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Mitogen signal-associated pathways, energy metabolism 
regulation, and mediation of tumor immunogenicity play essential 
roles in the cellular response of malignant pleural mesotheliomas 
to platinum-based treatment: a retrospective study
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Background: Malignant pleural mesothelioma (MPM) is a rare malignant tumor associated with asbestos 
exposure, with infaust prognosis and overall survival below 20 months in treated patients. Platinum is still 
the backbone of the chemotherapy protocols, and the reasons for the rather poor efficacy of platinum 
compounds in MPM remain largely unknown. Therefore, we aimed to analyze differences in key signaling 
pathways and biological mechanisms in therapy-naïve samples and samples after chemotherapy in order to 
evaluate the effect of platinum-based chemotherapy.
Methods: The study cohort comprised 24 MPM tumor specimens, 12 from therapy-naïve and 12 from 
patients after platinum-based therapy. Tumor samples were screened using the NanoString nCounter 
platform for digital gene expression analysis with an appurtenant custom-designed panel comprising a total 
of 366 mRNAs covering the most important tumor signaling pathways. Significant pathway associations were 
identified by gene set enrichment analysis using the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt)
Results: We have found reduced activity of TNF (normalized enrichment score: 2.03), IL-17 (normalized 
enrichment score: 1.93), MAPK (normalized enrichment score: 1.51), and relaxin signaling pathways 
(normalized enrichment score: 1.42) in the samples obtained after platinum-based therapy. In contrast, 
AMPK (normalized enrichment score: –1.58), mTOR (normalized enrichment score: –1.50), Wnt 
(normalized enrichment score: –1.38), and longevity regulating pathway (normalized enrichment score: 
–1.31) showed significantly elevated expression in the same samples.
Conclusions: We could identify deregulated signaling pathways due to a directed cellular response 
to platinum-induced cell stress. Our results are paving the ground for a better understanding of cellular 
responses and escape mechanisms, carrying a high potential for improved clinical management of patients 
with MPM. 
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Introduction

Malignant pleural mesothelioma (MPM) is a malignancy 
originating from pleural mesothelium, a serosal membrane 
covering the thoracic cavity. This rare type of cancer is 
associated with asbestos exposure and has a very poor 
prognosis: less than 20 months if treated and less than nine 
months if untreated (1-3). Only a small fraction of patients 
is suitable for potentially curative surgery through radical 
pleurectomy (4). Despite encouraging results of the recent 
trials with immunotherapy in patients with MPM (5), most 
patients receive the standard chemotherapy, approved by 
both the U.S. Food and Drug Administration (FDA) as well 
as the European Medicines Agency (EMA). This treatment, 
consisting of cisplatin and pemetrexed, prolongs overall 
survival by several months, with especially epithelioid 
mesothelioma benefiting from this therapy (6). Response 
rates for monotherapies either with cisplatin or carboplatin 
are low, ranging from 6% to 16% (7,8). 

Platinum cytotoxicity is based on the formation of bulky 
DNA adducts induced by covalent binding of platinum and 
alteration of DNA bases (9), leading to both DNA inter- 
and (1,2 or 1,3) intra-strand cross-linking (10-17). Platinum 
compounds prevent normal cell replication and trigger 
apoptosis (12,16,18) unless adducts from genomic DNA are 
repaired (15). Even a single DNA cross-link, if not repaired, 
can be lethal (19). Platinum-induced DNA damage leads 
to TP53 induced cell cycle arrest and apoptosis (20,21). 
However, it is uncertain whether DNA repair mechanisms 
are the key factors associated with an impaired therapy 
response since other cellular mechanisms, such as cell cycle 
control and intracellular signaling pathways, are thought to 
contribute to resistance to platinum. Since the identification 
of MPM molecular properties may help to identify the 
reason(s) of the inadequate treatment response, several 
studies addressed this question (7,8,19,22-25). Unfortunately, 
the reasons for the poor efficacy of platinum-based therapy 
in MPM patients are still largely unknown. Given these 
therapeutic limitations, further basic research is needed to 
provide a more detailed insight into the pathogenesis and 
biology of MPM and enable opportunities for innovative 
and novel treatment strategies (1).

Therefore, we aimed to analyze differences in key 

signaling pathways and biological mechanisms in therapy-
naïve samples compared to samples after chemotherapy to 
evaluate the effect of platinum-based chemotherapy.

We present the following article in accordance with the 
STROBE reporting checklist (available at https://dx.doi.
org/10.21037/tlcr-21-201).

Methods

Study cohort and experimental design

For this exploratory mRNA study, twenty-four formalin-
fixed paraffin-embedded (FFPE) tumor specimens of MPM 
patients of the epithelioid histological subtype treated at 
the West German Cancer Centre or the West German 
Lung Centre between 2005 and 2009 were screened. 
Diagnoses of MPM, epithelioid subtype, were confirmed by 
two experienced pathologists (TMA, JWO), based on the 
latest WHO classification (26), and patients were re-staged 
using the UICC/AJCC staging system of 2017 (27). Half 
of the collected samples were taken prior to any therapy, 
and the other half after chemotherapy. All patients received 
platinum-based chemotherapy. The radiologic response 
rate was assessed using the modified Response Evaluation 
Criteria in Solid Tumors (modRECIST), which have been 
validated in MPM (28,29). Surveillance for this study 
cohort stopped on August 31, 2014. Complete follow-up 
was available for all patients with reported deaths in more 
than 96% (23/24). Disease progression under therapy was 
observed in approximately 80% (19/24) of patients. Clinico-
pathological data are summarized in Table 1.

This retrospective study conformed to the principles 
outlined in the Declaration of Helsinki (as revised in 2013). 
It was approved by the Ethics Committee of the Medical 
Faculty of the University Duisburg-Essen (identifier: 14-
5775-BO), and individual consent for this retrospective 
analysis was waived. 

RNA extraction and RNA integrity assessment

Three to five 4 µm thick paraffin sections of whole tumor 
per sample were used for total RNA isolation. RNA was 
isolated by a semi-automatic Maxwell purification system 
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(Maxwell RSC RNA FFPE Kit, AS1440, Promega). 
Purification was performed according to the manufacturer’s 
instructions. RNA was eluted in 50 µL RNase-free water 
and stored at −80 ℃. RNA concentration was measured 
using a Qubit 2.0 fluorimeter (Life Technologies) 
appertaining to the RNA broad-range assay. Total RNA 
integrity and quality were assessed using a Fragment 
Analyzer (Advanced Analytical Technologies, Ames, IA, 
USA) and appertaining DNF-489 standard sensitivity RNA 

analysis kit.

Digital gene expression analysis

Gene expression patterns were screened for prognostic 
and predictive biomarkers using the NanoString nCounter 
platform for digital gene expression analysis with an 
appurtenant custom-designed panel comprising a total of 
366 mRNAs (9 potential reference genes (ACTB, GAPDH, 
HPRT1, CLTC, GUSB, NEDD8, PGK1, TTC1 and 
TUBB as well as 357 target genes) covering the most 
important tumor signaling pathways. For each sample, 200 
ng of total RNA was processed. The sample preparation in 
the nCounter Prep Station (NanoString) was carried out 
by using the high-sensitivity protocol (3 h preparation). 
The cartridges were measured at 555 fields of view in the 
nCounter Digital Analyzer (NanoString). 

NanoString data processing 

NanoString data processing was performed with the 
R statistical programming environment (v3.4.2) using 
the NanoStringNorm (30) and the NAPPA package, 
respectively. 

Considering the counts obtained for positive control 
probe sets raw NanoString counts for each gene were 
subjected to a technical factorial normalization, carried out 
by subtracting the mean counts plus two-times standard 
deviation from the CodeSet inherent negative controls. 
Afterward, a biological normalization using the geometric 
mean of the inherent reference genes was performed. 
Additionally, all counts with P>0.05 after one-sided t-test 
versus negative controls plus 2× standard deviations were 
interpreted as not expressed to overcome basal noise. 

Statistical analysis

Statistical and graphical analyses were performed with 
the R statistical programming environment (v4.0.2) (31). 
Before explorative data analysis, the Shapiro-Wilks-test 
was applied to test for normal distribution of each data set. 
For dichotomous variables, the Wilcoxon Mann-Whitney 
rank sum test (non-parametric) or two-sided student’s t-test 
(parametric) was used. For ordinal variables with more than 
two groups, the Kruskal-Wallis test (non-parametric) or 
ANOVA (parametric) was used to detect group differences. 
Double dichotomous contingency tables were analyzed 
using Fisher’s exact test. To test dependence to ranked 

Table 1 Clinico-pathological data of the study cohort

Characteristics Data

Number of patients 24

Therapy naïve

Yes 12

No 12

Gender

Male 22

Female 2

Histological subtype

Epithelioid 24

UICC/AJCC 2017

1A 1

1B 10

3A 1

3B 7

4 4

Undetermined 1

Age

Mean/median age at diagnosis (years) 65/63.5

Range (years) 51–80

OS

Deceased 23

Alive 1

Mean/median OS (months) 19.4/16.3

PFS

Remission (initial) 10

Progression (total) 20

Mean/median PFS (months) 9.7/6.3
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parameters with more than two groups, Pearson’s Chi-
squared test was used. Correlations between metrics were 
analyzed using Spearman’s rank correlation test. 

Adaption of profiles for diagnostic purposes was explored 
with the supervised machine learning tools “Classification 
and Regression Tree Algorithm” (CART) as implemented in 
the “rpart” library of R (according to Therneau and Atkinson) 
using a leave-one-out cross-validation. Additionally, 
conditional interference trees (CTree), as implemented in 
the “party” library of R was modeled, leading to a non-
parametric class of tree-structured regression models.

Pathway analysis is based on the KEGG database and was 
performed using the “pathview” package of R. Differences 
were specified by –log2 fold change between means (if 
parametric) or medians (if non-parametric) of compared 
groups. Significant pathway associations were identified by 
gene set enrichment analysis using the WEB-based GEne 
SeT AnaLysis Toolkit (WebGestalt) (31-33). Each run was 
executed with 1,000 permutations. Finally, all associations 
were ranked according to the false discovery rate (FDR) 
(P<0.05).

Due to the multiple statistical tests, the P values 
were adjusted by using the FDR. The level of statistical 
significance was defined as P≤0.05 after adjustment. 

Results

Gene expression analysis

Tumor specimens collected after therapy show clearly 
elevated expression levels of H2AFX (P=0.005), PCNA 
(P=0.024), XRCC1 (P=0.029), DUOX2 (P=0.034) and 
NELL2 (P=0.034) in comparison to treatment-naïve 
samples. In contrast, gene expression of DUSP6 (P=0.010), 
MYC (P=0.020), IL8 (P=0.045) and ANGPT2 (P=0.050) 
was found to be significantly decreased after treatment 
(Figure 1).

Additionally, unsupervised conditional inference tree 
(CTree) analysis identifies H2AFX and PMS1 as a pattern 
for biunique classification between neo- and adjuvant 
treatment. In particular, H2AFX expression below 1,088 
counts leads to a subgroup highly enriched for pretreatment 
samples (P=0.006). Subsequently, a group with more 
than 1,088 H2AFX counts and high expression of PMS1 
(P=0.027, cut-off: 222 counts) contains only specimens after 
platinum-based therapy (Figure 2). 

Looking into the factors involved in cell cycle control 

Group-dependent Target Distribution

DUOX2

DUSP6

H2AFX

XRCC1

PCNA

IL8

MYC

NELL2

Post
Pre

Figure 1 Presentation of different expression of analysed genes in 
samples with and without therapy. One can see elevated expression 
of H2AFX, PCNA, XRCC1, DUOX2 and NELL2) in samples 
after therapy, and decreased expression of DUSP6, MYC and IL8.  
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Figure 2 Presentation of unsupervised conditional inference 
tree (CTree) analysis. H2AFX and PMS1 have been identified as 
important separators of samples before and after therapy, based 
on their counts. H2AFX expression below 1,088 counts revealed a 
subgroup highly enriched for pretreatment samples. A group with 
more than 1,088 H2AFX counts, and more than 222 PMS1 counts 
includes only specimens after platinum-based therapy. 
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and progression in the pretreatment samples revealed high 
levels of TGF-β, p14, p16 (both encoded by CDKN2A), and 
p15 (encoded by CDKN2B), indicating a robust regulatory 
mechanism for G1-to-S-phase transition. In samples 
collected after platinum-based therapy, an upregulation of 
the following genes was observed: SMAD2 and SMAD3, 
markers for apoptosis/cell cycle arrest induction, ATM/ATR 
and their downstream cascade including p53 and PCNA, 
and also various CDKs such as CDK1, CDK4, and CDK6 
as well as their respective cyclins B, D, and H (Figure 3).

Gene set enrichment analysis (GSEA)

GSEA was performed (Table S1) to identify affected 
biological processes. GSEA utilizes molecular interaction 
networks outlined by the Kyoto Encyclopedia of Gene and 
Genomes (KEGG) to map out increased gene expression 
in a specific molecular pathway, depending on a response 
variable (treatment) (Figures S1,S2).

AMPK signaling pathway (normalized enrichment score: 
−1.58), mTOR signaling pathway (normalized enrichment 
score: −1.50), hepatocellular carcinoma (normalized 
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were overexpressed after treatment. High levels of TGF-β, p14, p16, and p15 were detected in pretreatment samples. In samples collected 
after platinum-based therapy, SMAD2 and SMAD3 were upregulated of the following genes was observed: markers for apoptosis/cell cycle 
arrest induction, ATM/ATR and their downstream cascade including p53 and PCNA, and also various CDKs such as CDK1, CDK4, and 
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enrichment score: −1.48), endocytosis (normalized 
enrichment score: −1.46),  Wnt signaling pathway 
(normalized enrichment score: −1.38), breast cancer 
(normalized enrichment score: −1.37), longevity regulating 
pathway (normalized enrichment score: −1.31), glioma 
(normalized enrichment score: −1.25), endometrial cancer 
(normalized enrichment score: −0.59) and ErbB signaling 
pathway (normalized enrichment score: −0.46) are enriched 
in samples after platinum therapy. On the other hand, 
activity of TNF signaling pathway (normalized enrichment 
score: 2.03), rheumatoid arthritis (normalized enrichment 
score: 1.99), IL-17 signaling pathway (normalized 
enrichment score: 1.93), osteoclast differentiation 
(normalized enrichment score: 1.84), Leishmaniasis 
(normalized enrichment score: 1.82), parathyroid hormone 
synthesis, secretion and action (normalized enrichment 
score: 1.68), MAPK signaling pathway (normalized 
enrichment score: 1.51), NOD-like receptor signaling 
pathway (normalized enrichment score: 1.45), relaxin 
signaling pathway (normalized enrichment score: 1.42) and 
Th1 and Th2 cell differentiation (normalized enrichment 
score: 1.42) are associated with specimens collected from 
therapy-naïve patients (Figure 4).

Gene expression and clinical stage

Eight genes were identified to be differentially expressed 
depending on MPMs’ UICC stage. MAPK6 (P=0.007, 
rho=0.75), ICAM5 (P=0.041, rho=0.62) and ICAM4 
(P=0.050, rho=0.60) show low expression levels in UICC 
1A and B cases, increasing and reaching its plateau in 
higher UICC stages 3A, 3B and 4, where no differences in 
expression can be shown. Similarities can be observed for 
PARP1 (P=0.007, rho=0.74), DUOX2 (P=0.023, rho=0.67), 
SLCO3A1 (P=0.023, rho=0.67) and BRCA1 (P=0.041, 
rho=0.63) expression levels, showing a continuous rise from 
low expression in UICC 1A/B, rising from UICC 3A to 3B 
with higher gene expression to outstanding expression in 
UICC stage 4. For HGF (P=0.050, rho=0.60), the increased 
expression could only be detected in UICC stage 4.

Gene expression and stratification for overall survival (OS) 
and progression-free survival (PFS) 

Gene expression levels of 22 targets have been identified to 
impact OS. Longer OS is associated with lower expression 
of 19 genes: ICAM5 (P=0.002), CD82 (P=0.004), FYN 

Figure 4 Results of the GSEA analysis between specimens collected prior and after chemotherapy. AMPK signaling pathway, mTOR 
signaling pathway, hepatocellular carcinoma, endocytosis, Wnt signaling pathway, breast cancer, longevity regulating pathway, glioma, 
endometrial cancer and ErbB signaling pathway are enriched in samples after platinum therapy, indicated by yellow bars. Activity of TNF 
signaling pathway, rheumatoid arthritis, IL-17 signaling pathway, osteoclast differentiation, Leishmaniasis, parathyroid hormone synthesis, 
secretion and action, MAPK signaling pathway, NOD-like receptor signaling pathway, relaxin signaling pathway and Th1 and Th2 cell 
differentiation are enriched in specimens collected from therapy-naïve patients, indicated by blue bars. Highly significant associations 
showing P<0.05 after false discovery rate (FDR) are highlighted in dark-shaded colors. 
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(P=0.010), WNT1 (P=0.011), FGF1 (P=0.013), CDK5R2 
(P=0.015), MMP8 (P=0.019), IGSF5 (P=0.033), SLC7A6 
(P=0.033), SLIT1 (P=0.036), SLCO1B3 (P=0.037), WISP3 
(P=0.039), MLH1 (P=0.040), GLUT1 (P=0.043), IGSF5 
(P=0.043), TCEB2 (P=0.048) and claudins, including 
CLDN14 (P=0.004), CLDN3 (P=0.010) and CLDN11 
(P=0.011). In addition, CLDN2 (P=0.055) and CLDN5 
(P=0.057) closely failed significance but show a clear trend 
for prolonged survival at low gene expression levels. On the 
other hand, expression of CDKN2A (P=0.022) and high 
expression of TIAM1 (P=0.024) and JAM2 (P=0.039) are 
detected in patients with longer OS (Figure 5). 

Applying unsupervised, decision-tree-based machine 
learning (COX-CIT), the expression of MMP9 can 
stratify patients into three different risk groups, with 
different OS. Using two cut-offs (609 counts, P=0.004, and  
1,492 counts, P=0.001) it can identify the patients with the 
worst prognosis (Node 4) (Figure 6A).

Applying the same COX-CIT algorithm for PFS, we 
were able to identify patients showing progression within the 
first 10 months (node 4), presenting low TIAM1 (P=0.004, 
cut-off 652 counts) and high PARP1 (P=0.017, cut-off: 
1,819 counts) expression. Furthermore, the low TIAM1 and 
PARP1 expression group comprised another third of patients 
showing progression within the first year in up to 90% of 
cases. The remaining samples with high TIAM expression 
show better PFS times and rates, with a median survival of 
about one year, while one-fifth of patients show progression 
foremost after two years (Figure 6B).

Discussion

Chemoresistance, either intrinsic or acquired, substantially 
impairs the efficacy of chemotherapy, escalating mortality 
rates in cancer patients. Acquirement of resistance towards 
chemotherapeutics is a dynamic and multifactorial process 
influenced by cancer stem cell (CSC) enrichment (34). 
Several mechanisms leading to platinum resistance have 
been identified: reduced intracellular cisplatin accumulation 
due to alterations in transmembrane transport, activation 
of cell growth-promoting and DNA damage repair 
pathways, aberrant DNA methylation, enhanced epithelial-
to-mesenchymal transition, and reduced endocytosis of 
cisplatin (35-37). However, as there are no established 
tools for predicting response to platinum therapy, there 
is an unmet need for predictive factors helping to identify 
patients at high risk for platinum resistance to select 
the adequate treatment for individual patients (37). 
Understanding the underlying mechanisms of cellular 
response to platinum may help to overcome this problem.

In the present study, we identified downregulation of 
MAPK-, IL-17-, relaxin- and TNF signaling pathways, 
and upregulation of AMPK-, mTOR-, Wnt- signaling and 
longevity regulation pathways in tumor samples of patients 
with MPM after platinum-based therapy. 

Mitogen-activated protein kinase (MAPK)

MAPK signaling is important for cancer resistance to 
chemotherapy (38). Especially the p38-MAPK pathway 
seems to be involved in cisplatin-based chemotherapy 
response. In head and neck carcinoma, its low activity 
was in correlation to platinum resistance (39). In contrast, 
constitutive activation of the C-KIT/MAPK/MEK axis 
has been shown to result in a resistant phenotype of 
ovarian cancer cells treated with platin compounds (40). 
Furthermore, a broad miRNA screening study in vitro 
identified the miRNAs miR-20b*, let-7a, miR-524-
3p, miRPlus-F1147, miR-300, miR-1299, miR-193b, 
miRPlus-F1064 as well as miR-642 as differentially 
expressed between sensitive and resistant ovarian cancer 
cell lines (41). Those miRNAs manipulate, among others, 
MAPK-, Wnt-, mTOR- as well as TGF-β-signaling (41). 
Of interest, also an RAF independent activation of MAPK 
cascade was proven to contribute to platin resistance in 
human cancer cells in vitro and in vivo (42). Taking all 

Figure 5 Relation of gene expression with overall survival. 
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this into account, activation of the MAPK pathway is a 
prominent mechanism for platinum resistance in MPM; 
therefore, its downregulation in our samples after platinum-
based chemotherapy corresponds most likely to the direct 
effect of the therapy. 

Interleukin-17 (IL-17)

Since inflammation is present in most cancers, it is evident 
that different cytokines, like TNF-α, TGF-β, macrophage 
migratory inhibitory factor, and interleukins, are involved 
in promoting or inhibiting malignant growth, both in 
vitro and in vivo (43). Among those, the IL-17 family has a 
significant role in cancer immunity. Th17 (CD4+ T cells), 
innate tissue-resident cells (ITRC), and CD8+ cytotoxic 
T lymphocytes (CTLs) have been reported to participate 
in IL-17 production (44,45). IL-17 signaling in colorectal 
carcinoma promotes tumorigenesis by preventing the 
production of T cell-attracting CXCL9 and CXCL10 in 
tumor cells (46). Interestingly, asbestos exposure increases 
IL-17 production, especially in CD4+ surface CXCR3+ 
cells, indicating that the relation between Treg and 
Th17 fractions is important for asbestos immunogenicity 
and decrease in anti-tumor immunity (47). This is in 
accordance with the findings of Zebedeo et al., who found 
increased production of IL-17, IL-6, TGF-β, and TNF-α 

in mice following exposure to erionite and amphibole  
asbestos (48). Furthermore, IL17A mRNA expression and 
IL17A+ intratumoral cells in gastric cancer were predictive 
for better chemotherapy response (49). Moreover, in 
platinum-treated ovarian cancer, GSEA revealed enrichment 
in MAPK, ERBB, TNF, and IL‐17 signaling pathways in 
chemotherapy-sensitive patients (50). Besides the known 
pro-tumorigenic functions of IL-17, its increased presence 
is also a potential marker for chemotherapy sensitivity. Our 
finding of IL-17 pathway downregulation in MPM patients 
after platinum-based therapy is best explained as a platinum 
anti-tumorigenic effect.

Relaxin

Another pathway found to be downregulated in MPM 
samples after therapy is the relaxin-pathway. Relaxin is an 
anti-fibrotic agent. It hinders cytokine and growth-factor 
induced proliferation of fibroblasts and matrix production but 
also induces matrix degradation through increased activity 
of matrix‐degrading matrix metalloproteinases (MMP) 
(51,52). Its involvement in ECM remodeling, but also in 
angiogenesis, blood flow, anti-apoptosis, cell migration, and 
anti‐inflammation, helps in the proliferation, invasiveness, 
and metastasis of tumor cells and is highly expressed on them 
(51,53,54). Our finding of relaxin-pathway downregulation 

Figure 6 Results of the unsupervised, decision-tree-based machine learning for OS and PFS. (A) Unsupervised, decision-tree-based machine 
learning (COX-CIT) and the expression of MMP9 using two cut-offs (609 and 1,492) for counts stratify patients into three different risk 
groups, with different OS. (B) Unsupervised, decision-tree-based machine learning and PFS identified patients with early or late progression 
within the first 10 months, based on the expression of PARP1 and TIAM1.
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demonstrates the effect of platinum-based chemotherapy on 
this pro-tumorigenic factor. 

TNF and NF-κB

Asbestos induces expression of TNF-α receptor I and 
secretion of TNF-α secretion in mesothelial cells (55). 
Furthermore, in mesothelial cells, TNF-α prevents 
apoptosis and cell death through NF-kappaB activation, 
reducing asbestos toxicity, allowing them to survive and go 
through malignant transformation (55,56). Activated NF-κB 
leading to upregulated PIK3CA expression via TNF-α has 
been identified as one of the key molecular features behind 
the action of cisplatin (34). Recent data indicates the PI3K/
AKT pathway as decisive of cisplatin action in resistant 
cells (34). Platinum compounds have been shown to inhibit 
TNF-α stimulated NF-κB activation (57). This explains the 
downregulation of the TNF-pathway associated with platin-
based treatment as a rather direct effect of therapeutic 
intervention. 

AMPK and mTOR 

AMP-activated protein kinase (AMPK) is a stress-response 
molecule involved in maintaining energy homeostasis 
in eukaryotic cells (58,59). Together with the mTOR 
downstream pathway, it regulates cellular metabolism, 
energy homeostasis, and cell growth (58). AMPK with 
LKB1 and P53 modulate mTOR and Akt signaling, 
resulting in cell growth inhibition and cell cycle arrest (60). 
It is known that the mTOR pathway is hyperactivated in 
many cancers (61-63). The PI3K/AKT/mTOR pathway 
has an important role in MPM tumorigenesis, and its 
blockade is therapeutically relevant, although it might 
induce rebound AKT activation leading to resistance (64). 
Interestingly, platinum-based chemotherapy did not prove 
effective against tumor cells with a hyperactivated mTOR 
pathway (65,66). Therefore dual inhibition of PI3K (for 
example, with cisplatinum), and mTOR might be a better 
option (67). Several studies indicate that AMPK activators 
inhibit the functions of myeloid-derived suppressor cells 
(MDSCs) and induce anti-tumor activities in many cancers 
(68-71). This is based on the fact that AMPK signaling 
inhibits immune signaling pathways, like JAK-STAT,  
NF-κB, C/EBPβ, CHOP, and HIF-1α, which are activating 
immunosuppressive MDSCs, therefore enabling adequate 
immune surveillance of tumor cells (68). In contrast, 
AMPK also has a pivotal role in chemoresistance (60). 

Evidence suggests that beyond classical resistance 
mechanisms, microenvironment stress also results in 
antagonism-independent alterations of the drug target, 
overactive DNA repair and survival pathways, enhanced 
expression of detoxification proteins, and drug efflux  
(72-74). It was shown that esophageal squamous carcinoma 
cells under nutrient stress, with activated AMPK pathway, 
kept proliferating and demonstrated chemoresistance to 
cisplatin (72). Both AMPK and mTOR pathways were 
upregulated in our samples after chemotherapy, most 
probably leading to the development of resistance to 
therapy.

Wnt

The interaction between the immune system and cancer 
is not fully understood but appears to be relevant for 
therapeutic decisions and response to platinum-based 
chemotherapy. While immune cells like CTLs and natural 
killer cells are well known for influencing outcome after 
chemotherapy in various cancers, also “non-immune” 
cells such as cancer cells or associated fibroblasts have an 
important role (75,76). They release molecules supporting 
angiogenesis, interact with the immune system, support 
tumor progression, induce degradation of the extracellular 
matrix, thereby enabling tissue invasion and metastasis 
(77-80). One potential inducer of TGF-β and VEGF are 
Wnt ligands, which can be produced, among others, by 
pulmonary fibroblasts. In non-small cell lung carcinoma, 
increased Wnt activity is associated with a higher risk 
for relapse (81-83). It has been demonstrated that Wnt 
ligands are potent modulators of the immune response 
and can suppress T cell activity (84-87) with some tumors 
producing them as an evasion strategy (88). Inhibition of 
Wnt signaling with cationic cyclometalated platinum(ii) 
complexes demonstrated efficient prevention of cancer 
cell proliferation and migration (89). Like the AMPK- 
and mTOR-, Wnt-pathway is also upregulated in our 
treated patient cohort, resulting in the development of 
chemotherapy-resistant tumor cells.

The interpretation of the results obtained in this study 
concerning different signaling pathways is challenging. 
Due to their multiple functions, it does not appear to 
be straightforward at first sight. Additionally, some 
effects can be assigned to cellular protection against the 
incoming oxidative cell stress, whereas some are related 
to mechanisms involved in overcoming cell longevity and 
progression. However, we have found downregulation 
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in pathways important for carcinogenesis, which might 
be interpreted as the direct effect of the platinum-based 
therapy. Simultaneously, there is an upregulation in 
pathways involved in the resistance to this therapy, which 
eventually leads to disease progression.

There are several limitations to this study: it is a 
retrospective study, with a rather small cohort. Furthermore, 
we did not analyze paired samples from patients before and 
after therapy. However, our results are to be interpreted 
as a pilot study identifying pathways, which are of great 
importance for providing further hypothesis and direct 
upcoming research.

Conclusions

We could identify deregulated signaling pathways as a 
consequence of a directed cellular response to platinum-
induced (oxidative) cell stress. In this context, mitogen signal 
associated pathways, such as MAPK, relaxin, TNF, or Wnt 
signaling, and energy metabolism regulation via AMPK and 
mTOR, as well as the mediation of tumor immunogenicity 
via cytokine release, play important roles. Our results are 
paving the ground for a better understanding of cellular 
response and escape mechanisms, carrying a high potential 
for improved clinical management of patients with MPM.
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