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Abstract: Phylodynamic inference is a pivotal tool in understanding transmission dynamics of viral
outbreaks. These analyses are strongly guided by the input of an epidemiological model as well
as sequence data that must contain sufficient intersequence variability in order to be informative.
These criteria, however, may not be met during the early stages of an outbreak. Here we investigate
the impact of low diversity sequence data on phylodynamic inference using the birth–death and
coalescent exponential models. Through our simulation study, estimating the molecular evolutionary
rate required enough sequence diversity and is an essential first step for any phylodynamic inference.
Following this, the birth–death model outperforms the coalescent exponential model in estimating
epidemiological parameters, when faced with low diversity sequence data due to explicitly exploiting
the sampling times. In contrast, the coalescent model requires additional samples and therefore
variability in sequence data before accurate estimates can be obtained. These findings were also
supported through our empirical data analyses of an Australian and a New Zealand cluster outbreaks
of SARS-CoV-2. Overall, the birth–death model is more robust when applied to datasets with
low sequence diversity given sampling is specified and this should be considered for future viral
outbreak investigations.

Keywords: phylodynamics; SARS-CoV-2; Bayesian phylogenetics; birth–death; coalescent

1. Introduction

Genomic surveillance of infectious diseases has enabled researchers to understand the
transmissive behaviours of pathogen dynamics through phylodynamic inference. Since
coining the term “phylodynamics” in 2004 [1], improvement in sequencing technology have
allowed researchers to rapidly sequence unprecedented quantities of genetic data during
the early stages of viral emergence. This in turn has allowed phylodynamic inference to
give insight into epidemiological features such as the timing of emergence, population
dynamics, and epidemiological parameters. Thus, providing valuable information to
devise strategies to promptly mitigate the impacts of disease outbreaks. Bayesian inference
has been valuable to this end. The key to this approach is that the data, via the likelihood is
combined with prior information and a model to make epidemiological and evolutionary
inferences. Assessing epidemiological models is critical for the uptake of phylodynamics
in future disease outbreak investigations.

The branching process of the tree is determined by the phylodynamic model selected,
also known as a “tree prior” and this ultimately affects the inference on the epidemiological
parameters. The model selected must describe both the evolutionary and population
dynamics of the genetic data [2]. In an outbreak context, the simplest model used is based
on exponential growth of an infected population over time. Over the years, work has
been done to incorporate more complex models for Bayesian phylogenetic inferences, i.e.,
models incorporating susceptible-infected-recovery status (SIR, SIS, and SI) and population
structure [3,4]. The two most commonly utilised models in emerging infectious disease
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outbreak investigations are based on the coalescent and the birth–death process [3], which
is the focus in our study.

In the early stages of epidemics, phylodynamic analyses provide insight to key epi-
demiological parameters by using the resulting tree from the sequencing data as a proxy
to the incomplete transmission tree [5]. Depending on the settings, both the coalescent
and birth–death models can effectively estimate exponential growth rate, r, which is the
measure of infected exponential population size growth [6]. In turn, the growth-rate is
the difference between the transmission rate, λ, and the become uninfectious rate, δ. The
duration of infection is 1/δ, while λ is also known as the “birth” rate. Similarly, the basic re-
productive number, R0, which is the average number of individuals an infected individual
will infect in a fully susceptible population is estimated as R0 = λ/δ. In an epidemiological
context, R0 is often used to measure the infectiousness of a disease. For example, R0 has
been estimated at about 2.5 for Ebola virus, 1.1 for seasonal influenza, and around 2.5 for
SARS-CoV-2 [7,8]. R0 is closely associated to r by r = λ − δ.

Although phylodynamic models can estimate key epidemiological parameters, the
process for achieving these estimates differ. The coalescent model is typically defined as
a deterministic population process, meaning the branching process is determined at any
given time by a deterministic effective population size function [6], although approaches
that relax the assumption of a deterministic population trajectory exist [9,10]. Whereas the
birth–death model accounts for stochastic population size change, that explicitly models
sampling using the sequence sampling times and the branching process is typically formu-
lated forwards in time [11]. The birth–death model is parametrised with δ equating to the
addition of recovery rate (µ) and sampling rate (ψ), (δ = µ + ψ) and sampling proportion
(p) given as (p = ψ/(µ + ψ)). The birth–death and coalescent models can lead to inferences
of the growth rate and R0 parameters, but the fact that they make different assumptions
means that model and prior specification should be carefully considered.

Implementing the coalescent model is less complex than the birth–death (i.e., it typi-
cally does not have a sampling parameter) and this makes it a popular choice among these
analyses. However, emerging epidemics involve stochastic population growth, which
often needs to be accounted for when sampling proportion is high and population size is
small, an important limitation of the deterministic nature of the population trajectory of
the coalescent model [9]. On the other hand, the birth–death model can account for these
limitations by modelling the sampling times from the sequence data [11]; however, the
constant birth–death model assumes constant probability of sampling over time which
may not be observed during disease outbreak scenarios. Irregular sampling that violates
this assumption and is not specified in the model may lead to sampling bias resulting in
inaccurate estimates of epidemiological dynamics [9]. If sampling bias is well understood,
this problem can be alleviated by including variable sampling effort in the model, for
example with a birth–death skyline model [12].

The term “phylodynamic threshold” refers to the required time for viruses to evolve
such that reliable estimates of evolutionary rates can be drawn, a prerequisite for phylody-
namic inferences [13]. In emerging disease outbreak investigations, often there is limited
sequence data and lack of intersequence genetic variation, which may result in the tree
prior driving the epidemiological estimates. Given the coalescent model is conditioned
on sampling times, sequence data with low diversity (and low information content) may
results in uncertain or even biased estimates of epidemiological parameters. In contrast, the
birth–death model explicitly exploits sampling times, which may reduce the uncertainty in
the epidemiological estimates [14], assuming that sampling is modelled correctly.

Here we investigate the impact of genetic variation between samples in acquiring
reliable estimates of key epidemiological parameters for the coalescent exponential-growth
and constant birth–death model. In our study, we compared the impact on model choice
and the corresponding performance without the aid of highly informative priors on limited
genetic data. Evaluating these models is crucial for future model uptake in emerging
infectious disease outbreaks.
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2. Materials and Methods
2.1. Simulation Study

Phylogenetic trees resembling an emerging SARS-CoV-2 outbreak were simulated
under a birth-death process in MASTER v6.1.1 [15], with the parametrization λ = 2.5,
δ = 1, p = 0.9, R0 = 2.5, r = 1.5 and the length of the process was stopped at 3 time units.
These parameters were selected to represent an outbreak of SARS-CoV-2 using similar
R0 estimations from previous studies and sampling probability of 0.9 to imitate a highly
sampled cluster [16]. Our time units were defined as per duration of infection, so if we
consider a SARS-CoV-2 outbreak, with a duration of infection of 10 days, then the process
would have run for 30 days. This process was repeated five times to generate 5 phylogenetic
trees and due to the stochastic nature of these simulations, each tree had varying number
of tips (21, 38, 56, 82 and 129 tips). Recent SARS-CoV-2 literature reveals that the molecular
clock is around 10−3 subs/site/year, and the duration of infection (1/δ) is approximately
10 days [17,18]. The molecular clock rate was parameterised to subs/site/duration of
infection (subs/site/(1/δ)) instead of the standard subs/site/year.

To measure the effects of the amount of genetic variation on acquiring reliable esti-
mates, three molecular clock rate settings were chosen and set to 0.01, 0.005/36.5, and
0.001/36.5. The 36.5 denominator was used to scale our clock rate relative to the be-
come uninfectious rate of SARS-CoV-2, which is 36.5 years−1 (i.e., 1/δ = 10 days, such
that δ = 365 days/year/10 days, or 36.5 years−1). The 0.01 setting represents a large accu-
mulation of intersequence genetic variation, the 0.001/36.5 setting represents a medium
evolutionary rate per duration of infection and 0.005/36.5 represents five times the medium
rate. Note that if our duration of infection is 10 days, the clock rate of 0.001/36.5 would
be equivalent to 1 × 10−3 subs/site/year, and therefore comparable to recent estimates
of SARS-CoV-2 early in the pandemic [13,19]. For each molecular clock rate settings, we
simulated sequence evolution along the five phylogenetic trees 10 times and sequence
alignments of 29,000 nucleotides were then generated and the number of variable sites
recorded using NELSI [20] and Ape 5.0 [21]. In total we had 5 trees with 3 different clock
rates and 10 replicates of each, to generate a total of 150 simulated alignments.

Bayesian phylogenetic analyses were conducted on these simulated sequence datasets
using the coalescent exponential and the birth–death model through BEAST2 v2.6.2 [22].
The analyses ran for a length of 5 × 107 Markov chain Monte Carlo (MCMC) steps (sam-
pling every 5 × 103 step) with an HKY+Γ substitution model and priors with low infor-
mation content were set for the constant birth–death and coalescent exponential models
(Table 1). However, for the birth death model δ was fixed to 36.5 years−1. Using priors
with low information content allows us to evaluate the extent to which genetic variation in
the data (e.g., number of variable sites) is sufficient to recover the set of epidemiological
parameters used to simulate the datasets. TRACER v1.7.1 [23] was utilised to examine the
results of the analyses and sufficient sampling was determined when key epidemiological
parameters had effective sample size of at least 200.

Table 1. Overview of models, parameters, and priors.

Phylodynamic Model Parameter Value Substitution Model Clock Model

Constant rate birth–death

Effective reproductive number (R0)
Estimated. Prior;

Log-normal distribution
with mean = 0, sigma = 1

HKY+Γ Strict clockBecome uninfectious rate (δ) Fixed; 36.5 years−1

Sampling probability (p)
Estimated. Prior; Beta

distribution with
(α and β) = 1

Coalescent exponential

Effective population size (Ne)
Estimated. Prior;

Log-normal distribution
with mean = 1, sigma = 2

HKY+Γ Strict clock

Growth rate (r)
Estimated. Prior; Laplace

distribution with µ = 0,
scale = 30.70
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Statistical analysis involved calculating the precision, coverage, and bias of our growth
rate estimation from our analyses. The precision was the measure of the length of the 95%
credible interval (CI), such that low numbers are improved precision. Calculating bias was
a measure of the difference between the mean estimated value and the true value, which
was also a measure of how accurate the results were, while the coverage was a measure of
the number times the true value of a parameter of interest fell within the 95% CI, within set
of simulations.

2.2. Empirical Data Analyses

Recent molecular datasets of SARS-CoV-2 outbreaks from Victoria and New Zealand
were used to illustrate the results of our simulation study in real world data. The sequence
data collected were from previous studies and obtained through GISAID [24] (acknowl-
edgements table in Supplementary Materials). The Victorian outbreak dataset contained
92 whole genome samples from mid-March to early May. This dataset features a highly
sampled outbreak cluster that was contained by the end of it. The New Zealand dataset
contained 44 whole genome that were sampled from mid-March to early April. This cluster
contained 41 sequences from New Zealand and 3 sequences from USA, the source of the
most likely introduction into New Zealand. The cluster was intensely sampled throughout
the outbreak and only the early exponential growth phase of the cluster was used in our
phylodynamic analysis. Importantly, because our datasets consist of a short period of the
SARS-CoV-2 pandemic, we expect a low number of substitutions.

These datasets were subjected to Bayesian phylodynamic analyses using BEAST2. The
epidemiological models used to infer the epidemiological dynamics were the coalescent
exponential-growth and the constant birth-death models. We assume a strict molecular
clock under the HKY+Γ substitution model and the same priors as in our simulations.
These analyses were then repeated while ignoring sequence data (i.e., “sampling from
the prior”) and results were compared to those analyses with sequence data. Comparing
the prior and posterior allows us to examine the contribution of the sequence data on the
epidemiological parameter inferences.

3. Results
3.1. Simulation Study

Estimation of the growth rate and molecular clock rate were assessed in all the simu-
lations and results from the coalescent exponential and constant rate birth–death models
were compared. To assess the impact of the number of variable sites on estimating the
true value of growth rate, the mean and 95% CI were also compared across the datasets.
Statistical analysis on the model’s ability to re-capture true epidemiological parameters
were performed and the bias, precision and coverage were recorded.

The molecular clock estimates were shown to be robust in the majority of the sim-
ulations for each clock rate setting. For each dataset with the clock rate set at 0.01
subs/site/duration of infection, which resulted in a substantial number of variable sites
(i.e., between 3100 to 15,000), the true clock rate was estimated with accuracy and precision
for both the coalescent exponential growth and constant birth–death model. For example,
93% of the analyses results from both models yielded true clock rate value within the 95%
CI and with 95% CI widths decreasing from 0.0006 to 0.0002, as more sequences were
added (Figure 1). Similarly, the estimation of molecular clock rate for datasets with the
clock rate set at 0.005/36.5 subs/site/duration of infection (datasets with over 45 and up to
310 variable sites) were also highly precise and accurate, with 94% of simulations results
from both models capturing true clock rate within the 95% CI and an average 95% CI width
decreasing from 0.0006 to 0.0002, as more sequences were added.
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Figure 1. Comparison of birth–death and coalescent exponential models on molecular clock rate estimation for each simula-
tion dataset. The plot depicts the 95% CI of molecular clock rate inferences from each dataset. The black dashed horizontal
line depicts the true molecular clock rate used for the simulation. (A) Simulations set at the medium clock rate (0.001/36.5
subs/site/duration of infection). (B) Simulations set at five times the medium clock rate (0.005/36.5 subs/site/duration of
infection). (C) Simulations set at a high clock rate (0.01 subs/site/duration of infection).

In the phylogenetic tree simulations with 129 tips, 82 tips and 56 tips, the estimation
of the clock rate parameter for 0.001/36.5 subs/site/duration of infection was accurate and
the true rate was still within the 95% CI for both the coalescent and birth-death models
(Figure 1A). Simulations using the phylogenetic tree with 38 tips were substantially less
reliable with an average 95% CI width of 0.0004 for the coalescent and birth–death models.
Finally, simulations using the 21-tip phylogenetic tree were unable to recapture the true
value of the molecular clock rate for all the analyses. In regard to the effects of the number
of variable sites, performance to recapture the true estimate of the molecular clock were
relatively similar for the coalescent exponential growth and constant birth–death model.

Coverage of the growth rate parameter estimates were robust in the majority of
the simulations with the clock rate set at 0.01 subs/site/duration of infection (Table 2).
The phylodynamic analyses using the birth–death model with high number of tips (129
and 82) resulted in average relative bias of −0.145 for 129 tips and of −0.13 for 82 tips,
causing slight underestimation of the true growth rate parameter. In addition, the growth
rate parameter was accurately estimated for the trees with 56 and 21 tips, although the
precision worsened with the mean 95% CI increasing from 1.51 to 2.66, as the number of
tips decreased. Similarly, we found the same pattern using the coalescent model. The
coalescent model estimation of growth rate parameter was accurate for the trees with (129,
82, 56, and 21) tips, while precision worsened from 0.58 to 1.47, as the number of tips
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decreased. The overall precision (narrow 95% CI) of the coalescent was better than for
the birth–death model for each set of simulations. The simulations using the 38 tips tree
resulted in an upward bias for both the coalescent and birth–death model, with an average
value of 2 instead of 1.5.

Table 2. Simulation results from clock rate set at the large accumulation of variability (0.01 subs/site/duration of infection)
for constant rate birth–death and coalescent exponential growth model. Good precision corresponds to low relative precision
values.

Dataset (Samples) Variable Sites (Mean) Coverage (%) Relative Bias Relative Precision
(95% CI Width)

Birth–death
estimation of growth

rate (Truth—1.5)

21 tips 3154 100 0.07 2.66

38 tips 4857 100 0.21 2.19

56 tips 7875 100 0.01 1.51

82 tips 9956 100 −0.13 1.32

129 tips 15537 100 −0.15 0.93

Coalescent
estimation of growth

rate (Truth—1.5)

21 tips 3154 100 −0.05 1.47

38 tips 4857 100 0.12 1.72

56 tips 7875 100 −0.07 0.89

82 tips 9956 100 −0.02 0.83

129 tips 15537 100 −0.09 0.58

Note—The mean of all bias/precision result for each simulation setting is provided.

Inference performance for the medium substitution rate (0.001/36.5 subs/site/duration
of infection) were dependent on the number of tips the phylogenetic tree contained to
simulate the sequence data and by association the number of variable sites (Table 3 and
Figure 2). The coverage of the true growth rate parameter for the birth–death analyses
was 100% for the trees containing 129, 82, 56, and 38 tips. Although the coverage was
100%, there was a slight underestimation in the 129 simulations, with an average bias of
−0.17. In addition, decreasing the number of variable sites dictated worse precision in
the estimates, with precision worsening from 0.97 to 2.27. The growth-rate parameter for
the coalescent exponential was highly variable in trees with 82, 56, and 38 tips, with very
wide 95% CIs. For these analyses, the median growth rate estimates did not converge to
a single value among datasets and were fluctuating between 0.65 to 3.78. The coverage
for the coalescent was identical to the birth–death. Analyses from the 21-tips tree with the
lowest number of variable sites failed to cover the true growth-rate in all the results and
severely underestimated this parameter for the birth–death and coalescent model.

Table 3. Simulation results from clock rate set at the medium rate (0.001/36.5 subs/site/duration of infection) for constant
rate birth–death and coalescent exponential growth model. Good precision corresponds to low relative precision values.

Dataset Variable Sites (Mean) Coverage (%) Relative Bias Relative Precision
(95% CI Width)

Birth–death
estimation of growth

rate (Truth—1.5)

21 tips 9 0 −0.96 0.31

38 tips 16 100 0.39 2.27

56 tips 24 100 0.04 1.73

82 tips 34 100 −0.08 1.44

129 tips 62 100 −0.17 0.97

Coalescent
estimation of growth

rate (Truth—1.5)

21 tips 9 0 −0.94 0.36

38 tips 16 100 0.34 4.14

56 tips 24 100 0.04 2.55

82 tips 34 100 0.17 2.26

129 tips 62 100 −0.08 1.42

Note—The mean of all bias/precision result for each simulation setting is provided.
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Figure 2. Comparison of the constant birth–death and coalescent exponential in estimating epidemic growth rate. The
95% highest posterior density results of growth rate re-estimation from the simulation set at the medium clock rate
(0.001/36.5 subs/site/duration of infection). The different colour represents a simulation dataset with various number of
tips. The mean of the posterior estimate of growth rate for each simulation is reported. The red horizontal line represents
the true growth rate (1.5). (A) Depicts the results from the birth–death. (B) Depicts the results from the coalescent.

We obtained improved performance for simulation with the evolutionary rate set
at 0.005/36.5 subs/site/duration of infection (Table 4). This clock rate setting increased
variability among sequence data with an average of 45 for the 21-tip tree to 309 for the
129-tip tree. The coverage of the birth–death was 100% for all the analyses, whereas the
coalescent was accurate for all but one analysis from the 56-tip tree simulations. The trend
continues with high tip count resulting in improved precision, while precision worsens
as the number of tips decreases. For example, the precision from high tip count to low,
improved from 2.61 to 0.89 for the birth–death and from 2.64 to 0.89 for the coalescent.
The birth–death slightly underestimated growth rate for the 129 and 82 simulations with
a relatively bias of −0.17 and −0.11 respectively and the 21 and 38 tip tree resulted in
a slight overestimation, with a relative bias of 0.11 and 0.31, respectively. Similarly, for
the coalescent underestimation of growth rate occurred for the 129 and 56 tip tree with a
relative bias of −0.11 and −0.13, respectively. Once again, the 21 and 38 tip tree subjected
to the coalescent model resulted in mean growth rate was which was widely scattered
across the simulations, however within the 95% CI.

Table 4. Simulation results from clock rate set at five times the medium rate (0.005/36.5 subs/site/duration of infection) for
constant rate birth–death and coalescent exponential growth model. Good precision corresponds to low relative precision values.

Dataset Variable Sites (Mean) Coverage (%) Relative Bias Relative Precision
(95% CI Width)

Birth–death
estimation of growth

rate (Truth—1.5)

21 tips 45 100 0.11 2.61

38 tips 72 100 0.31 2.41

56 tips 127 100 0.00 1.53

82 tips 158 100 −0.11 1.40

129 tips 309 100 −0.17 0.89

Coalescent
estimation of growth

rate (Truth—1.5)

21 tips 45 100 0.18 2.52

38 tips 72 100 0.26 2.64

56 tips 127 90 −0.13 1.28

82 tips 158 100 −0.01 1.23

129 tips 309 100 −0.11 0.80

Note—The mean of all bias/precision result for each simulation setting is provided.
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Simulations with high number of tips (high sampling) produced estimations with high
precision that always captured the correct parameter value, although occasionally with a
slight bias towards underestimation. As the tip count decreases, the estimation converges
towards the truth with worsening of precision. The number of tips for with lowest bias in
estimation in our study was for the clock rate of 0.001/36.5 subs/site/duration for infection
with 56 tips for both the coalescent and birth death model. This was also the case for the
birth–death in the tree with the clock rate set at 0.005/36.5 subs/site/duration of infection,
however the coalescent performed better with 82 tips. In terms of the number of variable
sites, these results indicate as precision improves, biases are more likely to be observed,
because the credible intervals are narrower.

3.2. Empirical Data Estimates of Molecular Clock Rate and Sampling

The Australian dataset from the state of Victoria analysis using the constant birth–
death model estimated a molecular clock rate of 1.30 × 10−3 subs/site/year, with a 95%
CI of 9.80 × 10−4 to 1.67 × 10−3 subs/site/year. Similarly, the coalescent exponential
growth model inferred a mean molecular clock rate of 8.59 × 10−4 subs/site/year with a
95% CI from 3.86 × 10−4 to 1.37 × 10−3 subs/site/year. In addition to this, the molecular
clock estimate using the New Zealand dataset were slightly higher using the birth–death
model at 2.09 × 10−3 subs/site/year with 95% CI between 1.15 × 10−3 to 3.08 × 10−3

subs/site/year. This was also the case for the coalescent model estimation of clock rate was
3.28 × 10−3 with a CI range of 1.13 × 10−3 to 5.86 × 10−3 subs/site/year. These molecular
clock rate estimates were consistent with results from previous studies using SARS-CoV-2
data [8,13], although those for the New Zealand data are on the upper range [25], which is
expected due to their short sampling time window and potentially weak temporal signal,
such that they should be interpreted with caution.

The empirical datasets used for our study were sequenced intensely during the out-
break. In Victoria, during the first wave, approximately 80% of COVID-19 cases were
genetically sequenced [8]. Over in New Zealand, approximately 56% of the cases were
sequenced [26]. Our sampling probability inferred by the birth–death model was 0.92
(CI: 0.77 to 1) for the Victorian cluster dataset and 0.85 (CI: 0.60:1) for the exponential
growth phase of the New Zealand cluster. These estimates were in line with the sequencing
efforts deployed in these locations.

3.3. Victorian Highly Sampled Outbreak Cluster Analysis

The Victorian dataset contained a highly sampled cluster outbreak of 92 samples and
174 variable sites among the sequences. Analysis using both the coalescent exponential
and birth–death yielded similar inferences for the basic reproductive number (Figure 3).
The birth–death model inferred a mean R0 value of 1.23 with a 95% CI between 0.94 and
1.52, furthermore the coalescent model inferred a mean R0 value of 1.61 with a CI of 1.22
to 2.03. Similar estimates were inferred from a dataset containing the whole outbreak
(903 sequences) within Victoria [8].

3.4. New Zealand Exponential Cluster Analysis

The New Zealand dataset consist of 44 sequences and 28 variable sites that were
acquired during the exponential growth phase of the outbreak cluster. The R0 estimates
using the birth–death model was 4.10 (CI: 2.95 to 5.45). In contrast, the coalescent model
inferred a R0 value of 0.68 (CI: −0.15 to 1.39) (Figure 3). Note that the lower bound of
R0 falls below 0, which is an unusual pattern driven by a very low growth rate with a
95% CI of −41.78 to 14.13. The birth–death estimate were robust given similar results
were recovered from a previous study using the birth–death skyline model estimating
Re changes over two-time intervals [26], although note that the previous study used the
complete data set and fixed the clock rate, where as we estimated that parameter here. The
Re estimates before strict public health policies were introduced was seven (CI: 3.7–10.7),
with our birth–death R0 estimate within the 95% CI. In contrast, the 95% CI of R0 estimate
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from the coalescent exponential-growth did not overlap and considerably underestimated
R0 parameter. In both empirical analyses, the prior on R0 is very similar to the posterior in
the birth–death model, reflecting the fact that this model can be largely informed by the
sequence sampling times in addition to the sequence data [14].

Figure 3. Basic Reproductive number, R0, estimation under the birth–death and coalescent model on empirical data. The
posterior probability distribution of the R0 estimates with sequence data (pink) and without sequence data, i.e., “under the
prior” (grey) is shown. The black bar indicates the interquartile range, the thin black lines indicate the 95% CI, while median
is represented with the centre black line. The dashed red line represents estimates from analysis from previous studies.
(A) Depicts the Australian cluster outbreak analysis with 92 samples and 174 variable sites. (B) Depicts the exponential
phase of the New Zealand cluster outbreak with 44 samples and 28 variable sites. Note that previous estimates were
conducted on the complete data set whereas here we considered the exponential growth phase only.

4. Discussion

During emerging infectious disease outbreaks, it is crucial for epidemiologist to reli-
ably quantify the spread within a population. The “phylodynamic threshold” is a relevant
concept in our study because robust estimates of population dynamics are conditioned
on allowing sufficient accumulation of genetic variation among sequence data to calibrate
the molecular clock. Instead of testing the number of samples required, we explored
the amount of genetic variation between sequence data required for robust estimates of
epidemiological parameters from the coalescent exponential and birth–death model. This
concept of measuring change within evolving populations has revolutionised our ability
to study population dynamics through phylodynamic inference [27]. The information in
sequence data determines two distinct parameters: the clock rate and tree topology and
branch lengths [14].

Our results from our simulation study demonstrate accurate inference of molecular
clock rates were possible when enough variability occurred between sequence data rather
than the number of sequences. Accurate estimation of the molecular clock rate is condi-
tioned on sufficient temporal signal from sequence data and is a necessary step for phylody-
namic inference [28]. The simulations with sufficient evolutionary change between samples,
i.e., clock rate set to 0.01 subs/site/duration of infection and 0.005/36.5 subs/site/duration
of infection (Figure 1), models appeared to have strong temporal signal, producing accurate
and precise estimates of the molecular clock rate. The number of sequences becomes
the main factor in calibrating the molecular clock when there was insufficient sequence
evolution. Our results supported this concept, with the datasets simulated with a clock
rate set at 0.001/36.5 subs/site/duration of infection on the 38–129 tip trees, estimating
the molecular clock rate reliably. This was not the case with the 21-tip tree, where the
molecular clock rate was considerably underestimated. In comparison, accurate molecular
clock estimation occurred on the same tree simulated with five times the medium rate
of evolution. The “phylodynamic threshold” for the molecular clock was reached when
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adequate molecular evolution (18–25 variable sites) occurred within our monophyletic
datasets and increasing the number of samples caused an improvement in precision.

In our simulation study, we generated trees under a birth–death process to demon-
strate the stochastic nature of disease outbreak emergence and with different clock rates
to exhibit how the number of variable sites affects phylodynamic inference. Under the
coalescent model, the 95% CI of growth rate inferred was relatively narrow compared to
the birth–death model. This results in better precision if thetrue growth rate was captured
within this interval. The cause of this narrow CI intervals is primarily due to the determin-
istic nature of the coalescent model, where the coalescent only considers the exponential
growing population trajectory while ignoring stochasticity [14]. In contrast, the results
from the birth–death analyses tend to have a wider 95% CI around the growth rate. This is
probably caused by the birth–death process accounting for stochasticity in the branching
patterns, which leads to averaging out the epidemiological processes [29]. Our findings
support this, as majority of our birth–death results estimated true growth rate with a wider
95% CI.

The birth–death model considers sampling as a parameter by modelling this process
from the sampling times, whereas the coalescent model is conditioned on the sampling
times on driving the effective population at any given time [9,29]. Phylodynamic inference
using the birth–death model with sequence data with low diversification tend to outper-
form the coalescent exponential model in our simulation study. The 56 tip trees that were
simulated with the medium clock rate (0.001/36.5 subs/site/duration of infection) resulted
in sequences with only about 24 variable sites, where the birth–death gave more reliable
estimates of the growth rate than the coalescent (Table 3). Our analyses with the birth–death
and coalescent was not able to calibrate the molecular clock for the 21-tip tree, which is
a necessity for phylodynamic inference if the molecular clock rate is not known a priori.
However, there was enough sequence variability with the 38-tip tree dataset to calibrate the
molecular clock for phylodynamic inference. From our findings, the birth–death analyses
when faced with low variable data was able to estimate growth rate for the 38-tip tree,
although with high uncertainty. This uncertainty decreases as additional sequences were
added to the datasets, which also increased the intersequence variability.

The coalescent model on the other hand does not utilise the additional information
provided from sampling times. This model only parameterises population size at any given
time, which does not exploit the full extent of the epidemiological data [11]. Results from
our simulation study using the coalescent model indicate poor performance in epidemio-
logical parameter estimation in situations of low variability in sequence data. Although,
the true growth rate from our analyses were within the 95% CI, the mean estimates for
each individual simulation were fluctuating among each tree dataset (38, 56, and 82 tips)
simulated with the medium clock rate (0.001/36.5 subs/site/duration of infection). Our
simulation results revealed that the coalescent model requires further samples and therefore
increased variability between sequences to accurately infer epidemiological parameters, in
contrast to the birth–death model.

The simulations conducted in our study used a birth–death process which generated
a closely related group of sequences, to resemble a cluster outbreak and served as a proof
of concept when analysing empirical data. The highly sampled Victorian dataset contained
a sufficient number of samples and sequence diversity and phylodynamic analysis using
either the coalescent or birth–death model yields robust estimates of epidemiological
parameters. Our results from our study were R0 values of 1.23 (birth–death) and 1.61
(coalescent), which aligned with similar R0 estimate with informative prior selections from
a birth–death skyline model.

Phylodynamic analysis on the exponential growth phase of the New Zealand cluster
(44 samples/28 variable sites), the birth–death model was able to infer reasonable estimates
(R0 = 4.10, CI: 2.95 to 5.45) of epidemiological parameters, which was in line with estimates
from a previous study [26]. In contrast the coalescent significantly underestimated the R0
parameter (0.68, CI: −0.15 to 1.39), despite obtaining a reasonable clock rate, suggesting
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temporal signal in the data. The coalescent model makes the assumption that the number
of samples must be much lower than the effective population size, which exposes the
disadvantage of the coalescent to adapt to stochastic population growth in the data [10].

A common practice in Bayesian phylodynamic inference is to run these analyses
“under the prior” to reveal the amount of information in sequence data that contributes
to the estimates, compared to the prior assumptions and underlying model. This tech-
nique may evaluate if there is enough information in the sequences for phylodynamic
inference. In addition, model adequacy methods involves evaluating the absolute model
fit that best describes the data, which could be used for model selection during epidemic
investigations [7]. This technique enables researchers to recognise if the model selected is a
good fit for the data. However, model adequacy methods are severely underdeveloped in
phylodynamics [30].

Overall, when performing Bayesian phylodynamic analyses during emerging epi-
demics, researchers should take careful consideration in selecting the model. Our findings
suggest the birth–death model is more robust when faced with data with low sequence
diversity, given that the sampling process is correctly specified, unlike the coalescent model
which required considerably more intersequence variability to improve performance [31].
A limitation of our study is that we generated a phylogenetic tree representing a cluster
event with constant sampling over time and our empirical data analyses were also in-
tensely sampled over time within a single cluster. Sequence data with irregular sampling
patterns may result in the birth–death model inferring biased epidemiological parameters.
Future studies may consider the effects of phylodynamic inference using sequence data
with low variability and irregular sampling patterns and/or homochromous sampling.
In addition, future studies should assess the impact of low sequence variation in more
complex epidemiological models. Evaluating these phylodynamic methods is essential for
future model uptake in epidemic investigations.
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