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Diffuse large B cell lymphoma (DLBCL) is a group of biologically heterogeneous tumors
with different prognoses. The tumor microenvironment plays a vital role in the
tumorigenesis and development of DLBCL, and activated memory CD4+ T cells are an
essential component of immunological cells in the lymphoma microenvironment. So far,
there are few reports about activated memory CD4+T cells infiltration and related genes in
the DLBCL tumor microenvironment. This study obtained the mRNA expression profile
information of the testing GSE87371 dataset and another six validation datasets
(GSE53786, GSE181063, GSE10846, GSE32918, GSE32018, GSE9327, GSE3892,
TCGA-DLBC) from the GEO and TCGA databases. Weighted Gene Co-expression
Network Analysis (WGCNA) screened gene module associated with activated memory
CD4+ T cells infiltration. CIBERSORT and TIMER (immune cells infiltrating estimation
analysis tools) were used to identify the relationship between activated memory CD4+

T cells and genes associated with immune infiltrating cells in the tumor microenvironment.
The least absolute shrinkage and selection operator (LASSO) built the risk prediction model
and verified it using nomogram and Kaplan-Meier analysis. Further functional
characterization includes Gene Ontology, KEGG pathway analysis and Gene Set
Enrichment Analysis (GSEA) to investigate the role and underlying mechanisms of
these genes. These results suggest that the expression of FCER1G can reflect the
invasion of activated memory CD4+ T cells in DLBCL, which provides a new idea for
studying the tumor microenvironment and may become a potential predictive biomarker
for the assessment of DLBCL.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL), the most common
entity of non-Hodgkin’s lymphoma (NHL) (Chambwe et al.,
2014), is a group of heterogeneous diseases with diverse
prognoses (Risueño et al., 2020), accounting for 30–40% of
newly diagnosed lymphoma (Trinh et al., 2013).
Unfortunately, despite the addition of the anti-CD20
monoclonal antibody rituximab (R) to standard chemotherapy
[e.g., “cyclophosphamide, doxorubicin, vincristine, and
prednisone (R-CHOP)”], 30–40% of patients still relapse (10%
of patients with refractory) (Raut and Chakrabarti, 2014).
Recently, immune checkpoint inhibitors have provided an
alternative way in the first-line treatment of tumors
(Atanackovic and Luetkens, 2018; Wang et al., 2020).
However, there are few specific molecular markers for DLBCL
immunotherapy (Lossos and Morgensztern, 2006). The
exploration of immune-related molecular markers is an
essential research hotspot in DLBCL.

Immune invasion of DLBCL has been reported in many
studies (Xu-Monette et al., 2019; Autio et al., 2021), and
changes in tumor microenvironment can affect the response to
immunotherapy (Rosato et al., 2019). Previous studies have
focused on cytolysis CD8+ T cells as tumor-infiltrating
lymphocytes (Felgar et al., 1998). However, some studies have
recently demonstrated that CD4+ T cells are critical mediators of
peripheral tolerance and immunosuppression and may play a
central role in anti-tumor immunity. In addition, activation of
CD4+ T cells in DLBCL has been reported to indicate a better
prognosis (Keane et al., 2013; Kusano et al., 2017), but the
mechanism remains unclear. Therefore, identifying biomarkers
related to CD4+ T cell infiltration is conducive to monitoring
DLBCL immunotherapy response and exploring the mechanism
of immune infiltration.

With the development of the high-throughput sequencing
technique, numerous tools for detecting disease biomarkers
have emerged. Weighted gene co-expression network analysis
(WGCNA) is applied to search for gene modules of co-expression
genes and explore the relationship between gene networks and
focused phenotypes. Cell type identification by estimating the
relative subset of RNA transcripts (CIBERSORT) is another
bioinformatics tool for analyzing gene expression data, which
is a method for characterizing the cell composition of complex
tissue by deconvolution method (Newman et al., 2015). Tumor
immune estimation resource (TIMER) is an updated webserver
with unique features that enable analysis and visualization of
tumor molecular and clinical features. Based on the above
computer tools and algorithms, we can comprehend the
approximate cell types and amounts of immune cell infiltration.

In this study, WGCNA was performed using DLBCL gene
expression data to search for gene modules highly associated with
activated memory CD4+ T cells infiltration in order to explore the
impact of the tumor microenvironment and identify potential
biomarkers of DLBCL. The compositions of immune cells were
calculated by the CIBERSORT algorithm. We identified essential
modules and hub genes relevant to activated memory CD4+ T
lymphocytes infiltration level and immune and clinical features of

these hub genes. LASSO Cox regression module was used to
identify and verify the predictive biomarkers. As we known, this
study is the first utilization ofWGCNA to identify the biomarkers
related to activated memory CD4+ T lymphocytes of DLBCL.

MATERIALS AND METHODS

Collecting RNA Expression Data FromGene
Expression Omnibus Databases
Datasets were downloaded in a normalized expression matrix file
format and analyzed directly from Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) and The Cancer
Genome Atlas (TCGA; https://portal.gdc.cancer.gov/), which
is an international public repository containing high-
throughput microarray and next-generation sequencing
functional genomic datasets (Barrett et al., 2013). All samples
from DLBCL GEO cohorts, cases in the four datasets were
divided into testing group GSE87371 (Dubois et al., 2017) and
validation group, including GSE181063 (Painter et al., 2019; Lacy
et al., 2020), GSE53786 (Scott et al., 2014), GSE10846 (Lenz et al.,
2008), GSE32918 (Barrans et al., 2012), GSE32018 (Gómez-Abad
et al., 2011), GSE9327 (Ruiz-Vela et al., 2008), GSE3892 (Muris
et al., 2007) and TCGA-DLBC. The platform used by GSE87371
is [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.
0 Array, which includes 223 DLBCL tumor tissue samples. The
platform used by GSE181063 is Illumina HumanHT-12 WG-
DASL V4.0 R2 expression beadchip, which includes 1303 DLBCL
tumor tissue samples. The platform used by GSE53786 is [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array,
which includes 119 DLBCL tumor tissue samples. The platform
used by GSE10846 is [HG-U133 Plus 2] Affymetrix Human
Genome U133 Plus 2.0 Array, which includes 412 DLBCL tumor
tissue samples. The platform used by GSE32918 is Illumina
HumanRef-8 WG-DASL v3.0, which includes 243 DLBCL
tumor tissue samples. The platform used by GSE32018 is
Agilent-014850 Whole Human Genome Microarray 4x44K
G4112F (Probe Name version), which includes 22 DLBCL
tumor tissue samples and 13 normal tissue samples. The
platform used by GSE9327 is CNIO Human Oncochip 1.0, 1.
2, and 2.0, which includes 36 DLBCL tumor tissue samples and 8
normal tissue samples. The platform used by GSE3892 is VUMC
MACF human 19K oligo v33, which includes 52 DLBCL tumor
tissue samples and 2 normal tissue samples. TCGA-DLBC
contains 48 DLBCL tumor tissue samples. We used the R
package “limma” (Ritchie et al., 2015) (https://cran.r-project.
org/src/contrib/Archive/limma/) to normalize the RNA-
sequencing data. Since the slight variation of gene expression
data oftenmakes noise, we used the Coefficient of Variation (CV)
values to select the most variant genes and then construct the
network.

Identifying of Immune-Infiltrating Immune
Cells (TIICs) by CIBERSORT
CIBERSORT (http://cibersort.stanford.edu) is an analytical
algorithm that analyzes RNA expression data to assess
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the abundance of different cell subtypes for each sample
(Newman et al., 2015). The fraction of TIICs was calculated
using the R package “CIBERSORT” in the research. The
proportion of seven subtypes of T cells in each sample was
selected to analyze.

Constructing Co-expression Network of
Activated Memory CD4+ T Cells Infiltration
in DLBCL
The “WGCNA” R package (https://cran.r-project.org/web/
packages/WGCNA/index.html) was applied to reveal
correlations between genes (Langfelder and Horvath, 2008).
We calculated the average connectivity and Pearson
correlation value to cluster GSE87371 samples. Next, we
screened the genes with the first 75% of the median
absolute deviation (MAD) and set the cut-off >0.01. The
selected genes were used to construct the weighted co-
expression network analysis. To figure out the gene module
associated with activated memory CD4+ T cells infiltration, we
built a scale-free network and picked ß = 5 as the soft-
thresholding power. The hierarchical clustering dendrogram
summarized the gene modules with different colors using
dynamic hybrid cutting. Eventually, the heat map and
topological overlap matrix (TOM) plot visualized the
module structures.

Selecting the Key Gene Module by the
Relationship of Traits and Modules
Module eigengenes were used to analyze the components of each
module. We calculated the correlation between the module
eigengenes and T cells infiltration number to determine the
significance of the module by Pearson’s test. An individual
module was considered to be significantly associated with
T cells infiltration when p-value <0.05. A module of T
lymphocyte subtypes that demonstrated a high correlation
coefficient was defined as the hub module.

Analyzing the Functional Enrichment
Pathways and Processes
Gene functions were distinguished into three aspects by Gene
Ontology (GO) analysis, including Molecular Function (MF),
Cellular Component (CC), and Biological Process (BP) (Harris
et al., 2004). Molecular pathway maps were collected by the
Kyoto Encyclopedia of Genes and Genomes (KEGG), which
represented molecular interactions and reaction networks.
They were divided into seven categories: metabolism,
genetic and environmental information processing, cellular
process, body system, human disease, and drug development
(Kanehisa and Goto 2000). The results were displayed by the
“clusterProfiler” (Yu et al., 2012) (https://bioconductor.org/
packages/release/bioc/html/clusterProfiler.html) and
“GOplot” R packages (Walter et al., 2015) (https://cran.r-
project.org/web/packages/GOplot/index.html). p <0.05 was
considered as statistically significancy.

Building Protein-Protein Interaction
Network
The protein-protein interaction (PPI) network was obtained
from the STRING database (https://string-db.org/). By setting
the minimum required interaction score >0.7 and hiding the
nodes where the network was disconnected, the genes of the
hub module were imported into the STRING database to build
the PPT network. Cytoscape (http://cytoscape.org/) was used
to reconstruct the network. The CytoHubba plug-in in
Cytoscape (v3.8.2) can be used to discover critical targets
and subnetworks in complex networks. It provided
biological data on various biological types, including PPI
networks, gene regulation, cellular pathways and signal
transduction, as well as help us find the central elements in
the network. Eventually, the top 30 gene nodes were ranked by
CytoHubba screening.

Identifying and Validating the Hub Genes
Based on the results of WGCNA and PPI network analysis,
Venn analysis (http://bioinformatics.psb.ugent.be/webtools/
Venn/) was obtained for the candidate hub genes screened
by WGCNA analysis and central nodes screening by
CytoHubba. These hub genes obtained by intersection were
identified in the immune-related database. Tumour Immune
Estimation Resource (TIMER, https://cistrome.shinyapps.io/
timer/) was a comprehensive resource for the systematic
analysis of the infiltration of the immune cells 10,897
samples based on the 32 cancer types obtained from TCGA
(Li et al., 2017). Spearman correlations between the infiltration
number of CD4+ T cells and the expression of hub genes were
calculated, and the results were compared using the R package
“ggstatplot” (Patil 2021).

Constructing the Risk Prediction Model
The testing dataset GSE87371 was used to establish the TME
risk module about activated memory CD4+ T cells infiltration.
The least absolute shrinkage and selection operator (LASSO)
Cox regression analysis (Tibshirani 1996) was performed using
the R package “glmnet” (https://cran.r-project.org/web/
packages/glmnet/) to establish a predictive risk formula.
Risk score = Coefficient1pExpression1+ Coefficient 2p
Expression2+ Coefficient 3p Expression3+. . .. . .+
CoefficientN p ExpressionN. Coefficient was the LASSO Cox
regression analysis of the hub genes, and Expression was the
corresponding expression value. All patients were divided into
high-risk and low-risk groups separately, and individualized
risk scores were calculated using median risk as to the cutoff.
Kaplan-Meier survival analysis and log-rank test were used to
evaluate the difference in Overall Survival (OS) between high-
risk and low-risk groups. Time-dependent receiver operating
characteristic (ROC) curves were plotted to evaluate predictive
value (Heagerty et al., 2000). The results were mapped using
the R packages “ggrisk” (https://cran.r-project.org/web/
packages/ggrisk/), “timeROC” (https:/cran.r-project.org/web/
packages/timeROC/) and “survival” (https://cran.r-project.
org/web/packages/survival/).
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Validating the Risk Prediction Model by the
External Validation Sets and Nomogram
The GSE181063, GSE53786, GSE10846, and GSE32918 datasets
were downloaded from the GEO databases. The risk score for
each enrolled patient was calculated using the same model based
on genetic characteristics. Next, the ROC curve and Kaplan-
Meier curve are used to test the predicated values of genetic traits.
A nomogram integrating clinical characters and the prediction
risk model was established based on the GSE87371 cohort to
assess the probability of 1-, 3-, and 5-year individualized OS via
the “rms” R package (http://cran.r-project,org/web/packages/
rms/) (Heagerty et al., 2000). In addition, the discriminatory
ability of the nomogram was graphically evaluated by a
calibration map.

Confirming the Expression of Hub Genes in
Normal Cases Based on External Validation
Sets
The “limma” R package was used to screen for differentially
expressed genes (DEGs) in the validation datasets, setting the
thresholds (p-value <0.05 and |log fold change (FC)| >1) to filter
DEGs between normal cases and DLBCL tumor samples. All gene
lists sorted by logFC in each dataset were maintained for
subsequent integration analysis. Then we used the above result
for joint analysis of multiple datasets by using the
“RobustRankAggreg” R package (RRA, https://cran.r-project.
org/web/packages/RobustRankAggreg/) (Kolde et al., 2012),
which is a tool that integrates differential expression analysis
results from different platforms, mainly with the RobustRank
Aggregation (RRA) algorithm to obtain a comprehensive ranking
list. “pheatmap” (https://cran.r-project.org/web/packages/
pheatmap/index.html) and “ggplot2” R packages (https://cran.
r-project.org/web/packages/ggplot2/index.html) were used to
show the heat map and volcano map.

Carrying out Gene Set Enrichment Analysis
(GSEA) and the Finial Hub Gene Mutational
Information
Gene set enrichment analysis (GSEA) uses the predefined gene
set, sorts the gene according to the degree of the differential
expression in the two types of samples, and then checks whether
the preset gene set is enriched at the top or bottom of the list.
GSEA detects the expression changes of gene sets rather than a
single gene (Subramanian et al., 2005). According to the median
value of gene expression, the samples were divided into two
groups, “c5. go.v7.4. symbols.gmt [Gene ontology]” and “c2.
cp.kegg.v7.4. symbols.gmt [Curated]” gene set enrichment
analyzes were carried out, with p-value <0.05 and q-value
<0.05 as indicative of statistical significance. The enrichment
pathways were visualized according to the protocol (http://www.
gsea-msigdb.org/gsea). To further identify the single gene
mutation and copy number variation, we studied the TCGA-
DLBC using cBioPortal (https://www.cbioportal.org/) for Cancer
Genomics.

Real-Time Quantitative PCR (RT-qPCR)
63 paraffin samples from 2021.12 to 2022.2 from the Department
of Pathology of West China Hospital of Sichuan University were
screened, of which 42 cases were confirmed as DLBCL samples
and 21 samples of normal lymphoid tissue hyperplasia. The
Ethical Committee of West China Hospital approved this
study and waived informed consent. According to the
manufacturer’s protocol, total RNA was extracted from FFPE
samples and gDNA removed using the RNApure FFPE kit
(CW0535, CoWin Bioscience, Beijing, China). HiScript® III
All-in-one RT SuperMix was used Perfect for qPCR (R333,
Vazyme, NanJing, China) reverse transcription and used
cDNA as a template for real-time fluorescence quantification.
RT-qPCR was performed with the SYBR® Green Premix Ex
Taq™ II (Tli RNaseH Plus) (RR820A, TaKaRa, Beijing, China)
on a Real-time PCR Detection System (Bio-rad). Independent
experiments are performed in triplicate, ß actin as an internal
control. The following primers (Tsingke Biotechnology Co., Ltd.,
Beijing, China) were used: FCER1G:

F 5′ − TCTTCTTTGGCTTCTGGTTCTTC − 3′
R 5′ − GGGTTCTCCCTTCCCATATTTTA − 3′

ACTIN:

F 5′ − CCGCGAGAAGATGACCCAGA − 3′
R 5′ − GATAGCACAGCCTGGATAGCA − 3′

RESULTS

Overview of the Transcriptomes of and
Identification of the Immune Infiltration of
DLBCL
The tactics of research was presented in Figure 1. We obtained
RNA expression data from 223 DLBCL samples from Gene
Expression Omnibus (GEO) database. 12,284 genes were
incorporated in the analysis after the expression profile
downloading, normalization, standardization, and gene
annotation. 7,463 genes were screened out by Coefficient of
Variation (CV) >0.1. The RNA expression profile was
analyzed using the “CIBERSORT” R package to assess each
sample’s abundance of different cell subtypes. The results
showed that gamma delta T cells accounted for the most
common immune cells in DLBCL (21.2%), followed by M0
phase macrophages (19.3%), and activated memory CD4+

T cells accounted for 9.4% (Figure 2, Supplementary Table S1).

Gene Co-expression Network of DLBCL
A weighted co-expression network was constructed by the
expression values of 7,463 genes using the “WGCNA” R
package. 5,490 genes with the top 75% of the median absolute
deviation (MAD) were screened out. at least the MAD was >0.01.
The screening principle soft threshold made up the constructed
network more in line with the scale-free network characteristics.
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The soft threshold was set as ß = 5 (Figures 3A,B). Hierarchical
clustering analysis was carried out based on weighted correlation,
and the clustering results were segmented according to the set
standards to obtain different gene modules, which were
represented by branches and different colors of the cluster
tree. The results showed that 15 gene modules were calculated
by a hierarchical dynamic tree-cutting algorithm. The number
and color of genes represented by each module were black (317
genes), blue (718 genes), cyan (60 genes), green (427genes),
green-yellow (118 genes), grey (569 genes), magenta (141
genes), pink (203 genes), purple (138 genes), red (365 genes),
salmon (115genes), tan (116 genes), turquoise (807 genes), yellow
(678 genes) (Figure 3C). The relationship between module
eigengenes was shown in (Supplementary Figure S1A,B). The

samples dendrogram and trait heatmap were illustrated to clarify
the relationship between samples and T cells phenotypes
(Figure 3D).

Identification of the Hub Module of DLBCL
About Activated Memory CD4+ T Cells
Infiltration and Enrichment Analysis
The module related to the specific trait was found according to
the gene correlation and p-value of trait and model eigenvector.
Among the fifteen gene modules, the brown module was highly
correlated to activated memory CD4+ T cells (R2 = 0.51, P = 4e-
16) and gamma delta T cells (R2 = 0.36, P = 3e-08). R2 stands for
correlation, and the larger the R2, the stronger the correlation.

FIGURE 1 | The workflow of the study.
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Both correlation value and p-value showed that the brown gene
module had the highest correlation with activated memory CD4+

T cells (Figures 4A,B). Therefore, the brown gene module was
selected for analysis, which contains 1,115 genes. Enrichment
analysis showed that these genes were related to neutrophil
activation involved in immune response and immune receptor
activity (Figure 4C). KEGG pathway analysis also indicated that
the genes were mainly involved in the B cell receptor signaling
pathway and osteoclast differentiation, complement and
coagulation cascades (Figure 4D).

Confirmation of the Hub Genes of DLBCL
The highly connected genes of the module were investigated as
potential vital factors related to activated memory CD4+ T cells
infiltration number. According to the cut-off standard (Gene-
Significance >0.4, Module-Membership >0.8), 14 genes were
selected as candidate hub genes (Figure 5B, Supplementary
Table S2). The CytoHubba plug-in screened the first 30 gene
nodes, and the results were visualized using Cytoscape in the
protein-protein network analysis (Figure 5A). Four hub genes
(CD33, C3AR1, FCER1G, LILRB2) were screened out by the

intersection of the two analysis results (Figure 5C). The gene
expression profile data in the TIMER database were analyzed to
verify the relationship between hub genes and activated memory
CD4+ T cells (Figure 6A). The results showed a positive
correlation of the expression values of the above four genes
with the infiltration levels of CD4+ T cells (Figures 6B,C).

Construction and Validation of the Risk
Prediction Model Based on the TME of
Activated Memory CD4+ T Cells Infiltration
The LASSO Cox regression analysis identified the correlation
between the four gene (CD33, C3AR1, FCER1G, LILRB2)
expression and overall survival (OS), and determined the
optimally weighted coefficient for the predictive activated
memory CD4+ T cells infiltration-related genes according to
variable selection and regularization characteristics. By setting
one standard error of the best penalty parameter λ value and
1000-fold cross-validation, the path change graph of the
regression coefficient was obtained (Figure 7A). The trend of
each curve in the figure represented the change of the regression

FIGURE 2 | The landscape of immune cells infiltration of DLBCL patients in GSE87371.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8494226

Xiang et al. Genes Related to TILs Infiltration

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


coefficient path. The regression coefficients mainly were
compressed to zero, which showed that the module had a
good advantage in dimensionality reduction and variable
selection. A single-gene predictive signature (FCER1G) was
obtained from the four hub genes. The left line indicated the
optimal value by λ.min criteria (Figure 7B). Then, coefficient
values were extracted, and the coefficient of the single gene were
multiplied by their mRNA expression levels to calculate
individual risk scores using the following formula: Risk
score = the mRNA expression level of FCER1Gp(0.1485714).
Patients from the training group were divided into high-risk and
low-risk groups based on the median risk score (Suplementary
Table S3). The distributions of the risk scores, survival status of
high-risk and low-risk patients, and single-gene prediction model
expression levels in the testing dataset are presented in Figure 7C.
Time-dependent ROC curve analysis showed that during 3- and
5-year follow-up, the area under the curve (AUC) values were
0.597 and 0.659 (Figure 7D). Survival analysis showed that
patients in the high-risk group had significantly shorter
median OS than low-risk (Figure 7E). The univariate Cox
regression results of the four genes showed that the p-value of

all three genes was less than 0.05 (Supplementary Figure S2), and
the genes most relevant to the survival were screened with LASSO
regression. Meantime, the selection of four external validation
sets in the GEO database also proved that the single-gene
predictive signature (FCER1G) had lower expression levels in
the low-risk group and higher expression levels in the high-risk
group (Supplementary Figures S3A,B,G,H). The AUC values
and p-value of the Kaplan-Meier survival curve reached statistical
significance, and there was the same trend as the testing dataset
(Supplementary Figures S3C–F,I–L).

Validation of the risk Prediction Model by
the Nomogram Consisting of a Variety of
Clinicopathological Factors
The relationship between the single-gene prediction model
(FCER1G) and other clinical parameters such as the
pathological subtypes, clinical stage, and IPI score was
performed to understand further by survival analysis. The
survival status of patients at different stages showed that the
low-risk group had a favorable median OS than the high-risk

FIGURE3 |Weighted gene co-expression network analysis (WGCNA) of genes in DLBCL about activatedmemory CD4+ T cells infiltration. (A) Analysis of the scale-
free fit various soft thresholding power (β). (B) Analysis of the average connectivity of 1–20 soft threshold power. (C) Hierarchical cluster tree showing co-expression
modules identified by WGCNA. (D) Sample dendrogram and trait heatmap between the samples and T cells infiltration phenotype.
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group (Supplementary Figures S4A,B). Similar results were
obtained in the low-risk group with a favorable OS compared
with the high-risk patients in IPI <2 and the IPI ≥2 groups
(Supplementary Figures S4C,D). Moreover, an analogous results
demonstrated that low-risk patients had significantly favorable
OS compared to high-risk patients with the activated B-cell-like
(ABC) subtype of DLBCL (p = 0.0052, HR = 0.42, 95% CI =
0.22–0.77; Supplementary Figure S4E). The same tendency was
presented in germinal center B-cell-like (GCB) patients (p =
0.0565, HR = 0.63, 95% CI = 0.39–1.01; Supplementary
Figure S4F). It was illustrated that the risk prediction model
possessed the independent forecasting ability. In addition, a
nomogram was established to forecast 1-,2- and 3-year
survival based on the clinical pathology factors. The
nomograms were developed by assigning each independent
predictive factor an initial graphical score, ranging from 0 to
100. The scores for all variables were then summarized to obtain
the total score. A vertical line indicated the estimated probability
of survival for each DLBCL patient (Figures 8A,B). The
calibration chart was attracted to validate the nomogram,

which showed an agreement between the predicted and actual
survival rates (Figure 8C). ln addition, the validation sets,
GSE53786 and GSE181063, both proved that the risk
predication model had better prediction performance for 1-, 2-
, and 3-year survival conditions (Figures 8D–I).

Exploring the Molecular Function, Mutation
Information and Differential Expression of
the Final Key Gene
According to the screening criteria of p-value <0.05 and
absolute |log fold change (FC)| >1, 124 DEGs were screened
between DLBCL samples and normal tissue in the three
validation groups GSE32018, GSE9327, and GSE3892 by the
algorithm of RobustRank Aggregation (RRA). FCER1G were
statistically significantly up-regulated in three datasets
(Figure 9A). Subsequently, the potential of FCER1G
biological functions was explored by gene set enrichment
analysis (GSEA). KEGG pathway analysis revealed that the
high levels of FCER1G was most strongly associated with the

FIGURE 4 |WGCNA identified the significant module about activated memory CD4+ T cells infiltration. (A) Heatmap showed the correlation of module eigengenes
with T cells infiltration. The row represented the module, and the column portrayed the character. The values in the box represented correlation and p-value. (B) The
histogram showed the relationship between different gene modules and gene significance, and the brown module showed the highest significance. (C,D) GO (C) and
KEGG (D) analysis for brown module-related genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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antigen processing and presentation (Figure 9B;
Supplementary Table S4). In addition, according to the
TCGA-DLBC samples with complete mRNA and sequencing
data (n = 48), we assessed the correlation between the FCER1G
expression and copy number variation in DLBCL. As shown in
Figures 9C,D, the copy number variation around the
heterotopic point had significantly higher FCER1G expression
levels. To verify this results in the FFPE samples, RT-qPCR was
employed. The expression levels of FCER1G in DLBCL tissue
and normal lymphoid tissue hyperplasia was significant

difference (Figure 9E; p = 0.0228). The wet experiment
further verified the reliability of bioinformatics results.

DISCUSSION

Diffuse large B-cell lymphoma (DLBCL) is the most common
non-Hodgkin lymphoma subtype and represents a
morphologically, biologically, and clinically heterogeneous
group of malignant diseases (Pinnix et al., 2016). Recent

FIGURE 5 | PPI network and identification of the hub genes. (A) PPI network from the brown module. The higher the number of connected nodes, the deeper the
color of the nodes. (B) A scatter plot of the genes in the brown module. Each brown node represented a gene, and dots within the top right corner indicate Gene
Significance >0.4 and Module Membership >0.8. (C) Hub genes were selected based on the overlap between PPI essential nodes and candidate genes of WGCNA.
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breakthroughs in immunotherapy have shown a new strategy for
the effective treatment of tumors. Many clinical studies aim to
improve the overall survival of patients through a unique
combination of immunotherapy and chemotherapy (Hude
et al., 2017). In addition to the current pathological and
clinical predictive factors, reliable and robust biomarkers need
to be explored to improve personalized treatment for patients.
Thus, immunological markers should be strongly considered in
the evaluation and treatment of cancer patients.

As a new therapeutic strategy, treatment aiming at the
tumor microenvironment (TME) is a research hotspot. The
tumor microenvironment in tumors consists of extracellular
matrix as well as the associated stromal cells including immune
cells, fibroblasts, and vascular network (Binnewies et al., 2018).
Previous studies have focused on the role of cytolytic CD8+

T cells as tumor-infiltrating lymphocytes (List et al., 1993).
However, recent studies have proved that CD4+ T cells may
play a central role in the antitumor immune response (Tveita
et al., 2015). A subset of CD4+ T cells, such as T-regulatory
cells (Tregs), mainly infiltrated in the tumor
microenvironment, is considered to be pivotal mediators of
peripheral tolerance and immune suppression (Facciabene
et al., 2012). Therefore, identifying the biomarkers related
to CD4+ T cells infiltration will facilitate the monitoring of
DLBCL immunotherapy response and the exploration of
immune infiltration mechanism.

Tumor-infiltrating T lymphocytes (TILs) are considered to
play essential roles in the anticancer immune mechanism of
the tumor-bearing host in some human solid cancers (Hiraoka

et al., 2006). CD4+ T cells play a central role in orchestrating
the immune response to cancer. Essentially, CD4+ T cells
recognize peptides represented on MHC class Ⅱ molecules
expressed primarily on antigen-presenting cells. In NSCLC,
Hiraoka et al. found that the synergistic effect of simultaneous
high CD4+ T cells and CD8+ T cells infiltration in the tumor
stroma was a favorable prognostic factor (Hiraoka et al., 2006).
A previous study showed that tumor-infiltrating activated
CD4+ T cells are associated with a good prognosis in head
and neck squamous cell carcinoma (Badoual et al., 2006). Some
studies have systematically analyzed tumor-infiltrating
immune cells in pancreatic ductal carcinoma (PDC) and
evaluated their clinicopathological impact. They found that
tumor-infiltrating CD4+ Thigh cell was an independent
prognosticator helpful in evaluating the immune
microenvironment of PDC (Ino et al., 2013). CD4+ T cells
are some of the essential non-neoplastic immune cells that
affect the survival of DLBCL patients and play a vital role in
immune monitoring and influencing lymphoma outcome.
Some studies have shown that an increase in CD4 cells in
the tumor microenvironment before treatment predicts a
better prognosis (Judd et al., 2017).

Previous studies have demonstrated that CD4+ T cells
infiltration of the diseased nodes is a potential predictive
indicator of overall survival (OS) and event-free survival
(EFS) in DLBCL patients receiving R-CHOP (Keane et al.,
2013). The successful application of immune checkpoint
inhibitors in DLBCL has increased interest in exploring the
potential target of specific immune-related factors for

FIGURE 6 | Validation of the hub genes. (A) TIMER database showed the relationship between four genes expression and CD4+ T cells infiltration. (B) Lollipop
indicated the relationship between four hub genes expression and activated memory CD4+ T cells infiltration degree. p-value <0.05 is considered statistically significant.
(C) Scatter plot of four hub genes expression and activated memory CD4+ T cells infiltration degree.
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FIGURE 7 | Construction of the risk prediction model. (A) The path change chart of the regression coefficient. (B) The change curve of penalty term. (C) The
distribution of risk scores, the survival status of patients, and the expression level in screening single gene. (D) The time-dependent ROC curve and AUC of the single-
gene signature. (E) Kaplan-Meier plots of overall survival between high- and low-risk groups in the testing group by the log-rank test. LASSO, least absolute shrinkage
and selection operator; ROC, receiver operating characteristic curve; AUC, an area under the curve.
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immunotherapy (Xu-Monette et al., 2019). High CD4+ T cells
enrichment are associated with improved outcomes in many
malignancies (Fridman et al., 2012).

Although there have been researches reporting that the
presence of increased numbers of activated CD4+ T cells in
the area of DLBCL predicts a better prognosis (Ansell et al.,
2001), the mechanism is unclear. This study identified four
hub genes whose expression correlated to CD4+ T cell
infiltration level, which prompted a possible mechanism to
promote tumorigenesis and tumor progression. Among the
screened four hub genes, we determined FCER1G as a potential
predictive biomarker by LASSO regression algorithm and
combined analysis of multiple datasets.

Up to now, there are many methods to evaluate the
prognosis of DLBCL, which is a malignant tumor that
originated from B cells divided into the germinal center cell
(GCB) and activated B cell (ABC) (Rosenwald and Staudt,

2003). Cell of origin (COO) is considered to be closely related
to the pathogenesis of diseases and has prognostic value
(Morin et al., 2021). The most widely used prognostic
system of DLBCL in clinical practice is the IPI prognostic
scoring system (Sehn et al., 2006). The emergence of high-
throughput technologies such as whole exon sequencing and
deep sequencing has found a variety of molecular mutations
and single nucleotide polymorphisms including MYD88,
EZH2, CARD11, FOX O 1, involving the abnormalities of
multiple signaling pathways including BCR, NK-κB,
NOTCH, Toll-like receptors and PI3K, which makes the
more in-depth understanding of the pathogenesis and
disease susceptibility of DLBCL. Further studies found that
FOX O 1, MYD88 and EZH2 abnormalities may be associated
with the prognosis of DLBCL (Morin et al., 2016). Among
other molecular indicators, mutations of CD5, CD30 and TP53
were relatively studied (Zhang et al., 1999). This study

FIGURE 8 | The construction and validation of nomogram. (A) Prognostic nomogram for predicting the survival of GSE87371 DLBCL patients and every prediction
factor relevant to total score. Clinically, the corresponding score can be obtained according to every patient’s condition, and the total score corresponds to every
patient’s correlated survival probability. (B)Color nomogram, color legend on the right corresponds to the score of different variables of every GSE87371 DLBCL patient.
The scores of multiple variables are added to the bottom total score, with corresponding survival probability. (C) Calibration curves of the nomogram predicts the
GSE87371 patents’ survival probability at 1-, 2- and 3-year. If the actual curve is closer to the ideal curve, the nomogram predication accuracy is higher. (D–F)
Nomogram and calibration diagram of validation set GSE53786. (G–I) Nomogram and calibration diagram of validation set GSE181063.
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identified four hub genes (CD33, C3AR1, FCER1G, LILRB2)
whose expression correlated to activated memory CD4+ T cells
infiltration level, which prompted a possible mechanism to
promote tumorigenesis and development. FCER1G was
identified as a potential predictive biomarker and target by
the LASSO Cox regression algorithm and expression in tumor
tissues among the screened four hub genes.

Fc Fragment of IgE Receptor Ig (FCER1G) mediates
allergic inflammatory signaling as a component of the
high-affinity immunoglobulin E (IgE) receptor, and it is a
critical molecule in developing eczema, clear cell renal cell
carcinoma, meningioma and childhood leukemia (Han et al.,
2010; Mahachie John et al., 2010; Rajaraman et al., 2010; Chen
et al., 2017). Houshi Xu et al. demonstrated FCER1G as a
novel predictor for clinical diagnosis, prognosis, and response
to immunotherapy in glioma patients (Xu et al., 2021). Early
studies found that FCER1G transduced activation signals
from various immunoreceptors and engaged in many
immune responses, playing a tumor-promoting role in
many kinds of tumors (Shah et al., 2017; Sweet et al.,
2017). It was also reported that the demethylation of
FCER1G was induced by IL15 in the NKp30 + CD8+

T cells population exhibiting high natural killer-like anti-
tumor potential (Correia et al., 2018). Lin Fu et al. illustrated

that the enhanced expression of FCER1G predicted a
favorable prognosis in multiple myeloma (Fu et al., 2020).
Wei Yuan et al. found that FCER1G was associated with
infiltration of immune cells in the immune
microenvironment in esophageal cancer and was a
biomarker associated with prognosis (Yuan et al., 2021).
The above studies have focused on the effect of FCER1G
on tumors, finding that FCER1G can significantly promote
tumor growth, metastasis, angiogenesis, and immune escape.

Our study demonstrated the relationship between the
activated memory CD4+ T cells infiltration and the
development of DLBCL. The WGCNA and CIBERSORT
algorithms identified potential biomarkers related to
activated memory CD4+ T cells in DLBCL. A new risk
prediction model for the survival of DLBCL patients was
constructed. Eventually, bioinformatics analysis proved that
FCER1G was identified as potential biomarkers and targets for
DLBCL immunotherapy. However, this study has some
unavoidable limitations. Further functional research is
warranted to explore the molecular functions of the
identified genes during DLBCL progression. Ulterior
samples are needed to verify these results and the specific
mechanism of FCER1G in DLBCL requires further
investigation.

FIGURE 9 | The expression, pathway enrichment and mutation landscape of the final hub gene (A) The volcano plot with differentially expressed genes. Red dots
indicated overexpression genes, green dots exhibited the low expression genes, and the grey boxed represented meaningless expression genes. (B) KEGG pathway
analysis of the positive regulation of FCER1G. (C) The heatmap of FCER1GmRNA expression and the genetic alteration in the TCGA-DLBC dataset. (D) Comparison of
FCER1G expression between different types of copy number variation groups. (E) Validation of mRNA expression of the final key gene FCER1G related with CD4+

T cells infiltration degree in FFPE samples (p-value = 0.0228).

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 84942213

Xiang et al. Genes Related to TILs Infiltration

https://pubmed.ncbi.nlm.nih.gov/?sort=jour&term=Yuan+W&cauthor_id=34257539
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants was reviewed and
approved by the Ethical Committee of West China Hospital.
The ethics committee waived the requirement of written
informed consent for participation.

AUTHOR CONTRIBUTIONS

XX and LG conceived the project, designed the study. XX
collected, analyzed, interpreted the data, and drafted the article
LG directed the study. YZ andWZ had full access to all the data in
the study and takes responsibility for the integrity of the data and

the accuracy of the data analysis. WZ, YT, SZ, WL, and XY
revised the article. All authors read and approved the final
manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant No: 81900197), project
foundation of Sichuan provincial health and family planning
commission (2020YJ0104) and a grant funded by 1·3·5 projects
for disciplines of excellence–Clinical Research Incubation Project,
West China Hospital, Sichuan University (No: 2019HXFH035).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.849422/
full#supplementary-material

REFERENCES

Ansell, S. M., Stenson, M., Habermann, T. M., Jelinek, D. F., and Witzig, T. E.
(2001). CD4+ T-Cell Immune Response to Large B-Cell Non-hodgkin’s
Lymphoma Predicts Patient Outcome. Jco 19 (3), 720–726. doi:10.1200/JCO.
2001.19.3.720

Atanackovic, D., and Luetkens, T. (2018). Biomarkers for Checkpoint Inhibition in
Hematologic Malignancies. Seminars Cancer Biol. 52 (Pt 2), 198–206. doi:10.
1016/j.semcancer.2018.05.005

Autio, M. M., Suvi-Katri Leivonen, S. K., Oscar Brück, O., Satu Mustjoki, S., Judit
Mészáros Jørgensen, J., Marja-Liisa Karjalainen-Lindsberg, M. L., et al. (2021).
Immune Cell Constitution in the Tumor Microenvironment Predicts the
Outcome in Diffuse Large B-Cell Lymphoma. haematol 106 (3), 718–729.
doi:10.3324/haematol.2019.243626

Badoual, C., Hans, S., Rodriguez, J., Peyrard, S., Klein, C., Agueznay, N. E. H., et al.
(2006). Prognostic Value of Tumor-Infiltrating CD4+ T-Cell Subpopulations in
Head and Neck Cancers. Clin. Cancer Res. 12 (2), 465–472. doi:10.1158/1078-
0432.Ccr-05-1886

Barrans, S. L., Crouch, S., Care, M. A., Worrillow, L., Smith, A., Patmore, R., et al.
(2012). Whole Genome Expression Profiling Based on Paraffin Embedded
Tissue Can Be Used to Classify Diffuse Large B-Cell Lymphoma and Predict
Clinical Outcome. Br. J. Haematol. 159 (4), 441–453. doi:10.1111/bjh.12045

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2013). NCBI GEO: Archive for Functional Genomics Data Sets-Update.
Nucleic Acids Res. 41 (Database issue), D991–D995. doi:10.1093/nar/gks1193

Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., et al.
(2018). Understanding the Tumor Immune Microenvironment (TIME) for
Effective Therapy. Nat. Med. 24 (5), 541–550. doi:10.1038/s41591-018-0014-x

Chambwe, N., Kormaksson, M., Geng, H., De, S., Michor, F., Johnson, N. A., et al.
(2014). Variability in DNAMethylation Defines Novel Epigenetic Subgroups of
DLBCL Associated with Different Clinical Outcomes. Blood 123 (11),
1699–1708. doi:10.1182/blood-2013-07-509885

Chen, L., Yuan, L., Wang, Y., Wang, G., Zhu, Y., Cao, R., et al. (2017). Co-
expression Network Analysis Identified FCER1G in Association with
Progression and Prognosis in Human Clear Cell Renal Cell Carcinoma. Int.
J. Biol. Sci. 13 (11), 1361–1372. doi:10.7150/ijbs.21657

Correia, M. P., Stojanovic, A., Bauer, K., Juraeva, D., Tykocinski, L.-O., Lorenz, H.-
M., et al. (2018). Distinct Human Circulating NKp30 + FcεRIγ + CD8 + T Cell
Population Exhibiting High Natural Killer-like Antitumor Potential. Proc. Natl.
Acad. Sci. U.S.A. 115 (26), E5980–e5989. doi:10.1073/pnas.1720564115

Dubois, S., Viailly, P.-J., Bohers, E., Bertrand, P., Ruminy, P., Marchand, V., et al.
(2017). Biological and Clinical Relevance of Associated Genomic Alterations in
MYD88 L265P and Non-L265P-mutated Diffuse Large B-Cell Lymphoma:
Analysis of 361 Cases. Clin. Cancer Res. 23 (9), 2232–2244. doi:10.1158/1078-
0432.Ccr-16-1922

Facciabene, A., Motz, G. T., and Coukos, G. (2012). T-regulatory Cells: Key Players
in Tumor Immune Escape and Angiogenesis: Figure 1. Cancer Res. 72 (9),
2162–2171. doi:10.1158/0008-5472.CAN-11-3687

Felgar, R. E., Steward, K. R., Cousar, J. B., and Macon, W. R. (1998). T-Cell-Rich
Large-B-Cell Lymphomas Contain Non-activated CD8+ Cytolytic T Cells,
Show Increased Tumor Cell Apoptosis, and Have Lower Bcl-2 Expression
Than Diffuse Large-B-Cell Lymphomas. Am. J. Pathology 153 (6), 1707–1715.
doi:10.1016/S0002-9440(10)65685-4

Fridman, W. H., Pagès, F., Sautès-Fridman, C., and Galon, J. (2012). The Immune
Contexture in Human Tumours: Impact on Clinical Outcome.Nat. Rev. Cancer
12 (4), 298–306. doi:10.1038/nrc3245

Fu, L., Cheng, Z., Dong, F., Quan, L., Cui, L., Liu, Y., et al. (2020). Enhanced
Expression of FCER1G Predicts Positive Prognosis in Multiple Myeloma.
J. Cancer 11 (5), 1182–1194. doi:10.7150/jca.37313

Gómez-Abad, C., Pisonero, H., Blanco-Aparicio, C., Roncador, G., González-
Menchén, A., Martinez-Climent, J. A., et al. (2011). PIM2 Inhibition as a
Rational Therapeutic Approach in B-Cell Lymphoma. Blood 118 (20),
5517–5527. doi:10.1182/blood-2011-03-344374

Han, S., Lan, Q., Park, A. K., Lee, K.-M., Park, S. K., Ahn, H. S., et al. (2010).
Polymorphisms in Innate Immunity Genes and Risk of Childhood Leukemia.
Hum. Immunol. 71 (7), 727–730. doi:10.1016/j.humimm.2010.04.004

Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., et al.
(2004). The Gene Ontology (GO) Database and Informatics Resource. Nucleic
Acids Res. 32 (Database issue), 258D–261D. doi:10.1093/nar/gkh036

Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent ROC Curves
for Censored Survival Data and a Diagnostic Marker. Biometrics 56 (2),
337–344. doi:10.1111/j.0006-341x.2000.00337.x

Hiraoka, K., Miyamoto, M., Cho, Y., Suzuoki, M., Oshikiri, T., Nakakubo, Y., et al.
(2006). Concurrent Infiltration by CD8+ T Cells and CD4+ T Cells Is a
Favourable Prognostic Factor in Non-small-cell Lung Carcinoma. Br.
J. Cancer 94 (2), 275–280. doi:10.1038/sj.bjc.6602934

Hude, I., Sasse, S., Engert, A., and Bröckelmann, P. J. (2017). The Emerging Role of
Immune Checkpoint Inhibition in Malignant Lymphoma. Haematologica 102
(1), 30–42. doi:10.3324/haematol.2016.150656

Ino, Y., Yamazaki-Itoh, R., Shimada, K., Iwasaki, M., Kosuge, T., Kanai, Y., et al.
(2013). Immune Cell Infiltration as an Indicator of the Immune

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 84942214

Xiang et al. Genes Related to TILs Infiltration

https://www.frontiersin.org/articles/10.3389/fgene.2022.849422/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.849422/full#supplementary-material
https://doi.org/10.1200/JCO.2001.19.3.720
https://doi.org/10.1200/JCO.2001.19.3.720
https://doi.org/10.1016/j.semcancer.2018.05.005
https://doi.org/10.1016/j.semcancer.2018.05.005
https://doi.org/10.3324/haematol.2019.243626
https://doi.org/10.1158/1078-0432.Ccr-05-1886
https://doi.org/10.1158/1078-0432.Ccr-05-1886
https://doi.org/10.1111/bjh.12045
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1182/blood-2013-07-509885
https://doi.org/10.7150/ijbs.21657
https://doi.org/10.1073/pnas.1720564115
https://doi.org/10.1158/1078-0432.Ccr-16-1922
https://doi.org/10.1158/1078-0432.Ccr-16-1922
https://doi.org/10.1158/0008-5472.CAN-11-3687
https://doi.org/10.1016/S0002-9440(10)65685-4
https://doi.org/10.1038/nrc3245
https://doi.org/10.7150/jca.37313
https://doi.org/10.1182/blood-2011-03-344374
https://doi.org/10.1016/j.humimm.2010.04.004
https://doi.org/10.1093/nar/gkh036
https://doi.org/10.1111/j.0006-341x.2000.00337.x
https://doi.org/10.1038/sj.bjc.6602934
https://doi.org/10.3324/haematol.2016.150656
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Microenvironment of Pancreatic Cancer. Br. J. Cancer 108 (4), 914–923. doi:10.
1038/bjc.2013.32

Judd, J., Dulaimi, E., Li, T., Millenson, M. M., Borghaei, H., Smith, M. R., et al.
(2017). Low Level of Blood CD4+ T Cells Is an Independent Predictor of
Inferior Progression-free Survival in Diffuse Large B-Cell Lymphoma. Clin.
Lymphoma Myeloma Leukemia 17 (2), 83–88. doi:10.1016/j.clml.2016.11.005

Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Res. 28 (1), 27–30. doi:10.1093/nar/28.1.27

Keane, C., Gill, D., Vari, F., Cross, D., Griffiths, L., and Gandhi, M. (2013).
CD4+Tumor Infiltrating Lymphocytes Are Prognostic and Independent of
R-IPI in Patients with DLBCL Receiving R-CHOP Chemo-Immunotherapy.
Am. J. Hematol. 88 (4), 273–276. doi:10.1002/ajh.23398

Kolde, R., Laur, S., Adler, P., and Vilo, J. (2012). Robust Rank Aggregation for Gene
List Integration and Meta-Analysis. Bioinformatics 28 (4), 573–580. doi:10.
1093/bioinformatics/btr709

Kusano, Y., Yokoyama, M., Terui, Y., Nishimura, N., Mishima, Y., Ueda, K., et al.
(2017). Low Absolute Peripheral Blood CD4+ T-Cell Count Predicts Poor
Prognosis in R-CHOP-Treated Patients with Diffuse Large B-Cell Lymphoma.
Blood Cancer J. 7 (4), e558. doi:10.1038/bcj.2017.37

Lacy, S. E., Barrans, S. L., Beer, P. A., Painter, D., Smith, A. G., Roman, E., et al.
(2020). Targeted Sequencing in DLBCL, Molecular Subtypes, and Outcomes: a
Haematological Malignancy Research Network Report. Blood 135 (20),
1759–1771. doi:10.1182/blood.2019003535

Langfelder, P., and Horvath, S. (2008). WGCNA: an R Package for Weighted
Correlation Network Analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-
2105-9-559

Lenz, G., Wright, G., Dave, S. S., Xiao,W., Powell, J., Zhao, H., et al. (2008). Stromal
Gene Signatures in Large-B-Cell Lymphomas. N. Engl. J. Med. 359 (22),
2313–2323. doi:10.1056/NEJMoa0802885

Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). TIMER: AWeb
Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells.
Cancer Res. 77 (21), e108–e110. doi:10.1158/0008-5472.Can-17-0307

List, A. F., Spier, C. M., Miller, T. P., and Grogan, T. M. (1993). Deficient
Tumor-Infiltrating T-Lymphocyte Response in Malignant Lymphoma:
Relationship to HLA Expression and Host Immunocompetence.
Leukemia 7 (3), 398–403.

Lossos, I. S., and Morgensztern, D. (2006). Prognostic Biomarkers in Diffuse Large
B-Cell Lymphoma. Jco 24 (6), 995–1007. doi:10.1200/jco.2005.02.4786

Mahachie John, J. M., Baurecht, H., Rodríguez, E., Naumann, A., Wagenpfeil, S.,
Klopp, N., et al. (2010). Analysis of the High Affinity IgE Receptor Genes
Reveals Epistatic Effects of FCER1A Variants on Eczema Risk. Allergy 65 (7),
875–882. doi:10.1111/j.1398-9995.2009.02297.x

Morin, R. D., Arthur, S. E., and Hodson, D. J. (2021). Molecular Profiling in Diffuse
Large B-cell Lymphoma: Why So Many Types of Subtypes? Br. J. Haematol.
196, 814–829. doi:10.1111/bjh.17811

Morin, R. D., Assouline, S., Alcaide, M., Mohajeri, A., Johnston, R. L., Chong, L.,
et al. (2016). Genetic Landscapes of Relapsed and Refractory Diffuse Large
B-Cell Lymphomas. Clin. Cancer Res. 22 (9), 2290–2300. doi:10.1158/1078-
0432.CCR-15-2123

Muris, J. J. F., Ylstra, B., Cillessen, S. A. G. M., Ossenkoppele, G. J., Kluin-
Nelemans, J. C., Eijk, P. P., et al. (2007). Profiling of Apoptosis Genes Allows for
Clinical Stratification of Primary Nodal Diffuse Large B-Cell Lymphomas. Br.
J. Haematol. 136 (1), 38–47. doi:10.1111/j.1365-2141.2006.06375.x

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust Enumeration of Cell Subsets from Tissue Expression Profiles.
Nat. Methods 12 (5), 453–457. doi:10.1038/nmeth.3337

Painter, D., Barrans, S., Lacy, S., Smith, A., Crouch, S., Westhead, D., et al. (2019).
Cell-of-origin in Diffuse Large B-cell Lymphoma: Findings from theUK’s
Population-based Haematological Malignancy Research Network. Br.
J. Haematol. 185 (4), 781–784. doi:10.1111/bjh.15619

Patil, I. (2021). Visualizations with Statistical Details: The ’ggstatsplot’ Approach.
Joss 6 (61), 3167. doi:10.21105/joss.03167

Pinnix, C. C., Osborne, E. M., Chihara, D., Lai, P., Zhou, S., Ramirez, M. M., et al.
(2016). Maternal and Fetal Outcomes after Therapy for Hodgkin or Non-
hodgkin Lymphoma Diagnosed during Pregnancy. JAMA Oncol. 2 (8),
1065–1069. doi:10.1001/jamaoncol.2016.1396

Rajaraman, P., Brenner, A. V., Neta, G., Pfeiffer, R., Wang, S. S., Yeager, M., et al.
(2010). Risk ofMeningioma and Common Variation in Genes Related to Innate

Immunity. Cancer Epidemiol. Biomarkers Prev. 19 (5), 1356–1361. doi:10.1158/
1055-9965.Epi-09-1151

Raut, L. S., and Chakrabarti, P. P. (2014). Management of Relapsed-Refractory
Diffuse Large B Cell Lymphoma. South Asian J. Cancer 03 (1), 066–070. doi:10.
4103/2278-330x.126531

Risueño, A., Hagner, P. R., Towfic, F., Fontanillo, C., Djebbari, A., Parker, J. S., et al.
(2020). Leveraging Gene Expression Subgroups to Classify DLBCL Patients and
Enrich for Clinical Benefit to a Novel Agent. Blood 135 (13), 1008–1018. doi:10.
1182/blood.2019002414

Ritchie, M. E., Phipson, B.,Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015). Limma
Powers Differential Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Rosato, P. C., Wijeyesinghe, S., Stolley, J. M., Nelson, C. E., Davis, R. L., Manlove, L.
S., et al. (2019). Virus-specific Memory T Cells Populate Tumors and Can Be
Repurposed for Tumor Immunotherapy. Nat. Commun. 10 (1), 567. doi:10.
1038/s41467-019-08534-1

Rosenwald, A., and Staudt, L. M. (2003). Gene Expression Profiling of Diffuse
Large B-Cell Lymphoma. Leukemia Lymphoma 44 (Suppl. 3), S41–S47. doi:10.
1080/10428190310001623775

Ruiz-Vela, A., Aggarwal, M., de la Cueva, P., Treda, C., Herreros, B., Martín-Pérez,
D., et al. (2008). Lentiviral (HIV)-based RNA Interference Screen in Human
B-Cell Receptor Regulatory Networks Reveals MCL1-Induced Oncogenic
Pathways. Blood 111 (3), 1665–1676. doi:10.1182/blood-2007-09-110601

Scott, D. W., Wright, G. W., Williams, P. M., Lih, C.-J., Walsh, W., Jaffe, E. S., et al.
(2014). Determining Cell-Of-Origin Subtypes of Diffuse Large B-Cell
Lymphoma Using Gene Expression in Formalin-Fixed Paraffin-Embedded
Tissue. Blood 123 (8), 1214–1217. doi:10.1182/blood-2013-11-536433

Sehn, L. H., Berry, B., Chhanabhai, M., Fitzgerald, C., Gill, K., Hoskins, P., et al. (2006).
The Revised International Prognostic Index (R-IPI) Is a Better Predictor of Outcome
Than the Standard IPI for Patients with Diffuse Large B-Cell Lymphoma Treated
with R-CHOP. Blood 109 (5), 1857–1861. doi:10.1182/blood-2006-08-038257

Shah, S., Gibson, A. W., Ji, C., Darrington, E., Mobley, J., Kojima, K., et al. (2017).
Regulation of FcRγ Function by Site-specific Serine Phosphorylation. J. Leukoc.
Biol. 101 (2), 421–428. doi:10.1189/jlb.2AB0516-228R

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene Set Enrichment Analysis: A Knowledge-Based
Approach for Interpreting Genome-wide Expression Profiles. Proc. Natl.
Acad. Sci. U.S.A. 102 (43), 15545–15550. doi:10.1073/pnas.0506580102

Sweet, R. A., Nickerson, K. M., Cullen, J. L., Wang, Y., and Shlomchik, M. J. (2017).
B Cell-Extrinsic Myd88 and Fcer1g Negatively Regulate Autoreactive and
Normal B Cell Immune Responses. J. Immunol. 199 (3), 885–893. doi:10.
4049/jimmunol.1600861

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. J. R. Stat.
Soc. Ser. B Methodol. 58 (1), 267–288. doi:10.1111/j.2517-6161.1996.tb02080.x

Trinh, D. L., Scott, D. W., Morin, R. D., Mendez-Lago, M., An, J., Jones, S. J. M.,
et al. (2013). Analysis of FOXO1Mutations in Diffuse Large B-Cell Lymphoma.
Blood 121 (18), 3666–3674. doi:10.1182/blood-2013-01-479865

Tveita, A. A., Schjesvold, F., Haabeth, O. A., Fauskanger, M., and Bogen, B. (2015).
Tumors Escape CD4+ T-Cell-Mediated Immunosurveillance by Impairing the
Ability of Infiltrating Macrophages to Indirectly Present Tumor Antigens.
Cancer Res. 75 (16), 3268–3278. doi:10.1158/0008-5472.Can-14-3640

Walter, W., Sánchez-Cabo, F., and Ricote, M. (2015). GOplot: an R Package for
Visually Combining Expression Data with Functional Analysis: Fig. 1.
Bioinformatics 31 (17), 2912–2914. doi:10.1093/bioinformatics/btv300

Wang, L., Li, L.-r., and Young, K. H. (2020). New Agents and Regimens for Diffuse
Large B Cell Lymphoma. J. Hematol. Oncol. 13 (1), 175. doi:10.1186/s13045-
020-01011-z

Xu, H., Zhu, Q., Tang, L., Jiang, J., Yuan, H., Zhang, A., et al. (2021). Prognostic and
Predictive Value of FCER1G in Glioma Outcomes and Response to
Immunotherapy. Cancer Cell Int. 21 (1), 1–16. doi:10.1186/s12935-021-
01804-3

Xu-Monette, Z. Y., Xiao, M., Au, Q., Padmanabhan, R., Xu, B., Hoe, N., et al.
(2019). Immune Profiling and Quantitative Analysis Decipher the Clinical Role
of Immune-Checkpoint Expression in the Tumor Immune Microenvironment
of DLBCL. Cancer Immunol. Res. 7 (4), 644–657. doi:10.1158/2326-6066.CIR-
18-0439

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R
Package for Comparing Biological Themes Among Gene

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 84942215

Xiang et al. Genes Related to TILs Infiltration

https://doi.org/10.1038/bjc.2013.32
https://doi.org/10.1038/bjc.2013.32
https://doi.org/10.1016/j.clml.2016.11.005
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1002/ajh.23398
https://doi.org/10.1093/bioinformatics/btr709
https://doi.org/10.1093/bioinformatics/btr709
https://doi.org/10.1038/bcj.2017.37
https://doi.org/10.1182/blood.2019003535
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1056/NEJMoa0802885
https://doi.org/10.1158/0008-5472.Can-17-0307
https://doi.org/10.1200/jco.2005.02.4786
https://doi.org/10.1111/j.1398-9995.2009.02297.x
https://doi.org/10.1111/bjh.17811
https://doi.org/10.1158/1078-0432.CCR-15-2123
https://doi.org/10.1158/1078-0432.CCR-15-2123
https://doi.org/10.1111/j.1365-2141.2006.06375.x
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1111/bjh.15619
https://doi.org/10.21105/joss.03167
https://doi.org/10.1001/jamaoncol.2016.1396
https://doi.org/10.1158/1055-9965.Epi-09-1151
https://doi.org/10.1158/1055-9965.Epi-09-1151
https://doi.org/10.4103/2278-330x.126531
https://doi.org/10.4103/2278-330x.126531
https://doi.org/10.1182/blood.2019002414
https://doi.org/10.1182/blood.2019002414
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/s41467-019-08534-1
https://doi.org/10.1038/s41467-019-08534-1
https://doi.org/10.1080/10428190310001623775
https://doi.org/10.1080/10428190310001623775
https://doi.org/10.1182/blood-2007-09-110601
https://doi.org/10.1182/blood-2013-11-536433
https://doi.org/10.1182/blood-2006-08-038257
https://doi.org/10.1189/jlb.2AB0516-228R
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.4049/jimmunol.1600861
https://doi.org/10.4049/jimmunol.1600861
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1182/blood-2013-01-479865
https://doi.org/10.1158/0008-5472.Can-14-3640
https://doi.org/10.1093/bioinformatics/btv300
https://doi.org/10.1186/s13045-020-01011-z
https://doi.org/10.1186/s13045-020-01011-z
https://doi.org/10.1186/s12935-021-01804-3
https://doi.org/10.1186/s12935-021-01804-3
https://doi.org/10.1158/2326-6066.CIR-18-0439
https://doi.org/10.1158/2326-6066.CIR-18-0439
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Clusters. Omics a J. Integr. Biol. 16 (5), 284–287. doi:10.1089/omi.2011.
0118

Yuan, W., Yan, J., Liu, H., Li, L., Wu, B., Guo, C., et al. (2021). Identification of
Prognostic Related Genes of Tumor Microenvironment Derived from Esophageal
Cancer Patients. Pathol. Oncol. Res. 27, 589662. doi:10.3389/pore.2021.589662

Zhang, A., Ohshima, K., Sato, K., Kanda, M., Suzumiya, J., Shimazaki, K., et al.
(1999). Prognostic Clinicopathologic Factors, Including Immunologic
Expression in Diffuse Large B-cell Lymphomas. Pathol. Int. 49 (12),
1043–1052. doi:10.1046/j.1440-1827.1999.00980.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Xiang, Gao, Zhang, Tang, Zhao, Liu, Ye and Zhang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 84942216

Xiang et al. Genes Related to TILs Infiltration

https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.3389/pore.2021.589662
https://doi.org/10.1046/j.1440-1827.1999.00980.x
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Identification of FCER1G related to Activated Memory CD4+ T Cells Infiltration by Gene Co-expression Network and Constructi ...
	Introduction
	Materials and Methods
	Collecting RNA Expression Data From Gene Expression Omnibus Databases
	Identifying of Immune-Infiltrating Immune Cells (TIICs) by CIBERSORT
	Constructing Co-expression Network of Activated Memory CD4+ T Cells Infiltration in DLBCL
	Selecting the Key Gene Module by the Relationship of Traits and Modules
	Analyzing the Functional Enrichment Pathways and Processes
	Building Protein-Protein Interaction Network
	Identifying and Validating the Hub Genes
	Constructing the Risk Prediction Model
	Validating the Risk Prediction Model by the External Validation Sets and Nomogram
	Confirming the Expression of Hub Genes in Normal Cases Based on External Validation Sets
	Carrying out Gene Set Enrichment Analysis (GSEA) and the Finial Hub Gene Mutational Information
	Real-Time Quantitative PCR (RT-qPCR)

	Results
	Overview of the Transcriptomes of and Identification of the Immune Infiltration of DLBCL
	Gene Co-expression Network of DLBCL
	Identification of the Hub Module of DLBCL About Activated Memory CD4+ T Cells Infiltration and Enrichment Analysis
	Confirmation of the Hub Genes of DLBCL
	Construction and Validation of the Risk Prediction Model Based on the TME of Activated Memory CD4+ T Cells Infiltration
	Validation of the risk Prediction Model by the Nomogram Consisting of a Variety of Clinicopathological Factors
	Exploring the Molecular Function, Mutation Information and Differential Expression of the Final Key Gene

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


