A RTl C L E W) Check for updates

Automated extraction of chemical synthesis
actions from experimental procedures

Alain C. Vaucher® 2% Federico Zipoli'2, Joppe Geluykens® ', Vishnu H. Nair!, Philippe Schwaller® ' &
Teodoro Laino!

Experimental procedures for chemical synthesis are commonly reported in prose in patents
or in the scientific literature. The extraction of the details necessary to reproduce and validate
a synthesis in a chemical laboratory is often a tedious task requiring extensive human
intervention. We present a method to convert unstructured experimental procedures written
in English to structured synthetic steps (action sequences) reflecting all the operations
needed to successfully conduct the corresponding chemical reactions. To achieve this, we
design a set of synthesis actions with predefined properties and a deep-learning sequence to
sequence model based on the transformer architecture to convert experimental procedures
to action sequences. The model is pretrained on vast amounts of data generated auto-
matically with a custom rule-based natural language processing approach and refined on
manually annotated samples. Predictions on our test set result in a perfect (100%) match of
the action sequence for 60.8% of sentences, a 90% match for 71.3% of sentences, and a
75% match for 82.4% of sentences.

TIBM Research Europe, Séumerstrasse 4, Rischlikon, 8803 Switzerland. “These authors contributed equally. Alain C. Vaucher, Federico Zipoli.
Mamail: ava@zurich.ibm.com

| (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17266-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17266-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17266-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17266-6&domain=pdf
http://orcid.org/0000-0001-7554-0288
http://orcid.org/0000-0001-7554-0288
http://orcid.org/0000-0001-7554-0288
http://orcid.org/0000-0001-7554-0288
http://orcid.org/0000-0001-7554-0288
http://orcid.org/0000-0002-3646-6019
http://orcid.org/0000-0002-3646-6019
http://orcid.org/0000-0002-3646-6019
http://orcid.org/0000-0002-3646-6019
http://orcid.org/0000-0002-3646-6019
http://orcid.org/0000-0003-3046-6576
http://orcid.org/0000-0003-3046-6576
http://orcid.org/0000-0003-3046-6576
http://orcid.org/0000-0003-3046-6576
http://orcid.org/0000-0003-3046-6576
mailto:ava@zurich.ibm.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

n chemistry like in other scientific disciplines, we are witnes-

sing the growth of an incredible amount of digital data, leading

to a vast corpus of unstructured media content—including
articles, books, images and videos—rarely with any descriptive
metadata. While scientists have developed several technologies
for analyzing and interacting with unstructured data, quite often
these solutions rely on identifying and utilizing rules specific to
each data item at the cost of a substantial human effort. Cur-
rently, the processing of unstructured data is pivotal to the work
of many scientists: it transforms this data into a structured form
that is easily searchable and that can be combined easily with
automated workflows.

The availability of structured chemical data is especially
important for automation due to the increasing interest in robots
in the context of organic synthesis!=%. Structured data is also
important to stimulate the design of predictive models for opti-
mizing reaction procedures and conditions, similar to the success
of the Al-guided reaction prediction schemes®8 for organic
molecules.

In fact, although some simple organic reaction data are widely
presented in well-structured and machine readable format, this is
not the case for the corresponding chemical reaction procedures
which are reported in prose in patents and in scientific literature.
Therefore, it is not surprising if their conversion into a structured
format is still a daunting task. As a consequence, the design of an
automated conversion from unstructured chemical recipes for
organic synthesis into structured ones is a desirable and needed
technology.

Ultimately, with such an algorithm, a machine could ingest an
experimental procedure and automatically start the synthesis in
the lab, provided that all the necessary chemicals are available.
Also, if applied to a large collection of experimental procedures,
the conversion to structured synthesis actions could prove
interesting for the analysis of reaction data, and could facilitate
the discovery of patterns and the training of machine-learning
models for new organic chemistry applications.

In this work, we focus on the conversion of experimental
procedures into series of structured actions, with an emphasis on
organic chemistry. To do so, we first identify general synthesis
tasks covering most of the operations traditionally carried out by
organic chemists. We implement and discuss several computa-
tional approaches for the extraction of such structured actions
from experimental procedures. Rule-based models represent a
good starting point for this endeavor, but they are quite sensitive
to the formulation of the rules and to noise in the experimental
procedures, such as typing errors or grammar mistakes>. We
therefore introduce a deep-learning model based on the trans-
former architecture to translate experimental procedures into
synthesis actions. We pretrain it on data generated with rule-
based models and refine it with manually annotated data.

In doing so, our goal is for the sequence of actions to corre-
spond to the original experimental procedure as closely as pos-
sible, with all the irrelevant information discarded. This means
that an extracted action sequence contains, in principle, all the
details required by a bench chemist or a robotic system to con-
duct a reaction successfully.

Retrieving information from the chemistry literature has
received a lot of attention over the last decades®!0. One of the
predominant goals is to mine information from patents, papers
and theses, and save it as structured data in databases in order to
make chemical knowledge searchable and enable queries about
materials or properties. Due to the complex syntax of chemical
language, a lot of effort has been put into the development of
named entity recognition methods for chemistry. Named entity
recognition entails the automatic detection of relevant words or
word groups in a text and their assignment in categories. Typical

approaches apply rules and dictionaries, machine-learning, or
combinations thereof®. For instance, many named entity recog-
nition methods have been applied to the detection of chemical
entities (compound names and formulas) in text (see, for
instance, refs. 1171, as well as ref. 7 for an extensive review).

Other approaches apply named entity recognition to also detect
other chemistry-related information such as operations or reac-
tion conditions. The ChemicalTagger tool, which focuses on the
experimental sections of scientific text, parses different kinds of
entities and determines the relationships between them!®.
Thereby, it also identifies so-called action phrases that associate
text excerpts to actions. ChemDataExtractor aims to extract as
much data as possible from the scientific literature to populate
chemical databases!’. It does not focus solely on experimental
procedures and is also able to extract spectroscopic attributes or
information present in tables, for instance. Weston et al. follow a
similar strategy and apply their method on materials science
abstracts with the goal to produce easily searchable knowledge
databases!$.

In the field of materials science, several text-mining tools have
been applied to the study of synthesis procedures. Kim et al.
designed a pipeline for the extraction of synthesis parameters
which allows them to examine and compare synthesis conditions
and materials properties across many publications!®20, In
another work, they applied this pipeline to extract synthesis data
for specific materials and train a variational autoencoder that
generates potential synthesis parameter sets?!. More recently,
data extracted with the same tools allowed machine-learning
models to learn to predict the precursors and sequence of actions
to synthesize inorganic materials?2. Mysore et al. applied text-
mining tools to convert synthesis procedures to action graphs?3.
The nodes of the action graphs represent compounds, actions, or
experimental conditions, and they are connected by edges that
represent the associations between the nodes. Huo et al. applied
latent Dirichlet allocation to cluster sentences of experimental
procedures into topics in an unsupervised fashion, and then
designed a machine-learning model to classify documents into
three synthesis categories based on their topic distribution?4. In
an effort to facilitate the design and training of future machine-
learning models, Mysore et al. provided a dataset of 230 anno-
tated materials synthesis procedures2®. A similar effort had been
presented earlier for web lab protocols in biology?®.

The extraction of synthesis information for organic chemistry
has received less attention. Recently, Cronin and co-workers
developed a robotic system able to perform organic synthesis
autonomously?, requiring a synthetic scheme described in the so-
called chemical descriptive language (XDL). They implement a
rudimentary tool for translating a given procedure into XDL that
follows the identification of key entities in the text and assembling
the corresponding list of operations, using existing natural
language-processing tools. This approach is exposed to linguistic
challenges and its success depends to a large extent on how the
experimental procedure is formulated. As a consequence, creating
the XDL schemes remains largely manual. The Reaxys?’ and
SciFinder?8 databases are also worth mentioning in the context of
extracted organic synthesis information. These commercial
databases contain reaction data (such as reagents, solvents, cat-
alysts, temperatures, and reaction duration) for a large number of
chemical reactions. These data are usually extracted from the
scientific literature and curated by expert scientists.

To contrast the present work from previous approaches, our
model converts experimental procedures as a whole into a
structured, automation-friendly format, instead of scanning texts
in search of relevant pieces of information. We aim for this
conversion to be as reliable as possible, with the goal to make
human verification unnecessary. Also, in contrast to other

2 | (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

approaches, our deep-learning model does not rely on the iden-
tification of individual entities in sentences. In particular, it does
not require specifying which words or word groups the synthesis
actions correspond to, which makes the model more flexible and
purely data-driven.

The trained deep-learning model for the extraction of action
sequences is available free of charge on the cloud-based IBM RXN
for Chemistry platform?°.

Results

Synthesis actions. The experimental procedures we consider in
this work come from patents and represent single reaction steps.
To conduct the full synthesis of a molecule, several such reaction
steps are combined. The following is an example of a typical
experimental procedure that is to be converted to automation-
friendly instructions (which will be given further below in
Table 2):

To a suspension of methyl 3-7-amino-2-[(2,4-dichlorophenyl)
(hydroxy)methyl]-1H-benzimidazol-1-ylpropanoate (6.00 g, 14.7
mmol) and acetic acid (7.4 mL) in methanol (147 mL) was added
acetaldehyde (4.95 mL, 88.2 mmol) at 0 °C. After 30 min, sodium
acetoxyborohydride (18.7 g, 88.2 mmol) was added. After 2 h, the
reaction mixture was quenched with water, concentrated in
vacuo, diluted with ethyl acetate, washed with aqueous sodium
hydroxide (1 M) and brine, dried over sodium sulfate, filtered and
concentrated in vacuo. The residue was purified by column
chromatography on silica gel eluting with a 10-30% ethyl acetate/
n-hexane gradient mixture to give the title compound as a
colorless amorphous (6.30 g, 13.6 mmol, 92%).

From such an experimental procedure, our goal is to extract all
relevant information to reproduce the chemical reaction,
including details about work-up. The structured format into
which we convert this information consists of a sequence of
synthesis actions. It is to be noted that restricting syntheses to the
sequential execution of actions prevents us from supporting non-
linear workflows. However, such branched synthesis procedures
are rare when considering single reaction steps (see “Discussion”
section). Furthermore, they can partly be remedied by the choice
of actions, as will be explained below.

The predefined set of synthesis actions must be flexible enough
to capture all the information necessary to conduct the chemical
reactions described in experimental procedures. We tailored our
set of actions to best reflect the content of experimental
procedures as commonly described in patents. Accordingly, our
actions cover operations of conventional batch chemistry for
organic synthesis. We note that synthesis actions have been
defined as well in other work. For instance, Hawizy et al. define a
set of 21 types of so-called action phrases for experimental
procedures from patents!®. In the context of materials science,
Huo et al. interpret topics extracted by a latent
Dirichlet allocation as categories of experimental steps?4, and
Kim et al. cluster actions into a set of 50 categories in an
automated procedure??,

The actions we selected are listed in Table 1. Each action type
has a set of allowed properties. For instance, the Stir action can
be further specified by a duration, a temperature, and/or an
atmosphere (and nothing else). The properties allowed for each
action type are listed and explained in the Supplementary Note 1
and Supplementary Table 1.

Most action types listed in Table 1 correspond to actual
synthesis operations with direct equivalents in the wet laboratory.
We note that drying and washing, in organic synthesis,
correspond to different operations depending on their context.
In particular, the additional properties attached to the two types
of drying are different and we therefore define two action types

for drying, DrySolid and DrySolution. MakeSolution
describes the preparation of a separate solution. This enables us to
support experimental procedures that require solutions or
mixtures to be prepared separately for use in another action.
Accordingly, MakeSolution is important in ensuring the
compatibility with a linear sequence of actions, by avoiding the
necessity to consider multiple reactors in an action sequence. We
ignore information about glassware and apparatus on purpose, as
this is largely imposed by the availability of equipment or the
scale of the reaction, and the reaction success should not
depend on it.

A few action types do not actually correspond to laboratory
operations, but are convenient when retrieving information from
experimental procedures. The FollowOtherProcedure
action type is selected when the text refers to procedures
described elsewhere, in which case no actual actions can be
extracted. NoAction is assigned to text that does not relate to a
synthesis operation, such as nuclear magnetic resonance data or
sentences describing the physical properties of the reaction
mixture. The OtherLanguage action covers experimental
procedures that are not written in English. InvalidAction
indicates that a text fragment is relevant but cannot be converted
to one of the actions defined above. This action type is for
instance selected for synthesis operations that are not covered by
the actions of Table 1, or for branched synthesis procedures.

When determining the actions corresponding to an experi-
mental procedure, it is important to consider that some actions
are implicit. For instance, in the sentence “The organic layer was
dried over sodium sulfate”, the phase separation and collection of
the organic layer is implicit (no verb) and will result in a
CollectLayer action preceding DrySolution. Similarly,
“23 g of aluminum chloride in 30 mL of dichloroethane was
heated to 50 °C.” corresponds to three actions (MakeSolution,
Add, SetTemperature) although the sentence contains only
one verb ("heat”).

A single action type may cover a wide range of formulations
present in experimental procedures. For instance, an Add action
can be expressed using the English verbs “add”, “combine”,
“suspend”, “charge”, “dilute”, “dissolve”, “mix”, “place”, “pour”,
and “treat”, among others. As an additional example, a
Concentrate action can be described in terms of concentrat-
ing a solution, evaporating a solvent, as well as removing a solvent
or distilling it off.

Furthermore, an English verb may correspond to different
actions depending on its context. For instance, “heat” may, on the
one hand, indicate a punctual change in temperature for
subsequent actions, or, on the other hand, inform that the
reaction mixture should be heated for a specified duration. In the
former case, we convert it to a SetTemperature action, and in
the latter case to a Stir action. Another example is the verb
“remove”, which may relate to Concentrate when associated
with a solvent or to Filter in the context of a filtration.

It is important to consider that there can be multiple ways to
assign actions to some synthesis operations. For example, the
Quench and PH actions can, in principle, both be formulated as
Add actions. Also, a Partition action can be expressed as two
Add actions followed by a PhaseSeparation action. In such
cases, we want to preserve the intent of the original experimental
procedure and keep the variant closest to the text. We also note
that the action scheme not only supports experimental proce-
dures written in terms of specific reagents, but also the ones
referring to general reagents (for instance, “the aldehyde” instead
of “4-hydroxy-3-methoxybenzaldehyde”).

Computationally, actions can be stored as items associating the
action type with a set of properties (complying with the available
properties for each action type). For practical purposes, we define

| (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Action name

Table 1 Action types for information extraction from experimental procedures.

Description

Add
CollectLayer
Concentrate
Degas

DrySolid
DrySolution
Extract

Filter
MakeSolution
Microwave
Partition

PH
PhaseSeparation
Purify

Quench
Recrystallize
Reflux
SetTemperature
Sonicate

Stir

Triturate

Wait

Wash

Yield
FollowOtherProcedure
InvalidAction
OtherLanguage
NoAction

Add a substance to the reactor

Select agueous or organic fraction(s)

Evaporate the solvent (rotavap)

Purge the reaction mixture with a gas

Dry a solid

Dry an organic solution with a desiccant

Transfer compound into a different solvent

Separate solid and liquid phases

Mix several substances to generate a mixture or solution
Heat the reaction mixture in a microwave apparatus

Add two immiscible solvents for subsequent phase separation
Change the pH of the reaction mixture

Separate the aqueous and organic phases

Purification (chromatography)

Stop reaction by adding a substance

Recrystallize a solid from a solvent or mixture of solvents
Reflux the reaction mixture

Change the temperature of the reaction mixture

Agitate the solution with sound waves

Stir the reaction mixture for a specified duration
Triturate the residue

Leave the reaction mixture to stand for a specified duration
Wash (after filtration, or with immiscible solvent)

Phony action, indicates the product of a reaction

The text refers to a procedure described elsewhere
Unknown or unsupported action

The text is not written in English

The text does not correspond to an actual action

a bijective conversion to and from a textual representation of the
actions. This textual representation is concise and easily under-
standable. It contains, for each action, all the non-empty
properties of that action. With that format, the textual
representation of the actions corresponding to the experimental
procedure quoted above is shown in Table 2.

Models for action sequence extraction. We studied several
models for the automated extraction of action sequences from
experimental procedures available in the Pistachio dataset3°.

A first possibility is to parse the text for information about
operations, compounds, quantities, and other conditions. This
can be achieved by inspecting the structure of the sentences in the
experimental procedures to detect the relevant pieces of
information with the help of rules. In this work, we look into
two such rule-based methods (see “Methods” section for details).
These models require meticulous work when formulating
extraction rules. Still, they do not always lead to an ideal
conversion of experimental procedures into action sequences: it is
virtually impossible to define rules covering every possible way to
describe a synthesis, while at the same time being robust to noise
in the experimental procedures.

To improve the quality of the extracted actions, we also look
into machine learning for this task. As machine-learning models
learn from data instead of rules, they are more flexible than rule-
based models, which usually results in a greater robustness to
noise. In our case, the training data can even be provided by the
rule-based models in an initial phase. Concretely, we combine the
action sequences generated by rule-based approaches into a
pretraining dataset used for the initial training of the machine-
learning model. We then refine the pretrained model with
manually annotated samples of higher quality. To achieve this, we
design a deep-learning model relying on a transformer-based

Table 2 Action sequence extracted from an experimental
procedure.

1 MakeSolution with methyl 3-7-amino-2-[(2,4-dichlorophenyl)
(hydroxy)methyl]-1H-benzimidazol-1-ylpropanoate (6.00 g,
14.7 mmol) and acetic acid (7.4 mL) and methanol (147 mL);
Add SLN;

Add acetaldehyde (4.95mL, 88.2 mmol) at 0 °C;

Wait 30 min;

Add sodium acetoxyborohydride (18.7 g, 88.2 mmol);

Wait 2h;

Quench with water;

Concentrate;

Add ethyl acetate;

10 Wash with aqueous sodium hydroxide (1 M);

1 Wash with brine;

12 DrySolution over sodium sulfate;

13 Filter keep filtrate;

14 Concentrate;

15 Purify;

16 Yield title compound (6.30 g, 13.6 mmol, 92%).

O 0ONONUTA~NWN

The sequence corresponds to the example experimental procedure given above.

encoder—decoder architecture that defines the extraction task as a
translation of experimental procedure text into the textual
representation of the associated actions.

In order to improve the performance of the refined machine-
learning model, we perform additional refinement experiments
involving data augmentation of the annotated samples. We also
evaluate ensembles of trained models and, for comparison
purposes, we train another model on the annotation dataset only
(i.e. without pretraining).

4 | (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

The source of the experimental procedure data and all the
above-mentioned approaches for action sequence extraction are
detailed in the “Methods” section.

Model evaluation. We evaluate all the approaches on the test set
of the annotation dataset. This set is made up of sentences that
are more complex than the average, since the sentences selected
for annotation represent cases that the rule-based models strug-
gled with (see the “Methods” section).

In Table 3, we show six metrics to compare different models for
action sequence extraction. For clarity and conciseness, this table
lists a selection of models only. Details related to this selection, as
well as a comparison of all the refinement experiments, can be
found in the Supplementary Note 2. The validity is a measure of
syntactical correctness of the textual representation of actions. It is
given as the fraction of predictions that can be converted back to
actions (as defined in Table 1) without error. The BLEU score3! is
a metric commonly used to evaluate models for machine
translation. We adapted its calculation in order not to penalize
predictions containing less than four words (see the Supplemen-
tary Note 3 for details). The Levenshtein similarity is calculated by
deducting the normalized Levenshtein distance’? from one, as
implemented in the textdistance library®3. The 100%, 90%,
and 75% accuracies are the fractions of sentences that have a
normalized Levenshtein similarity of 100%, 90%, 75% or greater,
respectively. Accordingly, the 100% accuracy corresponds to the
fraction of sentences for which the full action sequence is
predicted correctly, including the associated properties.

As expected, the combined rule-based model and the deep-
learning model pretrained on the rule-based data have a similar
performance. Upon inspection, it appears that the better metrics
of the deep-learning variant can be explained by sentences that the
rule-based model classified as InvalidAction and that the
pretrained model was partially able to predict correctly. Training a
model on the annotated data only (no pretraining) leads to a
model with a better accuracy than the one relying on pretraining
only. Refining the pretrained translation model results in a
considerable improvement compared to the other models. It more
than doubles the fraction of sentences that are converted correctly
compared to the pretrained model. Refining the model, however,
slightly decreases the action string validity. The corresponding
invalid predictions are converted to InvalidAction. Also,
Table 3 illustrates that omitting the pretraining step leads to a
considerably lower model accuracy. In the following, we only
consider the refined translation model for analysis and discussion.

Inspection of the actions extracted by this model provides
interesting insight into its strengths and weaknesses. For the
incorrectly predicted action sequences, the differences are often
limited to a single action. In some cases, it is even ambiguous
which of the prediction or the ground truth (hand annotation) is
better. In other cases, however, the predictions are clearly
incorrect. Table 4 shows the ground truth and the predicted
action sequences for a selection of sentences. In the Supplemen-
tary Data 1, the interested reader may find, as additional
examples, all the experimental procedure sentences from the
annotation test set with the corresponding actions extracted by
the different models.

Table 3 Metrics for the extraction of synthesis actions.

Model Validity BLEU score Levenshtein similarity = 100% accuracy = 90% accuracy 75% accuracy
Combined rule-based model 100.0 51.5 60.1 219 29.0 42.6
Pretrained translation model 100.0 58.6 68.7 24.7 33.2 48.3
Model without pretraining 98.9 64.7 76.4 37.8 47.7 62.8
Refined translation model 99.4 85.0 86.9 60.8 71.3 82.4

for all the refinement experiments can be found in the Supplementary Note 2.

The metrics are evaluated on the annotation test set for the approaches introduced in this work. All values are given in %, and the best values are indicated in bold. An extended table showing the metrics

Table 4 Example of extracted action sequences.

over anhydrous magnesium sulfate.
DRYSOLUTION over anhydrous magnesium sulfate.

DRYSOLUTION over anhydrous magnesium sulfate.

(1) STIR for 12 h at room temperature.
(2) SETTEMPERATURE room temperature; STIR for about 12 h.

(1) INVALIDACTION.

After adjusting to pH 1.5 with 10% hydrochloric acid, the ethyl acetate solution was separated, washed with a saturated aqueous sodium chloride and then dried
(1) PH with 10% hydrochloric acid to pH 1.5; PHASESEPARATION; COLLECTLAYER organic; WASH with saturated aqueous sodium chloride;

(2) PH with 10% hydrochloric acid to pH 1.5; PHASESEPARATION; COLLECTLAYER organic; WASH with saturated aqueous sodium chloride;

A solution of solid sodium metal (450 mg, 19.75 mmol) in EtOH at 30 °C. was treated with ethyl acetoacetate (103 g, 790 mmol) maintaining temperature.
(1) MAKESOLUTION with sodium metal (450 mg, 19.75 mmol) and EtOH; ADD SLN; ADD ethyl acetoacetate (103 g, 790 mmol) at 30 °C.
(2) MAKESOLUTION with solid sodium metal (450 mg, 19.75 mmol) and EtOH; ADD SLN; ADD ethyl acetoacetate (103 g, 790 mmol) at 30 °C.

3-Bromo-2-fluoroaniline (10 g, 52.63 mmol) was dissolved in DCM (100 mL) under nitrogen atmosphere.
(1) ADD 3-Bromo-2-fluoroaniline (10 g, 52.63 mmol); ADD DCM (100 mL) under nitrogen.
(2) ADD 3-Bromo-2-fluoroaniline (10 g, 52.63 mmol) under nitrogen; ADD DCM (100 mL) under nitrogen.

Upon complete addition, the reaction mixture was allowed to warm to room temperature and the reaction was stirred for about 12 h.

The residue was crystallized from 60 ml of benzotrifluoride, during this operation, the mixture was briefly boiled with activated carbon and filtered whilst still hot.

(2) RECRYSTALLIZE from benzotrifluoride (60 ml); FILTER keep precipitate.

For sentences picked from experimental procedures, the actions sequences predicted by the refined translation model (2) are compared to the annotated sequences (1). The errors in the prediction are
highlighted in bold. The action sequences predicted by the other models, as well as predictions on other sentences, can be found in the Supplementary Data 1.

| (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Table 5 Prediction accuracy by action type.

Action type Type match Full match Only in prediction Only in ground truth
Add 246 185 21 9

Stir n2 100 2 6

MakeSolution 57 46 5 5
SetTemperature 55 52 6 5

Concentrate 48 48 3 6

Wash 44 43 3 1

PH 4 34 2 2

CollectLayer 35 35 4 2

Extract 32 31 0 2

Filter 32 29 4 2

Yield 31 25 5 6

NoAction 22 22 3 3

DrySolution 22 21 2 0

Purify 19 19 2 5

Wait 16 15 3 3
FollowOtherProcedure 14 14 3 1

DrySolid 10 9 2 2

Quench 7 7 0 1

Reflux 7 5 0 0

Partition 5 4 0 0
PhaseSeparation 4 4 0 0

Triturate 3 2 2 0

OtherLanguage 2 2 0 0

Recrystallize 2 0 2 0

Degas 1 1 1 0

InvalidAction 0 0 5 n

The table indicates the number of actions for which the type was predicted correctly (type match), the number of actions for which not only the type, but also the associated properties, were predicted
correctly (full match), the number of actions of a given type that were present only in the prediction, and the number of actions of a given type that were present only in the ground truth.

In Table 5, we show the accuracy of the predictions on the
annotation test set by action type. It illustrates that for most
actions, not only the type but also the associated properties are
predicted correctly. Interestingly, no InvalidAction of the
ground truth is present in the predictions, and multiple
InvalidAction actions are predicted when the original
sentence is not invalid. This problem is difficult to alleviate,
since InvalidActions in the annotations often correspond to
unusual and infrequent operations or formulations.

Figure 1 illustrates, for the actions present in the ground truth,
the corresponding action types predicted by the transformer
model. Most of the incorrectly predicted actions relate to
NoAction, InvalidAction, or actions with no counterpart.
Other than that, very few actions are predicted incorrectly.
Interesting errors are mixing up MakeSolution and Add
(three times), predicting DrySolution instead of DrySolid
(two times) and Wait instead of Stir (two times), or a PH
action that is considered to be an Add action. More insight into
the incorrect predictions can be gained by looking into the
Supplementary Data 1 mentioned earlier.

To better understand the errors of the model, we also take
advantage of the ability of the model to make multiple
suggestions for translation with a beam search. This is especially
interesting for the sentences that the model is least confident
about. The five best action sequences suggested by the refined
model for all the sentences in the annotation test set can be found
in the Supplementary Data 2.

Data insights. Visualization of the extracted actions gives us
interesting insight into the chemistry described in patents, and
into the models presented in this work.

First, Fig. 2a, b displays the distribution of the number of
characters and the number of actions for sentences from Pistachio

(used for pretraining) and from the annotation dataset. The left
figure shows that both sentence length distributions are similar,
and are characterized by an average sentence length of around
100 characters. The annotation dataset contains fewer very short
and fewer very long sentences. The right figure shows that most
sentences (roughly one-third) describes one single action, with a
decreasing probability to find sentences with increasingly many
actions. The differences between both distributions can be
explained by differences in the underlying sentences (Pistachio
vs. annotation dataset) and by the different extraction approach
(rule-based model vs. hand annotations).

Figure 2c shows the distribution of actions extracted by the
rule-based model on the Pistachio dataset and on the annotation
dataset. As a whole, both distributions are similar, and they give
an idea of the frequency of chemical operations in patents. One
can for instance observe that addition, stirring and concentration
belong to the most common operations, while only few
experimental procedures involve recrystallization, microwaving
or sonication. The differences between both distributions reflect
the criteria for the selection of the sentences to annotate. For
instance, the rule-based model tags too many sentences as
InvalidAction, and therefore it is sensible to annotate as
many such sentences as possible. Further below, Fig. 3 will show
that the rule-based model overestimates the frequency of
InvalidActions. One can also see that PH actions are
overrepresented in the annotations, because of the necessity to
parse the pH value and the current inability of the rule-based
model to do so.

In Fig. 2d, one can see the distribution of hand-annotated
actions on the full annotation set of 1764 samples and on its
subset from the test split containing 352 samples. This figure
shows that the distribution of actions in the test split is close to
the one of the full annotation set, and hints that it catches
sufficient diversity for evaluating the models studied in this work.

6 | (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

Add
Stir -
MakeSolution -
SetTemperature -
Concentrate -
Wash -
PH -
Yield -
CollectLayer -
Extract -
Filter -
NoAction -
Purify -
DrySolution -
Wait -
FollowOtherProcedure -
DrySolid -
InvalidAction -
Quench -
Reflux -
Partition -
PhaseSeparation -
Triturate -
OtherLanguage -
Recrystallize -
Filter, Concentrate -
SetTemperature, Wait, Filter -
Concentrate, Purify, Yield -
2 X Add -
CollectLayer, Concentrate, Purify -
CollectLayer, PH, Wash -
MakeSolution, Add -

Degas -
MakeSolution, Add, 2 x Extract -
Add, Stir -
(No action) -

L e e e S T B e R B R S R T

= [} < U 2

g:%;a‘l’m{%wv}y%?gmLE

<N 5 oS00 L L=555=232

5 ® & =2 >8 s 035 99

S 5 c < < = >

S Qg C oW S 3 <

n a o o) = %] [<a]

¢ E < = > &

X o = el

SO S e g

it <

] F=3

] o

3

o

S

w

- 10
- 8
- 6
-4
-2
T T T T T T T S S S O S B S B S R S R -0
ccXxXccOQowovsos wooscoldI o Vv o~
SuUScoRBoNTOGgglLuL 52 gHTg S
B CT 55 0= 2 =005 & 2020
U0V UES © 33 @© > >L=zT 500> 35 - >8
S st o258 X - c s ’.2 9 .0
o O S8 Ec 9w Lo U5 0828 E590®
= m.%l—(uL gg,u-cgg,\,sl—“fuo
© - = = -
> 0] =TT <sc50owyC5E
2 g 3 xE-02Egiat
© =] "’>5-c“aED:uE8
£ © SVPgswn e -2 5 <
- 9] o
g “3BBekLC
w- 3z o
< w o \n
N o
c
5]
2
2
[<]
0
[9]
X~
©
=

Fig. 1 Visualization of the correctness of predicted action types. The action types predicted by the transformer model (labels on the x-axis) are compared
to the actual action types of the ground truth (labels on the y-axis). This figure is generated by first counting all the correctly predicted action types (values
on the diagonal); these values correspond to the column "Type match" of Table 5. Then, the off-diagonal elements are determined from the remaining
(incorrectly predicted) actions. Thereby, the last row and column gather actions that are present only in the predicted set or ground truth, respectively. For
clarity, the color scale stops at 10, although many elements (especially on the diagonal) exceed this value.

Figure 3 illustrates the actions predicted by the rule-based and
machine-learning models on the annotation test set, compared
with the hand-annotated actions. One can see that the
distribution of actions predicted by the machine-learning model
follows very closely the ground truth distribution. In particular,
the frequency of NoAction and InvalidAction is much
closer to the ground truth than the rule-based model, although
the frequency of InvalidAction is underestimated.

Discussion

The present work demonstrates the ability of a transformer-based
sequence-to-sequence model to extract actions from experimental
procedures written in prose. Training such a model on auto-
matically generated data is already sufficient to achieve a similar
accuracy as the rule-based approaches that produced that data.
Enhancing the training data with manually annotated samples
rapidly shows the advantage of a data-driven approach, since a
relatively small set of annotations already leads to a dramatic
improvement in accuracy. The ability of the model to learn a
complex syntax with a different set of properties for each action
type avoids the necessity to design a complex deep-learning

model taking into account multiple output types and demon-
strates the power of the transformer architecture.

This work represents an important first step towards the
automatic execution of arbitrary reactions with robotic systems.
Before this is possible, however, it will be necessary to develop
methods to infer information missing from experimental proce-
dures. For instance, experimental procedures sometimes do not
specify the solvents used for some operations, their quantities, or
operation durations.

While the actions defined in this work are able to cover a large
majority of experimental procedures, we are aware of some
shortcomings of our approach. The choice to only support linear
sequences of actions prevents us from addressing cross-references
over long distances in the text. The MakeSolution and
CollectLayer partly alleviate this disadvantage by encapsu-
lating the preparation of a solution taking place in a separate
flask, and by allowing for combining multiple solvent fractions
generated during work-up, respectively. Then, in our annotation
dataset of 1764 sentences, only four sentences correspond to an
unsupported nonlinear sequence of actions. They are given as an
illustration in the Supplementary Note 4. Other than that, the

| (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-020-17266-6

0 Rule-based model for pistachio sentences
[0 Ground truth for annotation sentences

0.007 + [Pistachio sentences
Annotation sentences 0.4 4

0.006

Frequency
Frequency

300
Number of characters

Number of actions

I Hand annotated, all splits

0.30 I Rule-based on pistachio
[Rule-based on annotation dataset 0.25 1 [Hand annotated, test split
0.25 1
0.20 A
0.20 1
> >
5 g
E] g 0.15 1
E}' 0.15 4 g
fre fra
0.10 A
0.10 1
0.05 4 0.0514

c L c T £ 5 c c B = 9 x 0 = c c 9 c w o o - c 95 H 5 C = L X c c 9 o [
%ouoﬁg\nﬁot@o“mEZHMEUQEEQMN>E% 3w e658F3 8065585362665 28¢8828¢8
<5005 PO =555 0 >22E 32 cs P o5 o= 0 8 & LW e P35 3= e >55z53cs50css =828 (3
§ 2> egsEs28&3023% 3E2288E35¢< 3 22t TE3857282828EE2238 5
=} T [} 45 o 9 & T < b 2§ g 0 @ a g =] 9 = T & T 0 e &
2 ¢ ¢ 9 2788 ¢ OsFsd 258§ g¢ g 829 § 2S5C&EFz5F 38
£ S S 3 S a g = © 5 ¥ 3 T g a gz =
] o v O] 3 I © U o 1] 9 g
° S 2 S g 2 I3 2 o 2e o 2 £ § < 2
3 e} 2 e} b s} 2 o
E = E S
3 3
5 3
2 &

Fig. 2 Statistics of the Pistachio and annotation datasets. a Distribution of the number of characters for sentences from Pistachio and from the annotation
dataset. b Distribution of the number of actions per sentence. For the Pistachio dataset, this number is computed from the actions extracted by the rule-
based model. For sentences from the annotation dataset, this number is determined from the ground truth (hand annotations). ¢ Distribution of action
types extracted by the rule-based model on the Pistachio dataset and on the annotated dataset. The action types are ordered by decreasing frequency for
the Pistachio dataset. d Distribution of action types determined from hand annotations for the full annotation dataset and its test split. The action types are

ordered by decreasing frequency for the full annotation dataset.

0.30 1 = Hand-annotated
s ML model
[Rule-based model
0.25 A
0.20
>
9
<
E
T 0.15 A
o
frs
0.10
0.05 A

Add
Stir
Wash
PH
Yield
Filter
Purify
Wait
Reflux
Degas
Sonicate

9]
2
©
i
3
2
=
=

MakeSolution
SetTemperature
Concentrate
CollectLayer
Extract
NoAction
DrySolution
DrySolid
InvalidAction
Quench
Partition
PhaseSeparation
OtherLanguage
Recrystallize
Microwave

FollowOtherProcedure

Fig. 3 Distribution of action types of the annotation test set. The action types are ordered by decreasing frequency for the hand annotations.

8 NATURE COMMUNICATIONS | (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

current format does not allow operations that depend on the state
of the system. In particular, formulations indicating until when an
operation must be performed ("until the color disappears”, “until
half the solvent has evaporated”, and so on) are usually not
specific enough to be supported by our action definitions.

Another limitation originates in our specific choice of action
types (Table 1) and corresponding properties, which does not
yet allow for a 100% coverage of the operations in organic
chemistry. This limitation can be alleviated by extending the
action definitions, which is a process guided mainly by time and
experience. In the Supplementary Note 5, we give a few examples
of such limitations, as well as suggestions for addressing them.

The rule-based model implemented in this work is able to
extract actions adequately for many well-constructed sentences
from experimental procedures. Although we compare it with the
machine-learning model, it is not to be understood as a baseline
to outperform, but rather as a stepping stone that helps us train
the machine-learning model more rapidly and with less data.

The evaluation of the machine-learning model on the anno-
tation test set results in a perfect match of the action sequence for
60.8% of the sentences. A detailed inspection of the incorrect
predictions reveals that the errors are often minor (pertaining to
only one action property out of the whole action sequence) and
that in many cases the predicted action sequence would be an
acceptable alternative to the ground truth.

Improving the automated extraction of action sequences is an
ongoing effort, involving refinement of the rules to generate data
for pretraining the deep-learning model and annotation of more
samples for refining it. A future strategy for the selection of the
sentences to annotate will be to choose the ones that the deep-
learning model is least confident about.

Although we focused on experimental procedures for organic
chemistry extracted from patents, the approach presented in this
work is more general. It can be adapted to any extraction of
operations from text, possibly requiring new training data or the
definition of new action types to cover other domains adequately.
Provided adequate changes to the training data and action defi-
nitions, the approach can for instance be extended to other
sources, such as experimental sections from scientific publica-
tions, as well as other fields, such as solid-state synthesis.

Methods
Experimental procedure data. As a source of experimental procedures, we
selected the Pistachio dataset, version 3.030, This dataset contains information
related to more than 8.3 M chemical reactions, 6.2 M of which are associated with
an experimental procedure.

For each reaction, the Pistachio dataset also contains other information such as
patent details and reaction classes, as well as information extracted from the
experimental procedures.

Rule-based model derived from Pistachio. For each experimental procedure, the
Pistachio dataset contains a list of actions and associated information, extracted
from the text with a combination of LeadMine!? and ChemicalTagger!¢. Accord-
ingly, the action types used in Pistachio are similar to the ones in Table 1. The
information associated with the Pistachio actions is not operation-specific; the set
of properties is common to all action types. It consists, most importantly, of a list of
compounds and associated quantities, as well as fields for the temperature, dura-
tion, or atmosphere. To convert these actions to our format, we map, where
possible, the action types, and post-process the data attached to these actions. For
instance, each compound attached to a Heat action in Pistachio is converted to an
Add action that is prepended to the Stir or SetTemperature action.

This approach to the generation of actions from experimental procedures is a
good starting point, but limits us to the information detected by Pistachio and
reported in the dataset. In particular, some actions relevant to us are not detected,
such as all pH-related operations. Also, the Pistachio dataset contains no
information about the relationships between compounds in a sentence.

Custom rule-based NLP model. We developed a custom rule-based natural language
processing (NLP) algorithm for the extraction of operations with associated chemical
compounds, quantities, and reaction conditions from experimental procedures.

In a first step, the algorithm processes a text independently of the actions
defined in Table 1. It detects operations by searching for verbs corresponding to
synthesis operations, defined in a custom list. By analyzing the context of these
verbs, the algorithm determines the associated compounds and quantities, as well
as additional operation conditions. It also identifies the role of the compounds in
the sentence (subject, direct object, etc.), and the relationships between
compounds.

In a second step, the operations and associated information are post-processed
to map them to the action types of Table 1. This post-processing is similar to the
one of the Pistachio-derived actions detailed above. For this task, information
about the relationships between components and their role in the sentence are very
useful. For instance, they indicate in what order compounds must be added,
independently of what comes first in the sentence (for instance, “To X is added Y”
or “Y is added to X” are equivalent). Also, it allows us to group compounds and
convert them to MakeSolution actions when they belong together in the text (as
in "A solution of X in Z is added to a solution of Y in Z.”).

This approach to the extraction of actions from text is more flexible for our
purposes than deriving the actions from Pistachio, since it can easily be modified or
extended. In addition, it allows us to ingest experimental procedures from other
sources than the Pistachio dataset.

Combined actions from rule-based models. Starting from a single experimental
procedure, both rule-based approaches described above will generate two
sequences of actions that may be different. An analysis of the generated actions
rapidly uncovers their respective strengths and shortcomings. On the one hand, in
our experience, the Pistachio-generated actions are better at extracting Yield
actions, or at detecting under what atmosphere reactions are conducted. Our
custom NLP approach, on the other hand, can cover a broader vocabulary of
operations, and supports MakeSolution actions.

Combining both sources has the potential to generate actions that are better
than each of the approaches taken separately. Formulating an algorithm to
accomplish this in a clever way, however, is not straightforward. In this work, the
combined dataset appends Yield actions from the Pistachio-based extraction to
the actions generated by our custom NLP algorithm.

Annotations. To improve on the quality of training data based on the rule-based
models, we generated higher-quality action sequences by manually annotating
sentences from experimental procedures.

We developed an annotation framework based on the doccano annotation
tool*%. Annotators can open the framework in a web browser and navigate through
sentences from experimental procedures. The page shows the sentence to annotate
and a readable representation of the actions associated with it. An annotator can
add new actions, reorder them, or edit them by opening a separate view. Figure 4
illustrates what a user of the annotation framework sees.

The annotation framework is pre-loaded with samples that are pre-annotated
by combining action sequences from both rule-based models. The samples to
annotate are sentences (from randomly picked experimental procedures) for which
the rule-based extraction of actions encounters difficulties, such as sentences
containing highly context-dependent verbs, sentences containing “followed by”,
which the rule-based models usually struggle with, or sentences that result in
multiple actions referring to the same compound.

To ensure consistency among the annotators, a detailed annotation guideline
was provided. It can be found in the Supplementary Data 3. Furthermore, a single
annotator reviewed all the annotations.

Data augmentation. Data augmentation on the set of annotated samples increases
the number of data points available for refinement in order to minimize overfitting.
We augment the data by substituting compound names and quantities, as well as
durations and temperatures, with a probability of 50%. The substitutes are selected
at random from lists that we compiled from a subset of the Pistachio dataset. An
example of data augmentation is shown in Table 6.

Machine-learning model. We formulate the extraction of action sequences from
experimental procedures as a sequence-to-sequence translation, in which experi-
mental procedures are translated to the textual representation of the actions
defined in Table 1.

Restricting the output to a textual form is no limitation, since the textual
representation of actions can easily be converted back to the action type and
associated properties without loss. Furthermore, doing so allows for an easier and
more flexible setup than designing a custom architecture for sequential prediction
of actions and corresponding properties; this also means that established model
architectures for sequence-to-sequence translation can be applied with few
modifications.

Experimental procedures usually contain very few cross-sentence dependencies.
We therefore translate experimental procedures sentence by sentence. This
simplifies the learning task and limits the requirements on the model architecture.
In the few cases where knowledge of the neighboring sentences would be relevant,
the missing information can normally be determined from the context as a post-
processing step when combining the sentences. As an example, from the sentence

| (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17266-6

InvalidAction . Add . CollectLayer . Concentrate . Crystallize . Degas . DrySolid .

DrySolution . Extract . Filter . FollowOtherProcedure . MakeSolution ' Microwave .

OtherLanguage . Partition . PH . PhaseSeparation . Purify . Quench . Recrystallize .

Reflux . SetTemperature . Sonicate . Stir . Triturate l Wait . Wash . Yield

. The organic phase is separated and washed with water (500 mi), followed by brine (500 mi)
NoAction .
Wash
Add property
Action ID Type and properties Edit properties
quantity v
The organic phase is separated and Ty | s00mi
35210 PHASESEPARATION
i [suomt
washed with water (500 ml), followed
35211 COLLECTLAYER organic = Delete property Type st
by brine (500 ml).
. material brine
35212 WASH with water (500 ml)

Fig. 4 Screenshots for adding and editing actions with the annotation framework. The sentence to annotate is displayed on the left-hand side, with the
corresponding pre-annotations on the right-hand side. A Wash action is missing and can be added by clicking on the corresponding button at the top. Also,
when clicking on the appropriate button, a new page open to edit the selected action.

Table 6 lllustration of the data augmentation approach.

Diisopropylazodicarboxylate (0.05 ml, 0.302 mmol) was added to the reaction mixture followed by stirring for 3 h at room temperature.

(1) 2-(2-hydroxyphenyD-ethanol (0.119 mole, 0.302 mmol) was added to the reaction mixture followed by stirring for 3h at 7 °C.

(2) Diisopropylazodicarboxylate (0.05ml, 77.65 g) was added to the reaction mixture followed by stirring for 2 additional minutes at 100-105 °C.
(3) isobutylene gas (24.94 mmol, 0.302 mmol) was added to the reaction mixture followed by stirring for 3 h at room temperature.

(4) n-methyl-4-nitroaniline (0.05 ml, 4.57 mmol) was added to the reaction mixture followed by stirring for 9h at —5°C.

A reference sentence (at the top) is augmented to produce four additional sentences. The substituted elements are written in italic. For data augmentation of the annotation dataset, the actions

associated with the reference sentence are also subjected to substitution.

"The solution mixture is filtered and concentrated.”, it is clear that the filtrate is
kept rather than the precipitate. For “The solution mixture is filtered. It is then
concentrated.”, this fact can be inferred by noticing that the Filter action is
followed by a Concentrate action, which indicates that the phase to keep after
filtration must be the filtrate.

The deep learning model for the conversion of experimental procedures to action
sequences relies on the transformer architecture3®, which is considered to be state-of-
the-art in neural machine translation. To be more specific, our model uses a
transformer encoder—decoder architecture with eight attention heads. The model is
trained by minimizing the categorical cross-entropy loss for the output (sub)words.
The model is implemented with the OpenNMT-py library®37. The library indicates
that the transformer model is very sensitive to hyperparameters and suggests a set of
default parameters, which we adopted with a few changes. First, we reduced the model
size by decreasing the number of layers from 6 to 4, the size of the hidden states from
512 to 256, and the size of the word vectors from 512 to 256. Second, we changed the
values of the parameters max generator batches to 32, accum count to 4
and label smoothing to 0. Third, we chose the source and target vocabularies to
be identical, and accordingly our model shares their embeddings. These changes were
motivated by experiments on the pretraining task. In particular, the reduction in
model capacity led to a model that is easier and faster to train without considerable
impact on the model performance observed with the validation set. The OpenNMT-
py configuration file for pretraining, containing all the hyperparameters, is available
as the Supplementary Data 4.

The translation model is pretrained on the action sequences generated by
combining the NLP and Pistachio approaches. We apply the algorithm to a
random subset of 1.0M experimental procedures, which produces 4.66M pairs of
sentences and action sequences. To avoid biases due to incorrectly assigned
InvalidAction and NoAction, all the InvalidActions are removed, as
well as the NoActions that are longer than 30 characters and do not contain any
keyword related to compound analysis. This provides more than 4.05M pairs of
sentences and corresponding action sequences. After removal of duplicate
sentences, 2.76M samples are remaining, which are split into training, validation,
and test sets of size 2.16M, 0.27M, and 0.27M, respectively.

A vocabulary of size 16,000 is created from the training set with the
SentencePiece library®$3%. The source and target strings are then tokenized
using the corresponding SentencePiece tokenizer. The model is then
pretrained for 500,000 steps.

A total of 1764 annotated samples are split into training, validation and test sets of
size 1060, 352, and 352, respectively. Based on this data, training is continued for the
final model of the pretraining step. Three experiments are run. In the first experiment,
the training set containing 984 samples is used as such ("no augmentation”). In the

second experiment, the dataset is augmented as described above to produce

20,000 samples (“augmented”). In the third experiment, the duplicates contained in
the augmented dataset are removed, which results in 14,168 samples ("augmented
unique”). The validation and test sets are not augmented.

Each of the three refinement experiment is repeated three times with different
random number generator seeds. All the models are refined for 30,000 steps, with
checkpoints saved every 1000 steps. For analysis, we then select the model
checkpoint leading to the highest accuracy. Some of the models selected in this
fashion are combined into ensemble models. Additionally, three models are trained
on the annotated dataset only (no pretraining).

While the different splits (training, validation, test) of the pretraining and
annotation datasets contain strictly different sentences, we note that the language
of experimental procedures is limited and many sentences will therefore not differ
very much. This overlap, however, is difficult to measure and to avoid.

Data availability

The data on which the models for the extraction of action sequences were trained are
available from NextMove Software in the Pistachio dataset’?. The rule-based and hand-
annotated action sequences are available from the authors upon request.

Code availability

A Python library with the action definition and handling as well as associated scripts for
training the transformer model can be found on GitHub at https://github.com/
rxn4chemistry/paragraph2actions. The trained models can be freely used online at
https://rxn.res.ibm.com or with the Python wrapper at https://github.com/
rxn4chemistry/rxn4chemistry to extract action sequences from experimental procedures.

Received: 27 December 2019; Accepted: 15 June 2020;
Published online: 17 July 2020

References

1. Peplow, M. Organic synthesis: the robo-chemist. Nature 512, 20-22 (2014).

2. Trobe, M. & Burke, M. D. The molecular industrial revolution: automated
synthesis of small molecules. Angew. Chem. Int. Ed. 57, 4192-4214 (2018).

10 NATURE COMMUNICATIONS | (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications

https://github.com/rxn4chemistry/paragraph2actions
https://github.com/rxn4chemistry/paragraph2actions
https://github.com/rxn4chemistry/rxn4chemistry
https://github.com/rxn4chemistry/rxn4chemistry
www.nature.com/naturecommunications

ARTICLE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.
29.
30.

31.

Steiner, S. et al. Organic synthesis in a modular robotic system driven by a
chemical programming language. Science 363, eaav2211 (2019).

Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds
informed by AI planning. Science 365, eaax1566 (2019).

Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with
deep neural networks and symbolic Al. Nature 555, 604-610 (2018).

Coley, C. W. et al. A graph-convolutional neural network model for the
prediction of chemical reactivity. Chem. Sci. 10, 370-377 (2019).

Schwaller, P. et al. Molecular transformer: a model for uncertainty-calibrated
chemical reaction prediction. ACS Cent. Sci. 5, 1572-1583 (2019).

Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based
models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316-3325
(2020).

Krallinger, M., Rabal, O., Lourengo, A., Oyarzabal,]. & Valencia, A.
Information retrieval and text mining technologies for chemistry. Chem. Rev.
117, 7673-7761 (2017).

Lowe, D. M. Extraction of Chemical Structures and Reactions from the
Literature. PhD thesis, University of Cambridge (2012).

Jessop, D. M., Adams, S. E., Willighagen, E. L., Hawizy, L. & Murray-Rust, P.
OSCARA4: a flexible architecture for chemical text-mining. J. Cheminf. 3, 41
(2011).

Rocktischel, T., Weidlich, M. & Leser, U. ChemSpot: a hybrid system for
chemical named entity recognition. Bioinformatics 28, 1633-1640 (2012).
Lowe, D. M. & Sayle, R. A. LeadMine: a grammar and dictionary driven
approach to entity recognition. J. Cheminf. 7, S5 (2015).

Leaman, R., Wei, C.-H. & Lu, Z. tmChem: a high performance approach for
chemical named entity recognition and normalization. J. Cheminf. 7, S3
(2015).

Korvigo, 1., Holmatov, M., Zaikovskii, A. & Skoblov, M. Putting hands to rest:
efficient deep CNN-RNN architecture for chemical named entity recognition
with no hand-crafted rules. J. Cheminf. 10, 28 (2018).

Hawizy, L., Jessop, D. M., Adams, N. & Murray-Rust, P. ChemicalTagger: a
tool for semantic text-mining in chemistry. J. Cheminf. 3, 17 (2011).

Swain, M. C. & Cole, J. M. ChemDataExtractor: a toolkit for automated
extraction of chemical information from the scientific literature. J. Chem. Inf.
Model. 56, 1894-1904 (2016).

Weston, L. et al. Named entity recognition and normalization applied to large-
scale information extraction from the materials science literature. J. Chem. Inf.
Model. 59, 3692-3702 (2019).

Kim, E. et al. Machine-learned and codified synthesis parameters of oxide
materials. Sci. Data 4, 170127 (2017).

Kim, E. et al. Materials synthesis insights from scientific literature via text
extraction and machine learning. Chem. Mater. 29, 9436-9444 (2017).

Kim, E., Huang, K., Jegelka, S. & Olivetti, E. Virtual screening of inorganic
materials synthesis parameters with deep learning. npj Comput. Mater. 3, 53
(2017).

Kim, E. et al. Inorganic materials synthesis planning with literature-trained
neural networks. J. Chem. Inf. Model. 60, 1194-1201 (2020).

Mysore, S. et al. Automatically extracting action graphs from materials science
synthesis procedures. Preprint at https://arxiv.org/abs/1711.06872 (2017).
Huo, H. et al. Semi-supervised machine-learning classification of materials
synthesis procedures. npj Comput. Mater. 5, 62 (2019).

Mysore, S. et al. The materials science procedural text corpus: annotating
materials synthesis procedures with shallow semantic structures. In Proc. 13th
Linguistic Annotation Workshop, (eds Annemarie, F., Deniz, Z. & Jet, H.)
56-64 (2019).

Kulkarni, C., Xu, W.,, Ritter, A. & Machiraju, R. An annotated corpus for
machine reading of instructions in wet lab protocols. In Proc. 2018 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol. 2 (Short Papers), (eds
Marilyn, W., Heng, J. & Amanda, S.) 97-106 (Association for Computational
Linguistics, New Orleans, LA, 2018).

Reaxys. https://www.reaxys.com. Accessed 13 Dec 2019.

SciFinder. https://scifinder.cas.org. Accessed 26 Mar 2020.

IBM RXN for Chemistry. https://rxn.res.ibm.com Accessed 20 Dec 2019.
Nextmove Software, Pistachio. http://www.nextmovesoftware.com/pistachio.
html. Accessed 19 Nov 2019.

Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. Bleu: a method for automatic
evaluation of machine translation. In Proc. 40th Annual Meeting of the
Association for Computational Linguistics, (eds Pierre, 1., Eugene, C. &
Dekang, L.) 311-318 (Association for Computational Linguistics,
Philadelphia, PA, USA, 2002).

32. Levenshtein, V. L. Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10, 707-710 (1966).

33. TextDistance library, version 4.1.5. https://github.com/life4/textdistance.
Accessed 19 Nov 2019.

34. Doccano annotation tool. https://doccano.herokuapp.com. Accessed 19 Nov
2019.

35. Vaswani, A. et al. Attention is all you need. In Proc. 31st International
Conference on Neural Information Processing Systems, NIPS’17, (eds Isabelle,
G., Ulrike, V. L., Samy, B., Hanna, W., Rob, F., Vishwanathan, S. V. N.

& Roman, G.) 6000-6010 (Curran Associates Inc., Red Hook, NY, USA,
2017).

36. Klein, G, Kim, Y., Deng, Y., Senellart, J. & Rush, A. OpenNMT: open-source
toolkit for neural machine translation. In Proc. ACL 2017, System
Demonstrations, (eds Bansal, M. & Heng, J.) 67-72 (Association for
Computational Linguistics, Vancouver, Canada, 2017).

37. OpenNMT-py library, version 0.9.2. https://github.com/OpenNMT/
OpenNMT-py. Accessed 19 Nov 2019.

38. Kudo, T. & Richardson, J. SentencePiece: a simple and language independent
subword tokenizer and detokenizer for Neural Text Processing. In Proc. 2018
Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, (eds Eduardo, B. & Wei, L.) 66-71 (Association for
Computational Linguistics, Brussels, Belgium, 2018).

39. SentencePiece library, version 0.1.83. https://github.com/google/sentencepiece.
Accessed 19 Nov 2019.

Acknowledgements
We thank the anonymous reviewers for their careful reading of our manuscript and their
many insightful comments and suggestions.

Author contributions

The project was conceived and planned by T.L. and A.C.V. and supervised by T.L. F.Z.
designed the custom rule-based NLP model. A.C.V. implemented and trained the other
models. J.G. set up the annotation framework. All the authors were involved in dis-
cussions about the project and annotated the dataset. A.C.V. reviewed all the annotations
and wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-17266-6.

Correspondence and requests for materials should be addressed to A.C.V.

Peer review information Nature Communications thanks Emma Strubell and the other,
anonymous, reviewers for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons
= Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

| (2020)11:3601 | https://doi.org/10.1038/s41467-020-17266-6 | www.nature.com/naturecommunications 1

https://arxiv.org/abs/1711.06872
https://www.reaxys.com
https://scifinder.cas.org
https://rxn.res.ibm.com
http://www.nextmovesoftware.com/pistachio.html
http://www.nextmovesoftware.com/pistachio.html
https://github.com/life4/textdistance
https://doccano.herokuapp.com
https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-py
https://github.com/google/sentencepiece
https://doi.org/10.1038/s41467-020-17266-6
https://doi.org/10.1038/s41467-020-17266-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Automated extraction of chemical synthesis actions from experimental procedures
	Results
	Synthesis actions
	Models for action sequence extraction
	Model evaluation
	Data insights

	Discussion
	Methods
	Experimental procedure data
	Rule-based model derived from Pistachio
	Custom rule-based NLP model
	Combined actions from rule-based models
	Annotations
	Data augmentation
	Machine-learning model

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

