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Abstract: Drift is an important issue that impairs the reliability of sensors, especially in gas sensors.
The conventional method usually adopts the reference gas to compensate for the drift. However,
its classification accuracy is not high. We propose a supervised learning algorithm that is based on
multi-classifier integration for drift compensation in this paper, which incorporates drift compensation
into the classification process, motivated by the fact that the goal of drift compensation is to improve
the classification performance. In our method, with the obtained characteristics of sensors and the
advantage of Support Vector Machine (SVM) in few-shot classification, the improved Long Shot
Term Memory (LSTM) is integrated to build the multi-class classifier model. We tested the proposed
approach on the publicly available time series dataset that was collected over three years by the
metal-oxide gas sensors. The results clearly indicate the superiority of multiple classifier approach,
which achieves higher classification accuracy as compared with different approaches during testing
period with an ensemble of classifiers in the presence of sensor drift over time.

Keywords: drift compensation; LSTM; SVM; gas recognition; the multi-classification ensemble
learning model

1. Introduction

In recent years, with the rapid development of the machine olfactory technology, the gas
identification systems have been widely applied in many fields, such as food testing, medical diagnosis,
and environmental monitoring [1–3]. In the gas identification systems, the gas sensors are often used
as the core function for sensing, identifying, and measuring different gases. The key to the sensors is
to realize the function of human smell to improve the accuracy of sensors [4,5]. However, the drift
phenomenon is inevitable and it cannot be ignored during the use of the sensor over time [1]. There
are several forms of the drifting, such as Zero and Span drift and Concept drift. Zero drift means
that the reference deviates from a fixed value due to the influence of the external environment when
the input signal of the amplifying circuit is zero. Span drift refers to a change of the coefficient and
conversion factor of the value amplifier with the changes of time and temperature. Sensor drift implies
the interference of some factors, such as the temperature of the surrounding environment, humidity,
pressure, as well as the aging and poisoning effects of the sensor material (including external pollution,
irreversible combination), which results in the sensor input signal that is involved in the interference
signals. The external environment makes the interference signal continuously increase, which results
in a gradual decline in data quality and the acquisition accuracy. The difference from the true value
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increases, and it is difficult to judge the type of gas based on the output value. Concept drift means
that the data distribution recorded by the sensor has changed in machine learning. There are two main
reasons for Concept drift [6–8]. First, the change in the sensor film microstructure that is caused by
chemical and physical interaction is called ‘the real drift’ (for example, aging and poisoning leading
to irreversible combination); second, changes in the operating system and the effect that is brought
by external environment can be called ‘the second-order drift’ (such as temperature, the recording
protocol, and the system lag). Various concept drift algorithms are classified according to the types
and occurrence of drift. Concept drift can be compensated by using machine learning techniques.

Research show that, with time changing, the issue that sensor would drift is unavoidable. When
the sensor is drifting, its performance is degraded, leading to the inaccuracy of the collected data.
Therefore, we need to take some measures to compensate for it. Through the compensation technology,
the classification of the gas can still be accurately identified in the case where the collected data is
inaccurate. In the practical applications, the compensation methods of the sensor drift are divided into
two categories, namely the hardware compensation and the software compensation. The hardware
compensation refers periodical adjustments or regulations to the sensors, such as removing any
poisoned and aged modules from the sensor’s surface film. The compensation renews the sensor
and designs the system more effectively. However, hardware compensation cost a lot [7–9]. The
software compensation includes the univariate method, the multivariate method, and the statistical
machine learning method. In the univariate method, each sensor signal is independently calibrated and
tends to compensate for a single sensor response, regardless of other sensors. The univariate method
includes frequency analysis, baseline operation, differential measurements, and baseline operation.
The univariate method has advantages, such as easy implementation and high time efficiency, so it has
been widely used in practice. However, its disadvantage is that it is sensitive to the changes of the
sampling rate [10,11]. The multivariate method tends to compensate for the entire sensor and further
responses to the signal correction. When compared with the univariate method, the multivariate
method uses information from the multiple sensors to simulate the drift, so that they can capture the
complex drift effects. One of the disadvantages of the multivariate method is that it requires a frequent
sampling and recalibration, which is laborious and expensive. The statistical machine learning method
includes support vector machine and random forests.

Based on the traditional statistical machine learning methods, the multivariate data analysis
reduces the dimension of data with features. Tom Artursson et al. have proposed a simple drift reaction
method that is based on the Principal Components Analysis (PCA) and Partial Least Squares regression
(PLS). The basic idea is to remove the components of the drift direction from the measurements [12],
so that the sensor responding normalization classifier can be directly applied to the generated fixed
data. M. Padilla et al. have proposed using signal processing techniques to achieve drift counteraction
and also have supported to correct drift compensation in chemical sensor arrays by orthogonal signal
correction [13]. Qi Liuhe et al. have mentioned that these techniques are on the basis of the linear
hypothesis drift model and it has not been proven [14]. In addition, the implementation of these
technologies requires a chemically stable reference gas that is highly correlated with the target gas as
time passing in terms of sensor behaviors, which is difficult to apply in practice. When there is no
explicit description for the sensor drift, the machine learning is the candidate for compensation the drift,
which includes artificial neural networks, K Nearest Neighbor (KNN), Random Forest (RF), Support
Vector Machine (SVM), and etc. Some deep learning models are gradually applied to classification
studies [15–17]. Saswati Adhikari et al. have proposed an Artificial Neural Network (ANN) and
KNN multi-classifier approach to improve the performance of classifiers and to mitigate the sensor
drift [18]. Zhang et al. have proposed a domain adaptive Extreme Learning Machine (ELM) with the
capability of handling drifting [19]. Liu et al. have combined the Geodesic Flow Kernel (GFK) and the
popular regularization method to compensate for the gas sensor drift [20]. In recent years, with deep
learning as a new research direction in the field of machine learning, Shen and others have utilized
the Recurrent Neural Network (RNN) to capture the timing signals, which has predicted the sensor
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drift and it has reduced the number of sensor calibrations [21]. Long Short-Term Memory (LSTM)
compensates for some issues, including the gradient disappearance and gradient explosion of RNN
and the lack of long-term memory ability, which enables RNN to effectively utilize the long-range
timing information. Wang et al. have proposed an LSTM prediction mode parameter optimization
algorithm that is based on the multi-layer grid search, which has relatively strong applicability and a
relatively high accuracy in the predictive analysis [22]. However, as time goes by, the quality of data
collected by the sensor decreases. In the case that cross entropy is utilized as loss function for few
amounts of data, the output of softmax in the LSTM model could lead to over-fitting. Moreover, the
confidence range and threshold could not be practically determined.

Multi-classifier ensemble learning combines with a variety of learning algorithms, so the
corresponding hypothesis space can be expanded, which reduces the drawbacks of a single learning
algorithm [23]. With the efficacy of multi-classifier ensemble learning, this paper proposes a supervised
learning algorithm that is based on a multi-classifier ensemble learning. With the objective to improve
the calculation accuracy, we have developed a multi-classifier integrated with a new loss function and
SVM for the base classifier LSTM, which greatly combines the advantages of SVM for small samples
with the advantages of LSTM in time series. This multi-classifier can be integrated by the voting
strategy with the normalized weighting. We select the ‘Gas Sensor Array Drift Dataset’ Dataset, which
is a benchmark dataset available online at UCI machine learning repository, to verify the method. The
proposed method is capable of compensation drift in gas sensors and it does not system re-calibration
or background information, which makes it feasible for use in real time applications.

The rest of this article is organized, as follows. Section 2 is Data Processing. Section 3 describes
the entire flow of the sensor drift. Section 4 consists of the analysis and results, and finally conclusions
will be drawn in Section 5.

2. Data Processing

The data that were collected by the sensor have a high dimension and the overall processing
amount is large. If the sensor drift compensation is directly performed on the original data, it is difficult
to achieve the desirable effects. While considering this case, Vergara at al. firstly selected the features
of origin data when creating the dataset [7]. The method in this paper is to do a correlational analysis
in the selected dataset. Finally, the dataset is processed based on the correlational analysis coefficient,
and the dataset will then be done in a normalization process.

2.1. Data Acquisition

The dataset that was used in this study is collected in a controlled laboratory setup while using
an array of sixteen metal oxide gas sensors that were manufactured by Figaro Inc. [24]. As for the
preparation of this paper, it is a necessity that the sensor array consists of 16 pieces of Figaro commercial
gas sensor with different sensitivity, among which each kind of sensor is equipped with four pieces of
sensors. Table 1 shows the detailed information of the sensor arrays.

Table 1. Sensors Information in the Sensor Array.

Sensor Type Number of Units Target Gases

TGS2600 4 Hydrogen, carbon, monoxide
TGS2602 4 Ammonia, H2S, volatile organic compounds (VOC)
TGS2610 4 Propane
TGS2620 4 Carbon monoxide, combustible gases, VOC

Before this study, the needed datasets have been measured according to the next procedures. First,
a constant flow of zero-stage dry air circulates through the sensing chamber, while the gas sensor
array remains at a stable operating temperature (400 ◦C). This step measures the baseline steady-state
sensor responses (the responses of the sensors in the absence of chemistries). The desired odorant
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concentration is then injected into the sensing chamber by a continuous flow system. Finally, in
the third step (cleaning phase), the steam is evacuated from the sensor arrays and the test chamber
is cleaned with the dry air before the newly measured concentration phase. The acquisition time
for these measurements takes at least 300 s, including 100 s of a gas injection and at least 200 s of
a recovery (cleaning). For purposes of processing, we consider the entire sensor responses after
subtracting the baseline from each record. The sampling rate is set to 100 Hz. Finally, the measurement
process that is described herein can be replicated for the subsequent measurements. The completed
experimental setup of data acquisition process in given in [7]. Figure 1 shows typical information
about the sensor response.
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Figure 1. Typical information of sensor response. Typical response of a metal-oxide based chemical
sensor to 30ppmv of Acetaldehyde. The curve shows the three phases of a measurement: baseline
measurement (made with pure air), test gas measurement (when the chemical analyte is injected, in gas
form, to the test chamber), and recovery phase (during which the sensor again is exposed to pure air;
the recovery time is usually much longer that the gas injection phase).

2.2. Feature Extraction

Feature extraction is extremely significant in every chemo-sensory application [24], which could be
described as a reflection of the sensor response under the lower-dimensional space, which preserves the
most meaningful portion of the information that can be contained in the original sensor signals. Vergara
et al. have considered two distinct types of features that exploit the whole dynamic process that occur
at the sensor surface, including the ones that reflect its adsorption, desorption, and steady-state (or
final) response of the sensor element [7]. The extracted features reflect transient response (desorption,
adsorption) and the steady state response of the sensors [6]. The extracted steady state and transient
features are computed as:

||∆R|| =
max

k
r[k] −min

k
r[k]

min
k

r[k]
(1)

∆R = max
k

r[k] −min
k

r[k] (2)

where r[k] is the time curve of the sensor resistance and ∆R is the difference between the maximal
resistance and the baseline. ||∆R|| is the ratio of the maximal resistance and the baseline values; k
is the discrete time indexing the recording interval [0,L] when the chemical vapor is present in the
test chamber. The aggregate of features reflecting rising/decaying sensor response is evaluated by
exponential moving average emaa. The value of emaa is determined by calculating maximum/minimum
y[k] for rising/decaying evaluation, respectively [25]. y[k] is calculated by the following formula:

y[k] = (1− a)y[k− 1] + a(r[k] − r[k− 1]) (3)

where k is the discrete time indexing the recoding interval [0,L] when the chemical vapor is present in
the test chamber, and k = 1,2, . . . , L. y[k] represents the real scalar, its initial state is set to zero, and the
scalar a(a ∈ {0, 1}) represents the operator’s smoothing parameter, namely f (a(r[i])), which refers to
the quality of its feature and its time sequences [9]. Setting the three different values with 0.1, 0.01, and
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0.001 of a to calculate the response with increase (I) and decay (D) in the sensors. The results that were
obtained with the Equation (1) for the three values of a and the result of the extraction feature with
Equation (1), as shown in Figure 2.
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For each gas sensor in the array, two steady and six transient features are computed and a feature
vector of 128 (16 sensors × 8 features) features is recorded. The order in which the proposed features
are placed in the feature vector is shown in Table 2. S1 in the Table 2 denotes Sensor 1 (S1); S2 represents
Sensor 2 (S2), and so on until the Sensor 16 (S16); emaa (a ∈ {0.1, 0.01, 0.001}) represents the exponential
moving average.

Table 2. Placement Order of Extracted Features in the Feature Vector.

1.
∆R_S1

9.
∆R_S2

17.
∆R_S3

25.
∆R_S4 . . .

121.
∆R_S16

2.
‖∆R‖_S1

10.
‖∆R‖_S2

18.
‖∆R‖_S3

26.
‖∆R‖_S4 . . .

122.
‖∆R‖_S16

3.
ema0.001I_S1

11.
ema0.001I_S2

19.
ema0.001I_S3

27.
ema0.001I_S4 . . .

123.
ema0.001I_S16

4.
ema0.01I_S1 12. ema0.01I_S2 20.

ema0.01I_S3
28.

ema0.01I_S4 . . .
124.

ema0.01I_S16

5. ema0.1I_S1 13. ema0.1I_S2 21. ema0.1I_S3 29.
ema0.1I_S4 . . .

125.
ema0.1I_S16

6.
ema0.001D_S1

14.
ema0.001D_S2

22.
ema0.001D_S3

30.
ema0.001D_S4 . . .

126.
ema0.001D_S16

7.
ema0.01D_S1

15.
ema0.01D_S2

23.
ema0.01D_S3

31.
ema0.01D_S4 . . .

127.
ema0.01D_S16

8.
ema0.1D_S1

16.
ema0.1D_S2

24.
ema0.1D_S3

32.
ema0.1D_S4 . . .

128.
ema0.1D_S16

Where, ∆R_Si and ‖∆R‖_Si are the R and the normalized R features, respectively. ema0.001I_Si, ema0.01I_Si, and
ema0.1I_Si, are the rising transient portion of the sensor response for a 0.001, 0.01, and 0.1, respectively, ema0.001D_Si,
ema0.01D_Si, and ema0.1D_Si, are the decaying transient portion of the sensor response for a 0.001, 0.01, 0.1, respectively.
The index i = 1, i ∈ (1, 2, . . . , 16) represents the number of the sensor, thus forming 128-dimensional feature vector.

2.3. Correlation Analysis

Table 2 shows the results of correlation analysis of the dataset. According to the result that the
correlation coefficient between the two variables is over 0.9, removing any variable and reducing the
dimension of the data, which we could fully utilize the data in low dimension. The main methods
of data correlation analysis could be divided into Pearson Product Moment Correlation Coefficient
(PPMCC), Kendall rank correlation coefficient (Kendall), and spearman’s correlation coefficient for
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ranked data (spearman). These three methods all reflect the direction and extent of the trend between
two variables. When compared with PPMCC, spearman could not perform well in accuracy and it
is insensitive to data errors and the extreme value. Kendall is a rank correlation coefficient and it
calculates the objects that are categorical variables, namely the classification categories of variables.

In conclusion, PPMCC is the most suitable for the evaluation of sensor drift data. Assuming Xi
for the i-th variables; ρxi,yi for the Pearson correlation coefficient between the i-th variables and the j-th,
the Pearson correlation coefficient between two variables could be expressed as:

ρxi,yi =
cov(Xi, X j)

σXiσX j
=

E[(Xi − µXi)(X j − µX j)]

σXiσX j

(4)

where Xi and X j are two eigenvalues of 128 features in Table 2. cov(Xi, X j) is the covariance between
the i-th variable and the j-th variable, σXi is the population standard deviation of the i-th variable, and
µXi refers the population mean difference of the i-th variable. Calculate the covariance and standard
deviation of the datasets, and obtain the Pearson correlation coefficient of the sample as:

g =

n∑
i=1

(Xi −Xi)(X j −X j)√
n∑

i=1
(Xi −X)

2
√

n∑
i=1

(X j −X j)
2
=

1
n− 1

n∑
i=1

(
Xi −Xi
σXi

)(
X j −X j

σX j
) (5)

where Xi−Xi
σXi

indicates the standard score for the Xi sample; Xi is the average of the samples; σXi is
the standard deviation of the samples; g is described as the Pearson correlation coefficient; and, n
refers to the sample size. The range of g is between [–1,1] [26]. If g > 0, it means that the two variables
are positively correlated. There remains other condition, such as g = 0, signifying that there is no
linear correlation between the two variables and g < 0, showing that the two variables are negatively
correlated. Correlation analysis is performed on the entire dataset, and one of the variables with g > 0.9
is removed from the variable and only one of the variables is reserved as a processed dataset. Table 3
shows partial results of data correlation processing, where null represents the deletion of data from the
original location.

Table 3. Correlation analysis processing the partial results.

1.
∆R_S1

9.
∆R_S2

17.
∆R_S3

25.
∆R_S4

33.
∆R_S5

41.
null

2.
‖∆R‖_S1

10.
null

18.
‖∆R‖_S3

26.
‖∆R‖_S4

34.
null

42.
‖∆R‖_S6

3.
ema0.001I_S1

11.
ema0.001I_S2

19.
ema0.001I_S3

27.
null

35.
ema0.001I_S5

43.
ema0.001I_S6

4.
ema0.01I_S1

12.
null

20.
null

28.
ema0.01I_S4

36.
ema0.01I_S5

44.
ema0.01I_S6

5.
ema0.1I_S1

13.
null

21.
null

29.
ema0.1I_S4

37.
ema0.1I_S5

45.
null

6.
null

14.
null

22.
ema0.001D_S3

30.
ema0.001D_S4

38.
null

46.
ema0.001D_S6

7.
ema0.01D_S1

15.
ema0.01D_S2

23.
ema0.01D_S3

31.
null

39.
ema0.01D_S5

47.
null

8.
ema0.1D_S1

16.
ema0.1D_S2

24.
ema0.1D_S3

32.
ema0.1D_S4

40.
null

48.
ema0.1D_S6
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3. Improved LSTM and SVM

3.1. Sensor Drift Model Based on Ensemble Learning

The dynamic behavior of the sensor drift cannot be calibrated. The machine learning methods
make the adaptive sensor drifts of the model more attractive. The proposed method is based on
the combination with the SVM and the improved LSTM to achieve precise gas classification in any
concentration. The proposed Improved LSTM and SVM (ILS) mainly comprise three folds, namely the
processing of data, the integration of an ILS model classifier, and the model evaluation of the model, as
shown in Figure 3.
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The steps are implemented as follows.

1. The dataset is purified to eliminate the noisy data and then the datasets are processed through
four settings. Moreover, four different kind of datasets are obtained under the four settings.
Datasets are numbered in turn, forming Dataset 1, Dataset 2, Dataset 3, and Dataset 4. In the
following experiments, the four settings are explained. Moreover, setting 3 and 4 are processed
while using correlation analyses.

2. Dataset 1, Dataset 2, Dataset 3, and Dataset 4 are used as inputs to the improved LSTM and
SVM models, respectively, and then eight independent classifiers (there are four improved LSTM
classifiers and four SVM classifiers) are trained. In the case of the same test samples, the eight
classifiers output different classification results, which are used to obtain the final predicted
outcomes by the normalization and weighted voting strategy.

3. Classification accuracy rate is adopted to evaluate the classifier performance of the ILS model.

The input and output of the two types classifiers are shown in the Figure 4. The input is the
characteristic of each dataset, and the output layer is allocated with six different gases. Finally, the
classifier output six different gases through the voting strategy.

We use an ensemble of classifiers to detect and cope with the sensor drift. A set of features x as
input and a class label (a gas/analyte in our problem) y as output. In every dataset t, we use a batch
of St =

{
(x1, y1), . . . , (xn, yn)

}
, and we also train the classifier. A simple and intuitive way is to assign

weights to classifiers according to their prediction performance on batch Si. We trained an ensemble of
multi-class classifiers using the method in Algorithm 1. The Algorithm 1 is given below.
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Algorithm 1. Algorithm to cope with concept drift

Input: Dataset Y =
{
y1, . . . , yn

}
and X = {x1, . . . , xn}

Output: final classifier: weights and classifiers
Method: ILS
1: for t = 1, . . . , N do
2: Receive St =

{
(x1, y1), . . . , (xn, yn)

}
3: Train a classifier (SVM) on St

4: Estimate the weight
{
φ1, . . . ,φt

}
by the techniques described in the text

5: end for
6: for t = 1, . . . , N do
7: Receive St =

{
(x1, y1), . . . , (xn, yn)

}
8: Train a classifier (LSTM) on St

9: Estimate the weight
{
η1, . . . , ηt

}
by the techniques described in the text

10: end for

We can assign weights according to the prediction performance of classifiers on the most recent
batches. In addition, we can simply estimate a single set of weights

{
φ1, . . . ,φt

}
and

{
η1, . . . , ηt

}
by

using the multi-class classifier prediction accuracies on every batch. The predications are based on the
improved voting, as below.

3.1.1. SVM Base Classifier

ILS model uses the SVM classifier as a base classifier in this paper. When dealing with linearly
indivisible samples, SVM transforms themselves from low dimension feature space to high dimension
by the non-linear mapping method, SVM constructs the optimal hyperplane in high dimensional
space by using different kernel functions to make them linearly separable. It proves that a plurality of
classification sets combined with LSTM and SVM is better than a single classifier model.

The learning method of LSTM is based on the principle of experience minimization. When the
number of training sample is large enough, this method can provide the good compensation effects
in the sensor drift, but it usually causes overfitting if the training sample is not enough. With regard
to this defect, the principle of structural risk minimization can improve it, this principle can greatly
reduce the generalization errors in the training set data, weaken the complexity of machine learning,
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and control the predicted risks of the entire sample set while ensuring classification accuracy. SVM is
on the basis of this principle, and this principle of structural risk minimization can be described as:

L =
1
2
‖w‖2 −

m∑
1

αi(yi(wTxi + b) − 1) (6)

where ‖w‖ is the two-norm of the vector; 1
2‖w‖

2 can be expressed as 1
2
∑m

1 w2
i , namely the L-2

regularization term. The second term in the above formula (6) represents the empirical risk. Where x
represents the input characteristics of the training sample and y represents the output of the training
sample set. w = (w1, w2, . . . , wm) is the normal vector. T represents the transpose. Additionally, b is
the offset, which determines the distance between the hyperplane and the origin. m is the number of
input sample instances. The principle of minimization of structural risk minimizes the generalization
errors of the training set data, and it reduces the complexity of the learning machine while ensuring the
classification accuracy, so that the expected risk on the entire sample sets could be controlled. Finally,
the SVM base classifier has been selected in this paper.

3.1.2. Improved Base Classifier of LSTM

LSTM is a special form of RNN. Among many RNN variants, the LSTM model compensates for
the gradient disappearance and explosion of RNN and the lack of a long-term memory capacity, which
enables LSTM to effectively utilize long-range timing information [22,27]. Generally, this model is
divided into three levels: the input layer, the hidden layer as well as the output layer. Given sequence
X = (x1, x2, . . . , xn) can calculate the hidden layer sequence H = (h1, h2, . . . , hn) and the output layer
sequence Y = (y1, y2, . . . , yn) could be obtained by the iterative equations from the 7th to 9th.

The forward calculation method of LSTM model cell can be expressed as:

ft = σ(w f · ht−1 + w f · xt + b f ) (7)

it = σ(Wi · [ht−1, xt] + bi) (8)

ot = σ(wo · ht−1 + wo · xt + bo) (9)

C̃t = tanh(WC · [ht−1, xt] + bC) (10)

Ct = ft ∗Ct−1 + it ∗ C̃t (11)

ht = ot ∗ tanh(Ct) (12)

where ft, it, and ot are, respectively, the results of the forgotten gate, the input gate, and the output
gate state settlement result; W f , Wi, and Wo are, respectively, weight matrix of the forgetting gate, the
input gate, and the output gate; b f , bi, and bo are, respectively, bias terms of the forgetting gate, the
input gate, and the output gate; ht is the final output of current neurons; Ct is the unit state input at
time t + 1; Wc is the weight matrix in a unit state; and, bc is the bias of the input unit status. σ and X
are sigmoid and hyperbolic tangent activation functions, respectively. According to the calculation
between the information of the previous forgotten state and the current state information input gate,
Figure 5 shows the cell unit structure of the LSTM model.
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The LSTM backpropagation is similar to the Back Propagation Through Time (BPTT) algorithm.
The steps of the LSTM model are as follows:

1. calculate the hidden layer. Output the upper and lower boundaries of the connection weights of
the neurons and initialize the weights and thresholds;

2. calculate the output value and the error function value;
3. update the weight and threshold of the output neuron;
4. calculate the error value of the hidden layer neurons and update the weights and thresholds; and,
5. repeat it from step 2 to step 4 until the training model converges or reaches the number of

training sessions.

The overall framework of the LSTM model that was constructed in this paper is shown in Figure 6,
which includes three functional modules: the input layer, the hidden layer, and the output layer. The
input layer is responsible to process data in the dataset to meet the network input requirements. The
LSTM cells that are shown in Figure 5 were used to construct a single-layer circulatory neural network
in the hidden layer, which adopts the Adam optimization. The output layer can classify the results of
LSTM training, further analyzing its accuracy.Sensors 2019, 19, x FOR PEER REVIEW 11 of 25 
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X as the input of the hidden layer, is then calculated in each single cell, respectively, with the
forward propagation for training X and back propagation for optimizing loss function with Adam
Optimizer. LSTM model outputs to hi, where Cn and Hn represent the state and output of the previous
LSTM cell, respectively. We choose cross entropy as the basis for the calculation formula:

M(p, q) = −
∑

q(x) log p(x) (13)

where p(x) is the distribution of predictions and q(x) is the distribution of the dataset. The SoftMax
output is employed in this study. If cross entropy is directly chosen as the loss function, it could simulate
the max operation well for the fact that exp function in Softmax is monotonically increasing, which
assigns a high value to a node and low value to the remaining nodes to a. Additionally, it polarizes the
results, which would lead to the weakened ability of error correction in practical application. With
the increase of the experimental batch, the interference signals in the data that were collected by the
sensor gradually increase and even dominate the main signals, which requires a reduction on the max
operation to weaken the influence of such signals on the results and improve the accuracy of the model.
More importantly, it is difficult to determine a confidence interval and set the threshold in practice.
Therefore, it is necessary to improve the loss function. The improved loss function will be shown in the
next section.

There are many types of gradient-based optimization algorithms, such as stochastic gradient
descent, Stochastic Gradient Descent (SGD), and Root Mean Square Prop (RMSProp). This paper
adopts Adaptive Moment estimation (Adam). The Adam algorithm integrates the advantages of
the AdaGrad with RMSProp algorithms when compared with other optimization algorithms. In the
process of parameter updating, firstly calculate the first and second moments, and then revise their
deviation. After that, adopt the modified versions to sum the updated parameters and finally update
the new version by the updated parameters. The Adam algorithm performs best in the practical
application when compared with other stochastic optimization methods.

3.1.3. Multiple Classifiers Strategy

The multi-classifier combination is to make every classifier solve the same original tasks and
combine the results of each model by a specific voting strategy to obtain a better global model.

This paper conducts a theoretical analysis of ensemble learning, while considering the
six-classification problems y ∈ {1, 2, 3, 4, 5, 6} and function f , while assuming that the error rate
of the individual classifier is δ, namely a formula of Individual classifier hi:

M(hi(x) , f (x)) = δ (14)

where hi(x) indicates the predicted results and f (x) represents the real results if the integration is
assembled with P individual classifiers by the simple voting. If more than half of the results of
individual classifier are correct, the final determined is on the right,

N(x) = sign(
P∑

i=1

hi(x)) (15)

If the error rate of the classifier is independent of each other, the Hoeffding inequality shows that
the ensemble error rate is

M(H(x) , f (x)) =
|P/2|∑
k=0

(
P
K

)(1− δ)kδP−k
≤ exp(−

1
2

P(1− 2δ)2) (16)

P is showed at the above Equation (16). It shows that the ensemble error rate will exponentially
decline with the increase of the number of individual classifiers increase in the integration. However,
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in the practical experiments, it has been found that the error rates between individual classifiers are not
independent, so the key of ensemble learning is the way of combination between individual classifiers.
Although there exists the simple voting method, it is still difficult to achieve the impacts that effectively
improves the accuracy of results in six-classifications. Therefore, we propose a normalized voting
strategy to classify more than one kind of situations, which is to say, using a weighted sum of the
weights to calculate the maximum output as a final result. Next, the multiple classification vote strategy
will be illustrated in detail:

yi = argmax
n∑

i=1

θi −min
max−min

fi(x) (17)

where yi represents the results predicted by the classifiers; x expresses the input; θi expresses the
accuracy of the i-th classifier; fi(x) expresses the output of the i-th classifiers; and, min and max,
respectively, indicate the minimum and maximum accuracy. Afterwards, normalize. The accuracies of
all classifiers are then normalized because a normalized model can remove the model with the lowest
accuracy. After that, use the weight of other remained models to get relatively high accuracy results.

3.2. Improved LSTM Model

3.2.1. Improved Loss

The classification polarization led by the output of softmax function in the LSTM model may
cause over-fitting. In practical, the confidence interval cannot be well determined and the threshold
is hard to set. Therefore, we have developed a new loss function that is based on cross-entropy. The
following loss function is designed:

loss = argmin
mt∑

i=1

t∑
j=1

max[−(1− ε)yi log(β j f j(xi) − ε/6yi log β j f j(xi)) −ϕ, 0] (18)

where ϕ is the minimum value that can tolerate the error setting; ε is the threshold; β j f j(xi) is the
result of the forecast; and, yi is the data of real distribution. In this paper, the Figure 6 in denominator
indicates that it uses the six classifications. The purpose is to fit the even distribution and reduce the
overfitting. The importance of Max operator can be shown by an inequality, −(1− ε)yi log(β j f j(xi) −

ε/6yi log β j f j(xi)) ≥ ϕ. It can be implied that, whenever the loss is greater than ϕ, namely the
difference between the predicted and the actual category is greater than the value ϕ, the loss returns to
its configure. Otherwise, it will be the value zero. At the same time, regularization is introduced into
the loss function to deal with the problem of sensor drift identification and correction by using the
multi-classification model, so as to more accurately classify the sensor drift.

3.2.2. Regularization

Complex neural network models are prone to be over-fitting. The regularization techniques are
widely applied in machine learning. The function is to prevent the model from over-fitting and improve
the generalization ability of models. The regularization method actually eliminates the singularity
by separating the curves with different tangent lines at the singular points of the irreducible plane
algebraic surface [28]. Add constraints to the minimization of the empirical error function, for example,
L0 norm, L1 norm, and L2 norm. The constraint has a guiding function, and the fit in the optimization
function tends to choose the direction of the constraints with the gradient descent, so that the final
result tends to be constrained situation. L0 norm is:

‖x‖0 =
n∑

i=0

x0
i (19)
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Using the L0 norm to regularize the parameter matrix is suitable for the feature matrix, but it is
difficult to achieve optimization. The L1 norm is:

‖x‖1 =
n∑

i=0

|xi| (20)

Calculate the sum of the absolute values of the elements in the vectors, namely the L2. L2 norm is:

‖x‖2 =

√√ n∑
i=0

|xi|
2 (21)

The regularization of L2 norm is to minimize the regularization term ‖w‖, which makes every
element in W with a minimum, close to zero. However, it is different from L1 norm. Not every element
is zero, but it is just close to zero.

Figure 7 sets the L1 norm as an example of the regularization. We randomly generate two color
points and divide both points into the two-dimensional space by a simple logistic regression. It can
be seen that Figure 7b could better distinguish the points. However, when we add some extra data,
and then the curve changes significantly. Thus, it is essential to achieve a more stable and generalized
curve to prevent the over-fitting situation. As a result, our research team introduces regularization to
enhance the stability and robustness of the model.Sensors 2019, 19, x FOR PEER REVIEW 14 of 25 
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4. Analysis and Results

4.1. Experimental Datasets and Environment

The datasets that were adopted in this study come from ‘Gas Sensor Array Drift Dataset’ in
the UCI machine learning repository. The primary purpose of making this dataset freely accessible
on-line is to provide an extensive dataset to the sensor and artificial intelligence research communities
to develop and test strategies to solve a wide variety of tasks, including sensor drift, classification,
regression, among others. The datasets consist of 13,910 measurements of 16 chemical sensors from
January 2008 to February 2011 (36 months). These sensors have been exposed to six different gases
with different concentration levels. The resulting dataset includes the recordings of six different
pure gaseous substances, such as Ammonia, Acetaldehyde, Acetone, Ethylene, Ethanol, and Toluene,
respectively, dosed at a wide variety of concentration levels in the intervals (50,1000), (5500), (12,1000),
(10,300), (10,600), as well as (10,100) PPMV [9]. The dataset is organized into 10 batches, with each
batch containing diverse gas combinations shown in the tables below and the number of measurements
per month, respectively, to handle the dataset conveniently. This reorganization of the data is to ensure
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that there is sufficient experimental data in each batch and the number of experiments is as evenly
distributed as possible. The goal of this study is to distinguish among six different gases regardless of
their concentration levels.

The labels in the tables indicate that the gas type 1 is ethanol; type 2 is ethylene; type 3 is
ammonia; type 4 is acetaldehyde; type 5 is acetone; and, type 6 is toluene. Each of the possible
gas type-concentration pairs has been sampled without any particular order. The resulting dataset
consists of 13,910 recordings (time series sequences) collected more than 36 months [7,29]. Moreover, as
observed in Table 4, the last batch containing 3600 measurements from the same analytes is purposely
collected five months after the sensors are powered off. This five-month gap plays an important role
in this paper not only because it allows us to validate our proposed method on the annotated set of
measurements collected after five months, but because, during this time, the sensors are prompted to
severe contamination, for it is easy to make external interferent irreversibly get attached to the sensing
layer. Batch 10 as a test set can effectively validate the method that we use.

Table 4. Basic Data in the Dataset.

Batch ID Month IDs Labels Number of Measurements

batch1 month1, month2 1, 2, 3, 4, 5, 6 445
batch2 month3, month4, month8, month9, month10 1, 2, 3, 4, 5, 6 1244
batch3 month11, month12, month13 1, 2, 3, 4, 5 1586
batch4 month14, month15 1, 2, 3, 4, 5 161
batch5 month16 1, 2, 3, 4, 5 197
batch6 month17, month18, month19, month20 1, 2, 3, 4, 5, 6 2300
batch7 month21 1, 2, 3, 4, 5, 6 3613
batch8 month22, month23 1, 2, 3, 4, 5, 6 294
batch9 month24, month30 1, 2, 3, 4, 5, 6 470

batch10 month36 1, 2, 3, 4, 5, 6 3600

Principal component analysis (PCA) [30] is carried out for these 10 datasets batches in order to
intuitively observe and analyze the distribution of these 10 batches in the datasets. Figure 8 shows the
influence of drift on data distribution. As time goes by, there is a significant bias in the two-dimensional
subspace distribution between batch 1 and other batches because of the drift.
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Figure 8. The performance of principal component analysis (PC1 vs. PC2) was performed on the original
data of 10 batches by principal component analysis (PCA) (two-dimensional subspace distribution
of 10 batches respectively), and the observation of the significant changes in data spatial distribution
caused by drift could be observed.
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It is worth noting that the dynamic behavior of sensors after drift cannot be calibrated, and it is
more valuable to use machine learning and data adaptive methods to compensate the sensor drift.

The computer setting in this experiment is as follows: a processor Intel Core i5-7300 HQ with
2.5 frequency GHz and the 3.5 GHz maximum frequency. The RAM is 8G. The operating system
is windows 10 (6 4 bits) and programming language is python 3.5.2. The ensemble development
environment is PyCharm 2017.1.2. The LSTM program model adopts the package in the TensorFlow
1.12.0 Python package.

4.2. Experimental Process and Results

4.2.1. Drift Experiment

In the experiment, the SVM model and the kernel function that is [sigmoid, linear, poly] are
selected, and the range of C, namely the penalty factor, is [2−5, 2−4, . . . , 29, 210]. According to the
classification accuracy, we select the optimal kernel function and penalty factor. Eigenvalues in the
training and testing sets are normalized into the range [−1,1]. If the testing operation is on batch 1, 1/5
of the batch 1 is set to be the test set and the remaining data is set to be training set. Subsequently,
we verify the classification accuracy on the test set of batch 1. When batch 2–10 is used as the test set,
batch 1 is used as the training set to train SVM classifier. According to the Table 5, the performance of
the classifier would change with the experiment batch, namely the time changes (Table 4 shows data
collection in batch 1–10 with time). The performance of the classifier would decrease, which can be an
indicator of the sensor drift (that is to say, the lower rate the classification, the more severe the drift
phenomenon). The experiment in this paper verifies that the data collected by the sensor is drifting,
and the drift reduces the performance of the classifiers.

Table 5. Sensor Drift Verification.

Train Set Batch Test Set Batch Classification Accuracy

1 1 100.0%
1 2 60.3%
1 3 69.9%
1 4 67.7%
1 5 44.7%
1 6 61.0%
1 7 43.2%
1 8 24.8%
1 9 41.7%
1 10 40.7%

4.2.2. Base Classifier

We consider the following four sets of data. According to the diverse setting of each dataset, these
datasets are named as dataset1, dataset2, dataset3, and dataset4, respectively. The four settings are
as follows:

• Setting 1: Use batch (k − 1) as the training set and batch k as the testing set, where k = 2, 3, 4, 5, 6, 7,
8, 9, 10.

• Setting 2: Train a multi-class classifier with data from only the previous month and test it on the
current month.

• Setting 3: Use PPMCC to process the dataset, Afterwards, follow the Setting 1 for training
and testing.

• Setting 4: Use PPMCC to process the dataset, Afterwards, follow the Setting 2 for training
and testing.



Sensors 2019, 19, 3844 16 of 25

In Setting 1, the latest batch is selected as the training set to reduce the differences between the
test set and the training set due to the sensor drift. However, because of the different amount of data in
different batches, the latest batch of the data is not various enough to involve the types of all data, so
that we set all of the data before the latest batch as the training set in Setting 2. The SVM trained in
Setting 2 is a strong baseline, because it sees the most recent batch of examples that is not corrupted by
drifted data from the past, and data in setting 2 was not analyzed for correlation. Therefore, we use the
classification accuracy of SVM in Setting 2 as an uncompensated comparison. Settings 3 and Setting 4
reduce the dimension of the two datasets formed by the Setting 1 and Setting 2 through PPMCC.

A. SVM model

The dataset is divided into 10 batches. The SVM model is utilized for four different kinds of
datasets to compensate for the sensor drift. The SVM model chooses the kernel functions [ sigmoid,
linear, poly]. The penalty factor C is selected from the range [2−5, 2−4, . . . , 29, 210]. Subsequently, we
compare the classification accuracy rate and choose the optimal kernel function and penalty factors.

Table 6 shows that the SVM model has the highest classification accuracy rate, reaching 99% in the
test dataset included in batch 2–10. As shown in Figure 9, the SVM model is tested on four different
datasets. It could be implied that the classification accuracy rate of the dataset 2 and dataset 4 are
both up to 99%, and the average classification accuracy of dataset 4 is 83.1%. Under the four different
datasets, the classifier using batch 10 as the testing set has the lowest classification accuracy of 34.5%.
We believe that there is a six-month difference between the dataset batch 9 and batch 10, and a large
number of interference signals appear in the data that were collected by sensors in batch 10, which
results in a low accuracy of the classifier. Using batch 10 in the dataset 4 as a test set, the classification
accuracy of batch 10 reaches 70.6%. The SVM trained is the baseline and the average classification
accuracy is 81.4% in dataset 2 of the Table 6. When compared to the baseline, the compensation is
improved by 1.7% in dataset 4. Due to the dataset 4 with the highest average classification accuracy, the
results of dataset 4 are adopted to compare with our proposed method ILS to test different performance
of models.

Table 6. Classification Accuracy of the SVM model under Four Datasets.

Test Set ID Dataset 1 Dataset 2 Dataset 3 Dataset 4

batch 2 60.3% 60.3% 56.4% 56.4%
batch 3 77.1% 95.5% 84.2% 88.5%
batch 4 84.5% 74.5% 88.8% 90.7%
batch 5 95.4% 99.0% 98.1% 99.0%
batch 6 54.1% 76.0% 60.3% 75.3%
batch 7 82.8% 86.3% 83.9% 88.5%
batch 8 84.0% 92.9% 94.6% 94.2%
batch 9 72.8% 75.7% 83.2% 84.7%

batch 10 40.4% 72.8% 34.5% 70.6%
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B. LSTM model

We apply four kinds of dataset described above as the input of LSTM model. Subsequently,
we choose relu as the activation function in the LSTM model and set different rates of learning
(learning_rate = 0.001, 0.0015, 0.0025, 0.005, 0.0075). The learning_rate with the highest test accuracy
obtained by dynamic changes is regarded as the current learning_rate. Because of the number of
training sets that are based on the dynamically increased dynamic setting, the number of iterations is
set to 50 times of the number of rows in the current training set. LSTM model is divided into four
layers. The input of the input layer comes from different datasets; the output layer distributes six
different gases, and there are also two hidden layers. We choose cross-entropy as the loss function and
use Adam as the optimizer.

As shown in Table 7, when the LSTM model chooses batch 10 (six months out of batch 9) as the test
data, the accuracy reaches 78.6%. When compared with a SVM model with the same data equipment,
LSTM is more accurate, with a higher 5.8% accuracy. Thus, for the data with the predicted long-time
differences, the LSTM model classifier performs better. As shown in Figure 10, the LSTM model as
a test set is applied in the batch 2–10. The highest classification accuracy among the four different
datasets is 85.7%, while SVM model’s accuracy is 99.0%. Hence, the SVM model is more suitable for
the datasets that are small and whose time span is not too long. The average classification accuracy
in the dataset 4 among four datasets is 76.4%, and the results of dataset 4 will be compared with our
method that is proposed below.

Table 7. Classification Accuracy of the LSTM Model under Four Datasets.

Test Set ID Dataset 1 Dataset 2 Dataset 3 Dataset 4

batch 2 53.5% 53.5% 71.9% 71.9%
batch 3 79.7% 80.1% 85.7% 74.4%
batch 4 77.7% 73.2% 79.9% 76.0%
batch 5 75.8% 73.6% 72.5% 80.2%
batch 6 66.7% 72.6% 63.3% 72.9%
batch 7 75.9% 74.0% 69.7% 78.4%
batch 8 64.8% 75.3% 56.1% 80.0%
batch 9 78.5% 82.0% 82.6% 77.9%

batch 10 69.1% 78.6% 67.2% 76.2%
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C. Improved LSTM model

The same four datasets mentioned above are used as above for the improved LSTM model input.
In this improved LSTM model, the loss function of the LSTM model is updated, as shown in equation 17.
The rest module of the improved LSTM model is configured in the same way as the above LSTM model.

The improved LSTM shows a higher classification accuracy when batch 10 is the test set when
compared with the LSTM (batch 9 differs from batch 10 by six months). In dataset 4 of the Table 8, the
classification accuracy reaches 83.3%, increasing by 4.7%. It can be verified that the improved loss
function is more adaptive to drift data, which makes the improved LSTM to be the base classifier
for the multi-classifier. As shown in Figure 11, the improved LSTM model is tested in four different
datasets. The highest accuracy rate is 97.2% in all tests of dataset 3. Among four kinds of datasets, the
highest classification accuracy of 78.0% is obtained on dataset4. Therefore, the results in dataset 4 are
adopted in the improved LSTM when comparing with the proposed method ILS below.

Table 8. Classification Accuracy of the Improved LSTM Model under Four Datasets.

Test Set ID Dataset 1 Dataset 2 Dataset 3 Dataset 4

batch 2 72.1% 72.1% 75.5% 75.5%
batch 3 78.0% 61.7% 81.7% 74.4%
batch 4 84.1% 81.4% 97.2% 92.5%
batch 5 83.2% 82.5% 80.1% 86.6%
batch 6 83.8% 75.5% 82.7% 70.6%
batch 7 73.1% 80.1% 65.6% 76.4%
batch 8 54.7% 70.1% 65.8% 65.6%
batch 9 72.5% 76.3% 75.9% 77.0%

batch 10 68.6% 80.3% 72.8% 83.3%
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4.2.3. Ensemble Multi-Class Classifier

The ILS model adopts the improved LSTM model and the SVM model as the base classifier. The
multi-class integration uses the above normalized weighted voting. The dataset under the four setting
is the input of the base classifier. The parameter settings of the improved LSTM model and the SVM
model are consistent with the parameter selection above.

As shown in Table 9, under the SVM, the LSTM and Improved LSTM column represent the
‘previous results’ of the independent classifier, under the ILS column are the result (improved) with the
method presented of ensemble classifier. We compare the SVM, LSTM, and improved LSTM models in
terms of the highest average accuracy in the four different datasets (Figures 9–12 above) to the ILS
model in Figure 12, the average accuracy of LSTM, the improved LSTM, SVM, and the ILS model are
76.4, 78.0%, 83.1% and 89.3%, respectively.

Table 9. Classification Accuracy of ILS Models and other Models.

Test Data ID SVM LSTM Improved LSTM ILS

batch 2 56.4% 71.9% 75.5% 75.9%
batch 3 91.2% 74.4% 74.4% 95.5%
batch 4 90.7% 76.0% 92.5% 97.2%
batch 5 99.0% 80.2% 86.6% 99.0%
batch 6 75.3% 72.9% 70.6% 83.8%
batch 7 88.5% 78.4% 76.4% 88.5%
batch 8 94.2% 80.0% 65.6% 94.2%
batch 9 84.7% 77.9% 77.0% 85.9%

batch 10 70.6% 76.2% 83.3% 83.4%
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The classifier ensemble performs better than the SVM trained at batch points 2, 3, 4, 5, 9, and 10.
As mentioned above, this SVM is a very strong baseline and, thus, the ILS performs better than or as
well as this SVM is a better result. The ILS model better than the classifier of LSTM at all batches, from
batch 3 to batch 10. In the case of batch 9 and batch 10 for testing, the accuracy of the ILS model is
83.4%. In terms of the average accuracy and the accuracy with batch 10 for testing, ILS also performs
better. In the highest classification accuracy rate, the ILS model reaches a maximum of 99.0%. Note
that, although the Improved ILSM helps to slightly improve the performance of the LSTM trained,
it performs worse than some of the batches.

We compare the ILS model with the above independent classification, which shows the superiority
of the ILS. The model that is presented below is compared with different voting methods of ensemble
learning. Figure 13 shows how the classifier weights used in the ILS model change with the batch.
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Figure 13. Classifier weights used in the ensembles (SVM1 to SVM4 and, LSTM1 to LSTM4). At every
point on the x-axis (batch) the corresponding points in the y-axis are the weights of the individual
classifiers used in the ensemble. Note that these weights max up to 1. Note that the dotted indicates
that the input is not a classifier for the correlation analysis dataset and, the solid line indicates that the
classifier the inputs the data set for correlation analysis.
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4.3. Comparison of Ensemble Voting Methods

In Section 4.2, we compare the integrated multi-classifier ILS with the multi-classifier base
classifiers LSTM and SVM. The integrated multi-classifier ILS has better performance than the base
classifiers. However, in ensemble learning, the combination of classifiers is equally important. Because
in the multi-classifier there are base classifiers that have a negative influence on the predictive
capabilities, which affects the predictive ability of ensemble classifiers. There are three ways to vote:
majority voting, plurality voting, and weighted voting. For majority voting, the result of the final
integration is to select more than half of the votes. That is to say, if more than half of the base learners
predict the category c, then the ensemble learner predicts the result as c, otherwise the prediction is
rejected. Therefore, in this part, we will compare the proposed classifier combination method with the
classical majority voting method and the weighted voting method.

Plurality voting method is predicted to be the mark with the highest number of votes. If multiple
marks get the highest number of votes at the same time, a mark is randomly selected from them. We
regard the predicted output of hi on sample x as an N-dimensional vector (h1

i (x), h2
i (x), . . . , hN

i (x)),

where h j
i (x) is the output on the category tag c j. The relative plurality voting method indicates:

H(x) = c
argmax

j

∑T
i=1 h j

i (x)
(22)

The weighted voting method is similar to weighted average, which can be expressed as:

H(x) = c
argmax

j

∑T
i=1 wih

j
i (x)

(23)

where wi is the weight of hi, generally wi ≥0,
T∑

i=1
wi = 1. In this part of the experiment, we compare the

plurality method and the weighted voting method with the normalized weighted voting method that
is proposed in this paper. The SVM mentioned above and the improved LSTM are selected in the base
classifier of the plurality voting method. At the same time, the four datasets that were generated by the
same settings above are used as input of the SVM and the improved LSTM. The accuracy of each base
classifier is the weight in the weighted voting method (expressed in decimal of weight reuse accuracy).

In Table 10, majority voting is a multi-classifier that uses majority voting as a combined strategy.
Plurality voting is the multiple classifier of a combination strategy based on the Plurality voting. In
batch 2, 3, 4, 5 as a test sets, the classification accuracy of Majority voting is slightly lower than that of
Plurality voting. The main reason is that the lowest accuracy of the base classifier occupies the same
weight in the majority voting, which causes a negative effect. When batch 10 is used as the test set, the
classification accuracy rate of Plurality voting is 70.7%, and the one of Majority voting is 73.4%.

Table 10. Classification Accuracy for different strategies.

Test Data ID Majority Voting Plurality Voting ILS

Batch 2 70.3% 75.3% 75.9%
Batch 3 93.3% 95.5% 95.5%
Batch 4 90.6% 91.3% 97.2%
Batch 5 97.0% 97.2% 99.0%
Batch 6 75.3% 72.3% 83.8%
Batch 7 81.1% 80.9% 88.5%
Batch 8 93.1% 92.8% 94.2%
Batch 9 83.4% 79.1% 85.9%

Batch 10 73.4% 70.7% 83.4%
Mean 84.2% 83.9% 89.3%
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In the batch 2 and batch 3, the classification accuracy of ILS model and Plurality voting is basically
the same, in the average classification accuracy rate, the ILS model reaches 89.2%, the Majority voting
and the Plurality voting accounting for 84.2% and 83.9%, respectively. In the ensemble classifiers, if the
base classifier with negative influence on the prediction ability has high accuracy, then it has a large
negative influence in the voting prediction, and it is easy to make mistakes, which affects the prediction
performance of the ensemble classifier. If the base classifiers with the low accuracy in Majority voting
occupy the same weight, which also easily affects the predictive performance of the ensemble classifier.
In this paper, the normalized weighted vote can be used to cut out some base dividers in the low
accuracy. In the predictive stage, the final prediction result is obtained by the weighted allocation
of the rest ensemble classifier. Normalized weighting can improve the predictive performance of
the ensemble classifier by eliminating the base classifiers with the lowest prediction accuracy in the
ensemble classifier.

As shown in Figure 14, the classifier ensembles are able to perform better than or as well as the
classifier trained when tested on most of the most of the batches with significant improvements in
accuracy on several batches. Except batch 3, batch 5z, batch 7, and batch 8, ILS has greatly improved
the performances and achieved the highest accuracies. The results again turn out to be that the
proposed method can effectively promote the classification and process sensor drift by merging drift
compensation into the classification task. This result clearly demonstrates the effectiveness of the
proposed method for automatic detection and copy with concept drift.
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estimation of batch under drift.

In terms of cost perspective, the proposed method can train the gas classifiers by the features that
were extracted from the datasets. The abstract features extracted by our method can cope with the
complex data and non-linear changes, so our method is not only robust, but also universal to the gas
sensor drift. The cost of this method is relatively low, because it only requires appropriate marker data
without an additional reference gas. The ILS model is composed of the LSTM and SVM classifiers.
When compared with SVM, LSTM has a higher time complexity. However, the proposed model does
not increase the time complexity. The LSTM model corresponds to four sets of parameters, including
input gate, forget gate, output gate, and candidate state. In the LSTM, the parameters can be simplified
to two matrices, U and V, which can map the input and output, respectively. The dimension of U is
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the hidden * input, and the dimension of V is hidden * hidden. Therefore, the network is learning
these two matrices, so the total of the LSTM is 4(nm + n2 + n), where n is hidden_size, m is input_size.
The amount of average time consumed by each algorithm is given in Table 11 in order to compare
algorithms based on time complexity.

Table 11. Experimental test time for different prediction models.

Algorithm SVM LSTM Improved LSTM Majority Voting Plurality Voting ILS

Time (s) 0.27 2.55 2.36 5.53 5.72 5.64

5. Conclusions

The supervised learning algorithm can effectively manage and compensate for the sensor drift. In
this study, we propose a multi-classifier integration supervised learning method to compensate for
drift in gas sensors. The model takes advantage of SVM, whose capacity of few-shot classification
and the long-time memory characteristics of LSTM. Besides, the improved loss function eliminates
the polarization caused by using SoftMax in LSTM model. Additionally, it combines SVM with the
improved LSTM. Through the normalized weighted voting strategy, the base classifier with the lowest
accuracy of the classifier is removed in every voting process to make the proposed model ILS adapt
to the sensor drift, which effectively improves the performance of the sensor drift classifier. The
model does not make any assumptions about the nature of the drift, so that the model has a better
generalization ability. In addition, the used data are collected over a long period of time and it has
drift characteristics, which is a relatively comprehensive dataset for exploration. On datasets with four
kinds of setting, we conduct a correlation analysis and make it clear that better the approximation
results could be obtained with the increased hypothesis space. When compared with SVM, LSTM,
and the improved LSTM model, the proposed method achieves highest accuracy 99.0% and average
accuracy 83.4%.

Our model has achieved the good experimental results on the current dataset. However, the
supervised learning requires huge manpower and resources to compensate the sensor drift in dynamic
labeling and training data. Besides, the classifier model has a longer training time than a Random
Forest. In the future, we will further investigate the classification of unlabeled data from the sensor
drift in a semi-supervised manner and attempt to optimize the model [31].
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