

functionalization or to the ionic specific absorption, while the

repulsive range (Λ1) can be lowered, passing from class a to

class b systems by adding salt to the solution. The effective

charge of the particle and the effective range of the repulsion are

tunable through the measured Zeta potential (Van Gruijthuijsen et

al., 2013). The repulsive barrier height and location can also be

tuned bymodifying the density and the length of the polymer chains

(Guo et al., 2020), measurable with small-angle neutral scattering.

Finally, attraction can be produced by a hydrophobic core (e.g., PS

core) or by the addition of nonadsorbing polymer whose dimension

and concentration control the attractive strength and range

(Campbell et al., 2005; Klix et al., 2010). However, there are

some limitations in experiments. It is difficult to keep the ionic

strength very low to obtain a range of repulsion of the order of

particle size (as in SALR a and c potentials). One possibility is to

decrease the particle size, though still remaining in the colloid range.

Additionally, the range of attraction depends in a non-trivial way on

the temperature of the system due to possible structural transitions

of the polymers. Computer simulations are a valuable tool to

account for all of these effects, which can affect the aggregation

phase diagram.

5 Summary, conclusions, and
perspectives

The phase diagrams of the colloids are often explored with

theoretical approaches using extremely simplified potentials,

isotropic in first approximation and with implicit solvents. In

these conditions, they are homologous of single component

fluids; however, where the gaseous phase corresponds to the

fully dispersed one, the solid to precipitate and the liquid and

possible coexistence phase can be put in correspondence with the

variety of colloidal phases. With respect to simple fluids,

however, the interaction potential of colloids includes some

specificities, such as the large size (and consequently the

relative short order of interaction) and, especially, double

feature of short/average range attraction and longer-range

repulsion (in the charged case), which enrich the phase diagram.

In this work, we have perspectively revisited the phase behavior of

isotropic potentials with increasing complexity, illustrating how the

additional phases appear as specific features are added to the potential.

Starting from the HS potential describing with poor realism weakly

interacting colloids, with only a disperse-precipitate transition with a

coexistence region, we have shown that the introduction of softness

includes the dependence on the temperature of the transition, while

the introduction of the repulsive range stabilizes the BCC form of

aggregates besides the FCC one in the coexistence. Adding an

attractive well to emulate the hydrophobicity stabilizes the

clustered phase, which is metastable; however, if the range of

attraction is very short with respect to the size of the colloidal

particle. Adding the repulsive tail self-limits the size of the clusters,

additionally introducing a further percolation transition line whose
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location and temperature dependence are strongly modified by the

relative weight of the repulsionwith respect to attraction. This analysis

allows us to clarify the different behavior of colloids belonging to the

different classes defined in the literature and possibly to further

explore cases not previously considered.

The competitive potentials can be used to treat the already

mentioned metal-functionalized nanoparticles, where the short-

range attraction is due to the possible hydrophobic

functionalization and the long-range repulsion to the possible

presence of a net charge. However, soft, weakly attractive and

SALR potentials were also considered to represent aggregation

behavior in proteins, especially the globular ones, already for

several decades (Noro and Frenkel, 2000), and shown to catch

the fundamental features of aggregation transitions even in those

very complex systems. It is beyond the scope of this work to analyze

in detail these aspects, but we remark that proteins have generally

not isotropic interactions due to irregular form and charge

distribution. Therefore, the use of isotropic potentials brings

some limitations. As a consequence, proteins tend to display a

considerably richer diversity of phases and self-organization

behavior, typical of elliptical, patching colloids, appearing in

different ranges of temperature and concentration and especially

appearing when the diffusive or collective dynamical behavior is

analyzed. During the last two decades, there has been a rapidly

increasing theoretical and simulation effort to report on the study of

anisotropic, patchy, and/or responsive colloids in which the particles

can interact via directional and specific interactions, thus starting to

resemble their complex biological counterparts. There is obviously

an enormous potential for the application of these new concepts to

protein solutions, and these aspects were recently reviewed in

Stradner and Schurtenberger, (2020b).

In this work, we tried to focus on the global phase behavior as a

function of physical parameter such as relative ranges/strength of

attraction/repulsion, rather than on the parameters of the specific

potentials, so to be able to identify the main physical determinants of

aggregation, and to expand the possibility of using these potentials as a

complementary tool to augment experimental studies that aim to

design protein–nanoparticle interactions. In fact, in these simplified

forms, the colloidal potentials can be easily used in simulations to

represent the behavior of amixture of the two systems, with a potential

in many areas as pharmaceutical formulation (therapeutic effect of

NPs as anti-aggregants) and materials sciences. An essential point in

the application of concepts from colloid physics to

protein–nanoparticle systems, however, is that it requires a case-

by-case analysis on the level of coarse graining needed for a given

problem and a critical choice of the experimental techniques and data

chosen for a meaningful test of model predictions. Clearly, in this

respect, a large number of actions can be pursued to improve the

models in the sense of realism. One possibility is the inclusion of the

anisotropic and patchy nature of colloids to describe protein

interactions and/or to account of uneven distribution of the

functionalization of NPs. Alternatively, a possibility is to add

secondary smaller spheres on the surface of the primary sphere to

account for the roughness of the NP surface, and the specificity of the

chemical functionalization, which plays crucial roles in the interaction

with proteins. This approach has been proposed recently by our group

since it allows us to introduce a double scale representation of the

system, (Brancolini and Tozzini, 2019a; Brancolini and Tozzini,

2019b) with the advantage of preserving the isotropy of each

interacting unit, thus leading to a simpler implementability of the

model into simulation codes.

The present review article has attempted to critically discuss

the exploitation of colloid science concepts to better understand

and predict the phase behavior of functionalized nanoparticles

and/or protein–nanoparticle mixtures. We believe that with the

colloid approach, we can drive forward the field with concepts

that are underpinned by the molecular scale insight derived from

models and that can be further tested and refined by

confrontation with experimental reality to generate

technologies with enormous societal impact.
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