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Abstract—The pattern of action potential propagation during
various tachyarrhythmias is strongly suspected to be com-
posed of multiple re-entrant waves, but has never been imaged
in detail deep within myocardial tissue. An understanding of
the nature and dynamics of these waves is important in the
development of appropriate electrical or pharmacological
treatments for these pathological conditions. We propose a
new imaging modality that uses ultrasound to visualize the
patterns of propagation of these waves through the mechan-
ical deformations they induce. The new method would have
the distinct advantage of being able to visualize these waves
deep within cardiac tissue. In this article, we describe one step
that would be necessary in this imaging process—the conver-
sion of these deformations into the action potential induced
active stresses that produced them. We demonstrate that,
because the active stress induced by an action potential is, to a
good approximation, only nonzero along the local fiber
direction, the problem in our case is actually overdetermined,
allowing us to obtain a complete solution. Use of two- rather
than three-dimensional displacement data, noise in these
displacements, and/or errors in the measurements of the fiber
orientations all produce substantial but acceptable errors in
the solution. We conclude that the reconstruction of action
potential-induced active stress from the deformation it causes
appears possible, and that, therefore, the path is open to the
development of the new imaging modality.

Keywords—Action potential imaging, Ultrasound, Cardiac

muscle biomechanics, Cardiac electrophysiology.

INTRODUCTION

Current technology does not allow us to measure
large-scale action potential propagation deep inside
the walls of the heart. This deficiency has a number
of consequences. In the clinical setting, we rely on
diagnostics such as the electrocardiogram (ECG) or

electrophysiology (EP) studies to provide information
about the heart’s electrical state. While these tests do
certainly yield a wealth of valuable information, they
often do not provide a fundamental understanding of
the dynamics underlying the patient’s cardiac rhythm.
For example, the field of cardiology is currently mov-
ing away from EP studies as a diagnostic for deter-
mining whether to implant an implantable cardioverter
defibrillator (ICD),6 relying instead on the ejection
fraction,1,9,20 paradoxically a mechanical rather than
electrical measure, as the basis for the decision. This
suggests that an improved diagnostic for assessing the
patient’s rhythm dynamics is needed. At the research
level, this lack of a deep, panoramic view of action
potential activity means that we cannot even say with
certainty that ventricular fibrillation (VF) is caused by
multiple re-entrant action potential waves, although of
course it is strongly suspected. Even if VF is a mani-
festation of multiple waves, the nature of the dynamics
of these waves remains controversial, with their induc-
tion and maintenance being attributed to either tissue
heterogeneity27,33 or steep electrical restitution,11,12,17

and their spatial patterning thought to be composed of
either several rotating waves on equal dynamical foot-
ing,18,19,22,30 or one dominant ‘‘mother rotor’’ wave
driving fibrillatory conduction.4,26 The lack of clarity
on these issues has greatly complicated the development
of effective therapies for the prevention and treatment
of several types of tachyarrhythmias, including VF.

This bewildering landscape of theoretical wave
propagation patterns and the mechanisms for their
initiation and maintenance are what have led
researchers to develop tools that might be used to
actually determine what patterns exist during VF and
other rapid, abnormal rhythms. Rudy et al.25,29 and
others have developed a noninvasive method called
ECGi to track action potential propagation on the
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epicardium using hundreds of electrodes situated on
the body surface. This method does not as yet provide
transmural information, however. Other approaches,
such as plunge electrodes,8,10,24 transillumination,2 and
optical tomography15,31 can provide a 3D representa-
tion of the electrical activity in the heart. The spatial
resolution of the plunge electrode method is, however,
relatively low. Furthermore, it is likely that the pres-
ence of these electrodes creates electrical heterogene-
ities that strongly modify the patterns of propagation.3

Transillumination and optical tomography are prom-
ising optical techniques; however, they require the
use of voltage sensitive dyes that are phototoxic and
prevent the application of these techniques in vivo.
Furthermore, optical tomography cannot achieve suf-
ficient temporal resolution to resolve transient phe-
nomena present during fibrillation.

Magnetic resonance imaging (MRI) and computed
tomography (CT) are also capable of noninvasively
mapping the 3D contractile motion resulting from
electrical activity in the heart. Although these imaging
modalities provide very high spatial resolution, neither
technology has the time resolution necessary (5–10 ms)
to visualize, for non-repeating events, the relatively
fast timescales inherent in the propagation of action
potential waves.

We can argue that the 3D implementations of
ultrasound are among the most promising for investi-
gating the behavior of arrhythmias deep within cardiac
tissue. Compared to the aforementioned imaging
techniques, ultrasound imaging is attractive because of
its relative ease of use, real-time feedback, portability,
absence of ionizing radiation, cost effectiveness,
and widespread availability in research and clinical
applications. We can estimate the required temporal
and spatial resolutions to be on the order of 10 ms and
1.5 mm, respectively. These are based on capturing
10 frames per rotation of a spiral wave rotating
at 10 Hz, and the characteristic length scale associated
with the calcium dynamics (a 10 ms timescale on a
wave moving at 15 cm/s). Existing 2D ultrasound
machines are easily capable of such resolutions.
Indeed, ultrasound techniques have been demon-
strated, at least in 2D, to be capable of yielding real-
time, highly temporally resolved images of electrome-
chanical wave contractions in humans.23,28

The proposed new imaging modality is based on the
ability of ultrasound to detect wave-induced tissue
deformation at depth within myocardial tissue. The
idea is to extend conventional ultrasound strain imag-
ing, which extracts strain information from the defor-
mations appearing in the ultrasound images that are
caused by action potential propagation activity, and
convert these strains into the action potential-induced
stresses that caused them. These stresses will then serve

as markers for the presence of the action potentials,
allowing us to create mappings of their propagation as
functions of both time and space. A similar ultrasound
technique called harmonic motion imaging is already
the subject of intense study by the Konofagou and
collaborators,16 although their goals, which are prin-
cipally to assess the normal and pathological states of
the cardiac tissue, are quite different from the action
potential mapping goals of our research.

Here we report on a mathematically based compu-
tational technique that is capable of reconstructing the
apparent motion of active stresses induced by the
passage of action potentials from the mechanical tissue
motion. We will regard this motion as motion that can
be extracted from an ultrasound image sequence. The
locations of these active stresses as functions of time
will then, in many situations, serve as reasonable
markers for the locations of the action potentials
themselves, thereby allowing the study of propagation
patterns of action potentials within cardiac tissue, in
two and three spatial dimensions.

METHODS

Overall Approach

Our proposed imaging technique is based on the fact
that propagating action potentials in the heart create
calcium transients within the myocytes that induce
active contractile stresses, as depicted by the left panel
in Fig. 1. These active stresses are oriented predomi-
nantly in the local fiber direction (black arrows in the
center panel), in the portion of the tissue occupied or
recently occupied by the action potential. The active
stresses, in turn, lead in general to the deformation of
the entire tissue as illustrated schematically in the right
panel of Fig. 1. Our method works by extracting the
tissue displacements from ultrasound images showing
the tissue deformation and converting them into the
action potential-induced stresses that caused them,
using a numerical algorithm we refer to here as the
inverse model (as shown in Fig. 1). As part of the pro-
cess we used to test the inverse model algorithm, we also
built a forward model that simulates the biomechanical
response of the 3D cardiac tissue to a given time-
dependent active stress field meant to represent the
stress created by a propagating action potential.

Mathematical foundation for both the forward and
inverse models. Both models were based on the fol-
lowing standard equations:

@

@XM
TMNðEÞ þ Tactive

MN � pC�1MN

� � @xj
@XN

� �
¼ 0 ð1Þ

and
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detðFÞ ¼ 1 ð2Þ

Here XN and xj (N, j = 1, 2, 3), are the coordinates
in the undeformed and deformed coordinate systems,
respectively, TMN(E) is the passive second Piola–
Kirchhoff stress tensor, which depends on the
Lagrange–Green strain tensor E � 1

2 ðC� IÞ where
the Cauchy–Green deformation tensor C � FTF
and the deformation gradient tensor FjM ¼ @xj=@XM; p
is the local hydrostatic pressure, and T active

MN is the active
second Piola–Kirchhoff stress tensor due to the action
potential-induced force generated parallel to the ori-
entation of the myocardial fibers. Sums over repeated
indices are implicit. Equation (1) is a statement of force
balance and ignores inertia, a standard assumption for
the timescales we are considering.32 It also assumes the
myocardium is a nonlinear, elastic medium. While the
myocardium is perhaps better described as pseudo-
elastic, the variations of the stretch ratios (strains) for
any given stress are no more than 20%,7 so we find this
simplification appropriate. In this article, we use the
hyperelastic, orthotropic pole-zero model of Nash
and Hunter21 for the function TMN(E). Equation (2)
together with the appearance of the hydrostatic pressure
in Eq. (1) expresses the assumption of incompressibility,
common in the study of cardiac biomechanics.5,14,21

For our first attempt in studying this problem, we
use the linearized version of Eqs. (1) and (2),

@

@XM

$
1

2

@TMN

@EPQ
ð0Þ @dxP

@XQ
þ @dxQ
@XP

� �

þT active
MN � pdMN

%

¼ 0 ð3Þ

and

@dxM
@XM

¼ 0 ð4Þ

where, T active
MN , p and the displacements dxP � xP � XP

are assumed small (i.e., O(e), where e is a small num-
ber). The indices M, N, P, and Q run over the values 1,
2, and 3, with summation again implied over repeated
indices. This approximation should also be valid during
ventricular fibrillation when the tissue deformations are
typically very small; however, for cases of sinus rhythm
or external electrical pacing, we expect we will have to
use the fully nonlinear equations (1) and (2).

Finite element versions of Eqs. (3) and (4) were
generated for the case of a tissue whose undeformed
shape was that of a three-dimensional rectangular solid.
Rectangular elements were defined in the obvious
way relative to a 3D rectangular lattice of nodes whose
edges coincided with the edges of the undeformed tis-
sue. The spacings between nodal points, denoted DX,
DY, and DZ, were chosen to be uniform in each
direction. These spacings may be arbitrarily chosen, as
nothing in the resulting equations depends on their
values. Weighting functions for Eqs. (3) took the form
NlðXÞ ¼ ReN

e
l ðXÞ; for a given node l, where the sum

is over adjacent elements e and X � ðX1;X2; X3Þ �
ðX;Y;ZÞ: The element shape function Ne

l ðXÞ is defined
as Ne

l ðXÞ ¼ XYZ=DXDYDZ when the node l is located
at ðDX;DY;DZÞ and the element e is ½0;DX� � ½0;DY��
½0;DZ�; with all other element shape functions defined
in analogous fashion. The displacements were defined
using trial functions identical to these weighting
functions; i.e., dxPðXÞ ¼ dxlPNlðXÞ; where the dxlP’s
are constants. In contrast, since p, T active

MN , and
@TMNð0Þ=@EPQ appear in Eq. (3) with one less deriv-
ative than the displacements, it is appropriate to define
them in terms of amplitudes defined on the elements

FIGURE 1. As indicated by the red arrows, the passage of action potentials through individual cells causes time-dependent
processes in these cells (left panel), which lead to local contraction of the tissue primarily in the fiber direction (black arrows in the
center panel; with the large-scale tissue represented schematically as an imaginary rectangular grid drawn on an arbitrary cross
section of the tissue), causing deformation and therefore displacement of the entire tissue (right panel). Computer models of both
of the forward problem (the creation of displacements from known active stresses; red arrow on right) and the inverse problem (the
determination of the stresses that had to be present to create a given displacement field; blue arrow) are used in this study.
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rather than the nodes; e.g., pðXÞ ¼ pe �NeðXÞ; etc. Here
we use a lower order trial function, defined simply as
�NeðXÞ ¼ 1 for X within the element e, and 0 otherwise.
This lower order function was also used as the
weighting function for Eq. (4). When these finite ele-
ment representations were substituted into Eqs. (3) and
(4), multiplied by the weighting functions, and inte-
grated over X, we obtained,

Z
�Ne
@Nl

@XP
dX

� �
dxlP ¼ 0 ð6Þ

Integration by parts was performed in deriving
Eq. (5), assuming homogeneous Neumann boundary
conditions (i.e., force-free conditions on all the
surfaces). We also assume that the active second Piola–
Kirchhoff stress tensor has only one nonzero compo-
nent, tactive, in the 1–1 direction, before rotation by a
unitary matrix U orients the tensor in the local fiber
direction. This corresponds to our assumption that, as
an action potential propagates by in some arbitrary
direction, active contractile stress can only occur in the
fiber direction, which we define to be in the ‘‘1’’
direction before rotation. This assumption is not trivial
physiologically, as the orientation of fibers along a
clear direction can, under some pathological condi-
tions, fail to exist. Sums over e and f are over elements
(only a single sum in the middle term), sums over l are
over nodes, and sums over M, P, and Q are over 1, 2,
and 3. Equation (5) depends on N = 1, 2, 3 and node
index j; Eq. (6) just depends on e. Equations (5) and (6)
are linear and homogeneous in the displacements
defined at the nodes, dxlP; the active stresses along the
local fiber direction in each of the elements, ðtactiveÞe,
and the pressures in the elements, pe. We note that any
arbitrary rigid rotation or translation of a solution to
Eqs. (5) and (6) is again a solution; thus it was useful to
constrain the solution to a particular translation and
rotational orientation by adding six equations to
Eqs. (5) and (6): three that hold the mean displacement
of the nodes to 0 in all three dimensions (which also
translates into no net displacement of the center of
mass if uniform mass density can be assumed):

X

l

dxlP ¼ 0 ð7Þ

and three equations that prevent rotation around the
center of mass:

X

l

ðXl � XcmÞ � dxl ¼ 0 ð8Þ

where Xcm ¼
P

l

Xl: The equations therefore have the
form,

A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

A4 B4 C4 0 0
a5 b5 c5 0 0

66666664

77777775

dx1
dx2
dx3
p
tactive

66666664

77777775
¼ 0 ð9Þ

where all the elements in the first ‘‘super’’ matrix on the
left are themselves matrices, and all the elements of the
second matrix are column vectors. The first three rows
of the matrix on the left of Eq. (9) correspond to the
three components of Eq. (5), the fourth row corre-
sponds to Eq. (6), and the fifth row imposes the con-
straints defined by Eqs. (7) and (8).

The ‘‘forward’’ model: Determination of the tissue
displacements caused by a given active stress field.
This function is easily accomplished by rewriting
Eq. (9) as,

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 0
a5 b5 c5 0

66666664

77777775

dx1
dx2
dx3
p

2

664

3

775 ¼

�E1

�E2

�E3

0
0

66666664

77777775
tactive
� 	

ð10Þ

Given values for all the active stresses in the column
vector tactive, we have four sets of equations (i.e., those
associated with the first four rows of the matrix on the
left) for the four unknown column vectors dx1, dx2,
dx3, and p. These four sets of equations, when com-
bined with the six constraints defined by the fifth row,
have sufficient rank to allow solution using the built-in
sparse matrix equation solver in the Matlab pro-
gramming environment (The Mathworks, Inc.), thus
yielding a complete description of the tissue deforma-
tion and compensating hydrostatic pressure produced
by a given active stress field. Since there are no time
derivatives in these equations, the temporal evolution
of the deformations induced by a time-dependent
active stress field may be created simply by solving

1

2

@TMN

@EPQ
ð0Þ

� �f

þ @TMN

@EQP
ð0Þ

� �f
" # Z

@Nj

@XM

�Nf
@Nl

@XQ
dX

� �
dxlp þ

Z
@Nj

@XM

�NedX

� �
Ue

M1U
e
N1ðtactiveÞ

e

�
Z

@Nj

@XN

�NedX

� �
pe ¼ 0 ð5Þ
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Eq. (10) repeatedly for each instant in time for which
we have active stress field data.

The inverse model: Determination of the active
stresses produced by action potentials using tissue dis-
placement data. Two variants of the inverse model were
tested. Variant 1: If two of the three direction com-
ponents (say, the ‘‘1’’ and ‘‘3’’ components) of the
displacements can be extracted from the full three-
dimensional volume, the model can reconstruct the
active stress field that caused the displacements
everywhere within the volume. We expect that this
method will be useful in future experiments that make
use of 3D ultrasound imaging techniques. The appro-
priate form of Eq. (9) for this method is,

B1 D1 E1

B2 D2 E2

B3 D3 E3

B4 0 0
b5 0 0

66666664

77777775

dx2
p
tactive

2

4

3

5 ¼

�A1 �C1

�A2 �C2

�A3 �C3

�A4 �C4

�a5 �c5

66666664

77777775

dx1
dx3

� �

ð11Þ

In this case, the four sets of equations plus the six
constraints represented by Eq. (11) actually constitute
an overdetermined problem for the three unknown
fields, dx2, p, and tactive. We therefore solved for them
in the least-squares sense, again using Matlab’s built-in
sparse matrix solvers.

Variant 2: If the deformation data come from a two-
dimensional imaging plane, say, a plane oriented in the
x1 and x3 (i.e., the x and z) directions, embedded
within the volume, and consist of the two in-plane
directional components of the displacement, then we
can estimate, within the same plane, the active stress
field that caused it. The solution to this problem is, in
principle, relevant to the two-dimensional B-mode
ultrasound imaging techniques. In this case, however,
there is technically not enough data to uniquely
determine the stress field. The problem is that the
spatial derivatives in the direction perpendicular to the
plane contribute to the determination of the stress.
These derivatives cannot be determined solely from
displacement data obtained from the plane. One of
these derivatives may be obtained from the incom-
pressibility condition; i.e., @dx2=@X2 ¼ �@dx1=@X1�
@dx3=@X3; however, this still leaves the other two
normal derivatives, @dx1=@X2 and @dx3=@X2 undeter-
mined. For this initial study, we make the assumption
that all planes parallel to this plane contain identical
data for the displacement fields dx1 and dx3. We then
apply Eq. (11). We can expect this assumption to be
valid if the variation of mechanical deformation is
small in the x2 (i.e., the y) direction.

As with the forward problem, either inverse model
can generate the active stress field by simply solving

Eq. (11) for each time for which displacement data are
available.

RESULTS

Tests of the Active Stress Reconstruction Algorithm

To test our methods, the forward model was used to
generate the mechanical deformations induced by the
traveling plane wave of active stresses shown in Fig. 2a
in the cubic block of tissue shown Fig. 2b. The plane
wave was chosen to have a width that was five-ninths
the edge length of the cube, and contained a constant
active stress of magnitude 2.0. This wave was used to
mimic the contractile force that would be produced by
an action potential plane wave. The block of tissue
contained fibers whose direction rotated with depth, as
is also the case in actual myocardial tissue. The fibers
were oriented in the y-direction on the top surface of
the cube-shaped tissue in Fig. 2b, rotated in the
clockwise direction as a linear function of z to point in
the x-direction in the horizontal plane in the middle of
the cube, and continued to rotate linearly clockwise so
that they pointed back in the y-direction at the bottom
of the cube. For this study, a 10 9 10 9 10 lattice of
nodes was employed.

We then used the deformations obtained from
the forward model as input into the two variants of
the ‘‘inverse’’ model, based on Eq. (11). Variant 1,
which takes as input two of the three displacement
components expressed as spatially 3D data, was able
to reproduce the original active stresses essentially
exactly, to within 1 part in 1012, as is readily apparent
by comparing Figs. 2c to 2a. Variant 2 was able to do a
reasonable job of reconstructing the stress field plane
wave in the plane from which the deformation data
were taken (Fig. 2d). When random errors were pur-
posely introduced into the fiber direction, both vari-
ants of the inverse code were still reasonably successful
in reconstructing the active stresses, as illustrated in
Figs. 2e and 2f, suggesting that the reconstruction
process is not highly sensitive to errors we might make
in measuring the fiber direction in the experiment.
Here the errors were chosen from a distribution of zero
mean and standard deviation of 10�.

Studies of this type were conducted for 10 different
orientations of this rotated fiber pattern. Specifically,
the ability of Variants 1 and 2 to reconstruct the
active stress field of a plane wave propagating in the
x-direction, in both the presence and absence of fiber
direction error, was studied for the cases in which the
entire fiber orientation spatial pattern just described
was rotated through angles ranging from 0� to 90�
around the z-axis in increments of 10�. For all 10
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orientations, Variant 1 without fiber error reproduced
the original active stress field to within 1 part in 1012.
For the other three cases (i.e., Variant 2 without fiber
errors and both variants with fiber errors), we found

that the reconstruction was more accurate in regions in
which the fiber orientations lie in the x–z plane. For
example, for the fiber orientation pattern used in all
the plots in Fig. 2, this region intersects the displayed

FIGURE 2. (a) Applied active stresses in the local fiber direction as a function of x and z for all values of y at three selected times.
The applied active stress was chosen to be 2:0êaêa in the gray regions, where êaðzÞ is the local fiber direction, and zero everywhere
else. (b) Resulting deformations of the cubically shaped tissue system, as calculated by the forward model. (c) Reconstruction of
the active tensions in the local fiber direction using Variant 1 of the inverse code for the deformations shown in panel (b). The slice
shown is an x–z oriented plane centered at y = Ly=2 (Ly being the system length in the y direction). (d) Reconstructions of the
active tensions using Variant 2 in the same plane. (e, f) Same as (c) and (d), respectively, but with random errors purposely
introduced into the fiber directions. The errors were Gaussian distributed around 0� with a standard deviation of 10�. (g–j) Regions
of active tension (in orange) inferred from the data shown in panels (c) through (f), respectively (see text). Length and time scales in
this figure are arbitrary, as the calculation at each time determines a separate global equilibrium, and the equation itself has no
characteristic length scales.
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cross section in the white rectangle in each panel of
Figs. 2d–2f. The higher accuracy within each rectangle
is manifested as more red, orange, and yellow cells in
the portion of the rectangle inside original non-zero
active stress region, and primarily blue cells outside
this region (but still inside the rectangle). The position
of the region containing x–z oriented fibers changes in
each of the 10 orientations, but in each case, the
accuracy was found to be highest within this region.
Other than differences in the positioning of this higher
accuracy region, the reconstructed active stresses for
the 10 cases did not exhibit features substantively dif-
ferent from those shown in Figs. 2c–2f.

When the magnitudes of the reconstructed active
stresses of all the cells inside (red) and outside (blue)
the original non-zero active stress regions at all mea-
sured times from all 10 of these studies were plotted as
distributions, we obtained the plots shown in Fig. 3.
As expected, for Variant 1 with no fiber orientation
errors, there is no spread of the values around the

original values of 2.0 and 0.0, respectively. (The slight
amount of spread shown in Fig. 3a is entirely due to
the width of the bins used to create the distributions.)
The distributions for the other three cases showed
substantial spread, with somewhat more spread
exhibited by the cells inside the original non-zero active
stress region for the Variant 2 cases (Figs. 2b and 2d)
than the Variant 1 case (Fig. 2c).

Despite this spread, the two distributions are fairly
well separated from each other. Thus, a value, tcactive,
may be chosen such that, if any given cell has
tactive>tcactive it is most likely in the active stress region,
while if tactive<tcactive it is mostly likely not. Figure 4
shows how well this classification scheme works for
different values of tcactive:

We observe that, for the Variant 1 of the inverse
model (i.e., the variant that uses 3D data as input),
the fraction of cells misclassified is smallest when
tcactive ¼ 0:82, while for Variant 2, the optimal value for
tcactive is 0.63 or 0.61, depending on whether fiber error

FIGURE 3. Distribution of magnitudes of the reconstructed active stresses for all cells inside (red) and outside (blue) the nonzero
active stress region, as calculated by (a) Variant 1 of the inverse model, (b) Variant 2, (c, d) Variants 1 and 2, respectively, with fiber
angle errors. Data were obtained from all recorded times from all 10 runs described in the text.
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is present or not. Using tcactive ¼ 0:82 as the classifica-
tion criterion for the data shown in the two Variant 1
runs shown in Fig. 2 (i.e., panels c and e), we obtain
Figs. 2g and 2i, respectively, where orange represents
cells in classified as being inside the active stress region,
and blue outside. The agreement is perfect between
Figs. 2g and 2a, as expected, since the solution is
overdetermined in this case and not compromised
by fiber orientation errors. The agreement between

Figs. 2i and 2a, when fiber error is present, is not
perfect, but is acceptable, in the sense that it provides
good insight into how the active stress region (and
thus, presumably, the corresponding action potential)
is propagating. When tcactive ¼ 0:63 was used to classify
the Variant 2 runs (e.g., Figs. 2d and 2f), favorable
results were again obtained. As shown in Figs. 2h and
2j, a reasonably clear representation of the left-to-right
motion of the active stress region is again obtained,
despite the presence of a few misclassified cells.

Simulations were also conducted to develop insight
into the effect that error and/or noise in the ultrasound
image displacement data will have on our inverse
model. Since we currently have no clear indication
of the type of noise that might be present in these data,
we used a white noise power spectrum for the error,
which presumably is a fairly pessimistic assumption.
Accordingly, normally distributed random errors with
mean 0 and standard deviation 0.024 were added to
each of the displacements calculated by the forward
model for the cubic system. This value for the standard
deviation represented an error of 10% in the dis-
placement measurements, since the displacements cal-
culated from the forward model were found to have a
spread in magnitude characterized by a standard
deviation of 0.24. The effects of these errors for Vari-
ant 1 of the inverse model with no fiber errors are
shown in Fig. 5.

As seen in Fig. 5a, there is significant spread in the
calculated values of the active stress, both in the active
stress ‘‘wave’’ (red curve) and outside it (blue curve).

FIGURE 4. Fraction of cells misclassified as either inside the
non-zero active stress region when they are classified as
being outside, or vice versa, as a function of the classification
parameter tc

active. All cells from all recorded times from all 10 of
the runs described in the text were used as data to create this
plot.

FIGURE 5. Ability of Variant 1 of the inverse model to reconstruct the location of an action potential in the presence of noise of
relative amplitude 10% added to the displacements. The case to which noise was added is the same one examined in Fig. 2.
(a) Distribution of magnitudes of the reconstructed active stresses for all cells at all examined times inside (red) and outside (blue)
the nonzero active stress region. (b, c) Regions of active stress (in orange) inferred from the results of the inverse algorithm,
assuming cells with measured active stress greater than (less than) 1.0 were (were not) in the actual regions of active stress. Two
planes within the volume are shown: the y 5 Ly /2 plane, which cuts through the center of the cube, and the y 5 0 plane, which
corresponds to one of the surfaces of the cube. The three times shown are the same three shown in Fig. 2.
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However, if we classify the pixels as being in the wave
when the calculated active stress is greater than 1, and
outside the wave otherwise, we found that 8.2% of all
the pixels were classified as in the AP when they were
not, while 4.8% were classified as not in the AP when
they were. The remaining 86.9% of the pixels were
classified correctly. It was also interesting to note that
the classification of pixels was better near the
boundaries (e.g., Fig. 5c) than in the center (e.g.,
Fig. 5b).

Active Stresses Cause Tissue Displacement
at Long Range

Examination of the deformation of the tissue as
shown in Fig. 2b suggests that the displacements cre-
ated by a region of nonzero active tension are not
confined to that region, but instead tend to appear
throughout the tissue. This observation is supported
by the following calculation, which derives the dis-
placement field created by a point active stress. Sup-
pose that the zz component of the active stress Tzz is
only nonzero at the origin of a three-dimensional
domain of infinite extent, while all other components
of the active stress are 0 everywhere. Transformation
of Eqs. (3) and (4) into a cylindrical coordinate system
R;u;Zð Þ yields the following three equations:

T
@2

@R2
þ 1

R

@

@R
� 1

R2
þ @2

@Z2

� �
dR ¼ @P

@R
ð12Þ

T
@2

@R2
þ 1

R

@

@R
þ @2

@Z2

� �
dZ ¼ @P

@Z
� @TZZ

@Z
ð13Þ

@

@R
þ 1

R

� �
dRþ @dZ

@Z
¼ 0 ð14Þ

where dR and dZ are displacements in the R and Z
directions, respectively, and the constitutive relation-
ship between strain and active stress is assumed to be
isotropic with Young’s modulus T. We find that, when
the following forms for the dynamical variables and
TZZ are substituted into Eqs. (12–14):

dR ¼ CRðK;LÞJ1ðKRÞeiLZ ð15Þ

dZ ¼ CZðK;LÞJ0ðKRÞeiLZ ð16Þ

P ¼ CPðK;LÞJ0ðKRÞeiLZ ð17Þ

TZZ ¼ CTðK;LÞJ0ðKRÞeiLZ ð18Þ

algebraic expressions independent R and Z are
obtained among the coefficients CR, CZ, CP, and CT

indicating that Eqs. (15–18) are eigenmodes of the

system of equations (12–14). Here K and L are arbi-
trary constants, and J0 and J1 are 0th and 1st order
Bessel functions of the first kind. Rearrangement of
these algebraic relationships allows all of these coeffi-
cients to be expressed in terms of CT:

CR ¼
KL2CT

TðK 2 þ L2Þ2
ð19Þ

CZ ¼
�iK 2LCT

TðK 2 þ L2Þ2
ð20Þ

CP ¼
L2CT

ðK 2 þ L2Þ ð21Þ

To apply these eigenmode solutions to the case of a
point active stress at the origin, we note that an active
stress field that is only nonzero at the origin having an
integrated strength of t0 may be written as a Fourier–
Bessel integral13:

TZZðR;ZÞ ¼ t0
dðRÞdðZÞ

2pR

¼
Z1

0

Z1

�1

CTðK;LÞJ0ðKRÞeiLZdL dK ð22Þ

where

CTðK;LÞ ¼ ð2pÞ�3=2Kt0 ð23Þ

Since the system of equations is linear, we can use
the principal of superposition to write the displace-
ments and hydrostatic pressure resulting from this
point active stress as Fourier–Bessel integrals, with
coefficients given by Eqs. (19–21), where CT is given by
Eq. (23). The resulting integral expressions may be
evaluated using integral tables.13 Transforming the
expressions from cylindrical to spherical (r,h,u) coor-
dinates, we obtain the following:

dRðr; h;uÞ ¼ 1

r2
t0

4ð2pÞ1=2T
sin hð1� 3 cos2 hÞ ð24Þ

dZðr; h;uÞ ¼ 1

r2
t0

4ð2pÞ1=2T
cos hð1� 3 cos2 hÞ ð25Þ

Pðr; h;uÞ ¼ 1

r3
t0

2ð2pÞ1=2
ð1� 3 cos2 hÞ ð26Þ

These Green’s function solutions show that the
displacements and hydrostatic pressure fall off as 1/r2

and 1/r3, respectively, in response to active stress
located at a single point. The response to active stress
thus behaves like a long-range force not unlike gravity
or the electrostatic force, affecting the displacements
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and pressure far from the actual source. This elimi-
nates the possibility that a technique can simply use the
local presence of displacements as a marker for the
presence of action potentials activity nearby. Thus, it
should not be possible in general to determine the
location of the source, i.e., the active stresses, without
considering the entire problem, including boundary
conditions, within the framework of an electrome-
chanical model. We also note that, while the dis-
placements scale inversely with the Young’s Modulus
T of the tissue, the pressure, which enforces the
incompressibility condition, is independent of this
quantity. Also, as expected, all quantities scale linearly
with the magnitude of the active stress t0.

DISCUSSION

In this article, we describe key mathematical tech-
niques for visualizing the location and motion of waves
of action potential-induced active stress traveling both
on the surface and deep within myocardial tissue. As
an initial test of these ideas, we have developed the
linear version of the algorithm and studied its ability to
reconstruct simple plane waves of active stress propa-
gating in a three-dimensional cubic system containing
fiber directions that rotate with depth. We find that,
when the deformation data consist of two of the
three components of the displacement field defined
throughout the 3D system, the method is very precise,
allowing essentially exact reconstruction of the active
stresses. This result is to be expected—the theory
shows that, when the active stresses are all a function
of a single scalar field (i.e., the active stress along the
local fiber direction) and the orientation of these fibers
is known throughout the tissue, then the problem is
actually overdetermined, and thus will yield the exact
solution, when it exists. This calculation is the one
relevant to ultrasound machines capable of imaging
three-dimensional volumes within the myocardium.

In contrast, when the two components of displace-
ment are only known within a two-dimensional imag-
ing plane, as is the case for B-mode ultrasound
imaging, determination of the active stresses within
this same plane is an underdetermined problem,
requiring reasonable assumptions to be made. As a
first attempt, we assumed slow variation of the two
in-plane displacements in the direction perpendicular
to the imaging plane. With this assumption, we find
that the method is still able to do a reliable recon-
struction of a plane wave consisting of active stresses
along the local fiber direction. This type of assumption
may not be valid when the tissue properties are
strongly heterogeneous, or when the pattern of wave
propagation contains more spatial structure, as would

be the case, for example, during ventricular fibrillation.
This issue will be a focus of further investigation in
future studies.

Even when errors of order 10� were purposely
introduced into the fiber directions, both variants of
the inverse model performed reasonably well in
reconstructing the active stress plane wave. This result
suggests that the reconstruction process is not highly
sensitive to errors in the measurements of fiber orien-
tation, an important characteristic of the method, as a
requirement of precise measurements of the fiber ori-
entations would greatly complicate the use of the
method as an imaging modality.

The method also performed reasonably well when
white noise of relative amplitude 10% was added to the
displacement data. We currently have no predictions
about the spatial power spectrum of noise and error we
will find in the ultrasound data; however, we believe
that the assumption of white noise should be a fairly
pessimistic one. It is not too hard to imagine the
existence of short-distance positive correlation in the
error that results from a tendency for points in
the tissue that are in close proximity to move together.
Thus, we can reasonably expect that the performance
of our inverse algorithm will be even better in practice
than is shown here.

One can question whether such an involved inverse
calculation is necessary to extract the active stress from
the tissue displacements they induce. However, as we
demonstrate in the calculations embodied by Eqs. (12–
26), the magnitudes of these displacements fall off only
as fast as 1/r2 with distance, so we believe it is unlikely
that active stresses in a particular location can be
determined solely from the displacements present in
that area.

The method described here does not yield detailed
membrane potential profiles of the action potentials.
Such profiles are likely to be difficult or impossible to
extract from the output of our method, the active
stresses, because a clear one-to-one relationship
between these stresses and the level of the membrane
potential does not exist. This might, for example, be
the case in partially refractory tissue or near the centers
of spiral wave rotation. Nevertheless, we expect that
the spatial and temporal patterning of active stresses
yielded by our method should be a reasonable indica-
tor of the location, motion, and spatial patterning of
action potentials and their propagation, most of the
time over most of the tissue. This level of imaging is, in
our opinion, still likely to be very useful in determining
the essential dynamics of the action potentials, which
we believe will be important in diagnosing the nature
of their propagation during clinically important phe-
nomena such as ventricular polymorphic tachycardia
and fibrillation.
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While we are currently targeting ultrasound imaging
as the application for this method, we note that the
applicability of the method is not necessarily restricted
to the ultrasound modality. Any imaging method that
can be translated into mechanical tissue deformations
in at least a 2D imaging plane is a potential candidate
for use with this method.
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