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Abstract: Cu(im)2-derived Cu@N-C composites were used for the first time as efficient heterogeneous
catalysts for one-pot 1,3-dipolar cycloaddition of terminal alkynes, aryl halides, and sodium azide
to preparation of 1,4-disubstituted 1,2,3-triazoles with broad substrate scope and high yields. The
catalyst can be easily reused without the changes of structure and morphology, and the heterogeneity
nature was confirmed from the catalyst recyclability and metal leaching test.

Keywords: MOF-derived materials; heterogeneous copper catalysts; 1,2,3-triazole; click chemistry

1. Introduction

1,4-Disubstituted 1,2,3-triazole is a well-known structural motif present in a large
class of pharmaceuticals, agrochemicals, and biologically active compounds, displaying
interesting anti-tumor, anti-microbial, anti-biotics, anti-viral, and enzyme inhibitor activ-
ities (Figure 1). They are also found applications in various fields of study such as in
chemistry, biochemistry, material science, medicinal chemistry, etc. [1–15]. For example,
they are often used as versatile bio-isosteres for amide, ester, carboxylic acid, olefins, and
heterocycles groups in drug discovery, chemical biology, and proteomic applications due to
their suitable solubility, high chemical stability (stable to metabolic degradation and oxida-
tive/reductive conditions) and the ability to mimic (participate in hydrogen bonding and
dipole-dipole interactions) [16]. Consequently, the development of mild and efficient meth-
ods for 1,4-disubstituted 1,2,3-triazole synthesis attracts much attention in both academia
and industry [17].

Figure 1. Chemical structures of some 1,2,3-triazole-containing biologically active compounds.
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Cu(I)-catalyzed alkyne–azide cycloaddition reaction (CuAAC) stands out of the most
used ways for the preparation of this scaffold with high selectivity and efficiency under
room temperature or only moderate heating condition, which was reported independently
by two groups in 2002 [18,19]. Since then, CuAAC has been extensively studied and widely
used [17,20–22]. Because Cu(I) salts are generally unstable, traditional catalytic systems
for this reaction often consist of a Cu(II) salt and a reducing agent that has been achieved
significant progress in the last decades. However, the major limitations of existing protocols
can be realized as using homogeneous catalysts, which are often suffered from non-recovery
and non-regeneration of the catalysts, as well as difficulty in the removal of residual copper
impurities from the final products. In an attempt to overcome those abovementioned
drawbacks, several heterogeneous copper-based catalysts have been developed. One of the
most successful strategies is to support or immobilize the copper salts or copper complexes
on solid supports (such as charcoal, silica, zeolite, chitosan, montmorillonite, etc.) or into
the matrix of organic and inorganic polymeric materials [20].

Metal-organic frameworks (MOFs), an essential class of porous materials composed of
metal/metal clusters and polydentate organic ligands, have also been targeted as excellent
heterogeneous catalyst [23–26] or catalyst supports [27] for the preparation of various
1,2,3-triazoles, regarding their elevated surface areas, tunable porous structures, and easy
synthetic procedure. However, some of them are inevitably unstable in organic/water or
pure water solvents due to the higher affinities of metal ions with water molecules than
the organic ligands, causing the damage of MOFs structures [28]. Most of the present
cycloaddition reactions often occur in aqueous environment. Thus, the development of
new types of stable MOFs or MOFs-derived solid catalysts could be an effective alternative
approach to address such issues.

Recently, owing to the controllable structures of MOFs, the synthesis of MOF-derived
carbon-supported metal/metal oxides materials has become a fast-growing research field
for their specific applications in the area of environment, energy storage, supercapacitors,
and gas adsorption and separation, which have been reviewed by several groups [29–36].
Their applications in heterogeneous catalytic reactions are another important field, such as
oxidation, reduction, cross-coupling, hydrogenation, and electrochemical [37–40]. These
materials can be obtained via direct pyrolysis of MOFs precursors and exhibit higher toler-
ance against harsh conditions. However, to the best of our knowledge, only a few pieces of
literature were involved in MOF-derived materials as the catalyst for click chemistry [41,42].
For example, Cu-BTC-derived copper nanocatalysts were obtained under high-pressure
and high temperature (HPHT) [41] or reduction with sodium borohydride [42] and demon-
strated catalytic activity in azide-alkyne Huisgen cycloaddition. As part of our studies on
copper-catalyzed cycloaddition reactions [43,44], we herein report a one-pot 1,3-dipolar
cycloaddition of terminal alkynes, aryl halides, and sodium azide to the preparation of
1,4-disubstituted 1,2,3-triazoles by using Cu(im)2-derived Cu@N-C as the efficient and
recyclable heterogeneous catalyst.

2. Experimental
2.1. Material and Methods

All chemicals were purchased from commercial suppliers (Adamas-beta) and used
without further purification. Column chromatography and thin-layer chromatography
were performed with silica gel (200–300 mesh) and GF254 plates purchased from Qingdao
Haiyang Chemical Co. Ltd. (Qingdao, China) 1H NMR, 13C NMR, and 19F NMR were
recorded on a Bruker Avance 400 (Bruker Optics, Billerica, MA, USA) instrument using
DMSO-d6 or CDCl3 as the solvent. All 1,4-disubstituted 1,2,3-triazoles are characterized by
1H NMR, 13C NMR, or 19F NMR, which were compared with the previously reported data.
High-resolution mass spectrum (HRMS) was recorded on a Thermo Scientific LTQ Orbitrap
XL (Walpole, MA, USA) instrument under the APCI ion source. X-ray diffraction (XRD) was
measured on Bruke D8 (Karlsruhe, Germany) Advance spectrometer. Elemental analyses
(EA) were performed on a Thermo Fisher Flash 2000 Elemental Analysis (Waltham, MA,
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USA) instrument. Inductively coupled plasma-optical emission spectroscopy (ICP-OES)
was tested on Agilent 5110 (Santa Clara, CA, USA) spectrometer, and inductively coupled
plasma-mass spectrometry (ICP-MS) was tested on Agilent 7800 (Santa Clara, CA, USA)
spectrometer. Field emission scanning electron microscope (FE-SEM) images, elemental
mapping, and EDS spectrum were recorded using on a TESCAN MIRA LMS Scanning
Electron Microscope (Shanghai, China). Catalysts were calcined in a tube furnace of SLG
1200-50 (Shanghai, China).

2.2. Synthesis of Cu(im)2

The copper(II) bisimidazolate (Cu(im)2) was synthesized according to the reported
method [45]. In a 150 mL two-necked flask, a solution of imidazole (1.36 g, 20 mmol)
and NaHCO3 (6.6 g, 78.5 mmol) in H2O (50 mL) was heated to 80 ◦C in an oil bath for
3 h. CuSO4·5H2O (2.5 g, 10.1 mmol) in H2O (12.5 mL) solution was added dropwise to
the imidazole/NaHCO3 solution while stirring. The formation of a violet precipitate was
immediately observed, and then the violet compound was gradually transformed into a
blue solid. After 2 h, the blue solid was filtered, washed with water, and dried at 110 ◦C
overnight to afford Cu(im)2 (1.25 g, 63.5%).

2.3. Synthesis of Cu@N-C(x) (X Represents Different Pyrolysis Temperature)

The powder Cu(im)2 (1.5 g) was placed in a tube furnace and calcined up to 400 ◦C/600
◦C/800 ◦C with a heating rate of 5 ◦C·min−1 under argon flow. Maintaining the targeted
temperature for 5 h, the resulting solid was cooled to room temperature to afford the
copper supported on nitrogen-doped carbon, denoted as Cu@N-C(400), Cu@N-C(600), and
Cu@N-C(800), respectively.

2.4. General Procedure for the Cycloaddition Reaction

A 25 mL Schlenk tube was charged with Cu@N-C(x) (10 mg), benzyl halide (1,
0.5 mmol), NaN3 (2, 0.6 mmol), alkyne (3, 0.6 mmol) and 2 mL mixture of t-BuOH/water
(v/v = 3:1). The mixture was stirred at 50 ◦C and monitored by TLC until the benzyl halide
was consumed. The reaction mixture was then extracted with ethyl acetate (3 × 10 mL).
The combined organic phases were washed with water and brine, dried over anhydrous
Na2SO4, and concentrated in vacuo. The residue was purified by flash column chromato-
graph on silica gel (ethyl acetate/petroleum ether as the eluent) to provide the target
products 4 and 5.

2.5. Recycling of Cu@N-C(600) Catalyst

After complete separation of the organic phase of the reaction by centrifugation, the
catalyst was washed with ethyl acetate and then dried in an oven at 100 ◦C for 12 h. The
dried solid catalyst was reused in a new cycle and repeated the process 4 times under the
standard conditions.

2.6. Metal Leaching Test of Cu@N-C(600) Catalyst

After completion of the reaction, the reaction mixture was filtered hot under vacuum.
The solid was washed with t-BuOH, and the liquid phase was analyzed by ICP-MS.

3. Results and Discussion

The powder XRD pattern (Figure S1) and FE-SEM image (Figure 2a) of the Cu(im)2
demonstrate that the crystal structure and morphology are all in suitable agreement with
the literature [45–47], confirming a successful synthesis of Cu(im)2. Considering that
Cu(im)2 begins to decompose when the temperature increases to ca. 300 ◦C, the applied
calcination temperature are varied from 400 to 800 ◦C under argon flow [47].
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The surface appearances of the as-synthesized Cu@N-C materials were firstly analyzed
by FE-SEM analysis, and the results are shown in Figure 2. It is obviously indicated that
thermolysis of Cu(im)2 destroyed the rod structure of the MOF template and formed a
flat-like structure. Moreover, it can be seen that the copper-containing particles tended to
aggregate gradually with the increase in pyrolysis temperature. Elemental mapping and
EDS spectra show the distribution of C, N, and Cu present in the materials (Figures S2–S4),
which further supported the FE-SEM results. In addition, we can see that N atoms homo-
geneously distribute in all three catalysts, suggesting the N atoms are doped successfully
into the catalysts. Figure 3 shows the powder XRD pattern of the three catalysts. The XRD
diffraction peaks at 43.4◦, 50.5◦, and 74.2◦ 2θ values correspond to the (111), (200) and
(220) lattice planes of metallic copper (JCPDS 85-1326), respectively, which indicate that the
bivalent Cu2+ cations in Cu(im)2 are in situ reduced to zero-valent Cu at high temperature.
Interestingly, similar XRD patterns were observed for the three Cu@N-C composites due
to the same crystal structures. These results suggested that the thermolysis temperature
and N-containing imidazole ligands played important roles in particle size and species
of copper.
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Figure 3. Powder XRD patterns of (a) Cu@N-C(400), (b) Cu@N-C(600), and (c) Cu@N-C(800).

The content of Cu was detected by ICP-OES, while the proportions of C, H, and N
were determined by element analysis. As illustrated in Table 1, we can see that higher
pyrolysis temperature could lead to a significant increase in the Cu’s content, and about
73.73% of Cu content is observed when the temperature rises to 800 ◦C. On the contrary,
the contents of C, N, and H decreased. In addition, the actual measured value of Cu(im)2 is
slightly lower than the theoretical calculated value, which may be related to the existence
of a few impurities.

Table 1. The contents of Cu, C, N, and H of samples.

Sample Cu Content
(%) 1

C Content
(%) 2

N Content
(%) 2

H Content
(%) 2

Cu(im)2 32.14 3 36.45 3 28.34 3 3.06 3

Cu(im)2 29.20 35.49 27.89 2.70
Cu@N-C(400) 39.03 22.76 16.29 1.30
Cu@N-C(600) 48.85 23.98 14.48 0.86
Cu@N-C(800) 73.73 12.58 1.31 0.24

1 Measured by ICP-OES; 2 measured by element analysis; 3 calculated value from the formula.

With the Cu@N-C composites prepared, the cycloaddition reaction between benzyl
bromide (1a), sodium azide (2), and phenylacetylene (3a) was selected as the model reaction
to investigate the catalytic activity. The results are summarized in Table 2. The parent
Cu(im)2 only gave low activity, suggesting that cupric ions coordinated with imidazole
were not suitable for this reaction (entry 1). The reaction could not proceed without copper
catalyst (entry 2). To our delight, Cu(im)2 pyrolyzed composites showed high activities
in this transformation, and Cu@N-C(600) exhibited the highest efficiency, affording the
corresponding 1,2,3-triazole 4a in 94% isolated yield (entries 3–5). Lower or higher ther-
molysis temperature all resulted in lower reactivity of the resulting materials. Investigation
of a variety of solvents (H2O, alcohols, or H2O/alcohols mixture) showed that the mixed
solvents of t-BuOH/H2O (3/1, v/v) gave a better yield (98%) than others (entries 6–17).
Inferior results were found when reducing the catalyst loading or lowering the reaction tem-
perature (entries 18–20). As the classical catalytic system, the mixture of CuSO4 and sodium
ascorbate (NaAsc), which was used as the catalyst under the same reaction conditions, also
resulted in obviously decreased yield (entry 21).
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Table 2. Optimization of the reaction conditions 1.

Entry Catalyst Solvent (v/v) T (◦C) Yield (%) 2

1 Cu(im)2 H2O 50 20
2 - H2O 50 trace
3 Cu@N-C(400) H2O 50 83
4 Cu@N-C(600) H2O 50 94
5 Cu@N-C(800) H2O 50 78
6 Cu@N-C(600) EtOH 50 90
7 Cu@N-C(600) i-PrOH 50 68
8 Cu@N-C(600) t-BuOH 50 7

9 Cu@N-C(600) EtOH/H2O
(3/1) 50 96

10 Cu@N-C(600) EtOH/H2O
(1/3) 50 88

11 Cu@N-C(600) EtOH/H2O
(1/1) 50 40

12 Cu@N-C(600) i-PrOH/H2O
(3/1) 50 92

13 Cu@N-C(600) i-PrOH/H2O
(1/3) 50 86

14 Cu@N-C(600) i-PrOH/H2O
(1/1) 50 74

15 Cu@N-C(600) t-BuOH/H2O
(3/1) 50 98

16 Cu@N-C(600) t-BuOH/H2O
(1/3) 50 45

17 Cu@N-C(600) t-BuOH/H2O
(1/1) 50 55

18 Cu@N-C(600) t-BuOH/H2O
(3/1) 50 80 3

19 Cu@N-C(600) t-BuOH/H2O
(3/1) 40 56

20 Cu@N-C(600) t-BuOH/H2O
(3/1) 25 50

21 CuSO4 + NaAsc t-BuOH/H2O
(3/1) 50 88 4

1 Reaction conditions: 1a (0.5 mmol), 2a (0.6 mmol), 3a (0.6 mmol), Cu catalyst (10 mg), solvent (2 mL), 12 h;
2 isolated yield; 3 catalyst (5 mg); 4 CuSO4 (5 mol%), NaAsc (10 mmol%).

Having established the optimized conditions (Table 2, entry 15), we then evaluated
the substrates scope of alkynes and aryl halides, and the results were listed in Table 3. For
alkynes, we found that all arylacetylenes bearing electron-donating, electron-withdrawing,
or electron-neutral groups at the para-, meta-, or ortho-positions of the aromatic ring could
smoothly be converted the desired triazoles in 90–98% yield (4a–4k). Sterically 2-substituted
substrate also reacted without any problem to give 4f in 90% yield. Aliphatic alkynes
seemed to be less reactive than aryl alkynes, and longer reaction times or higher tempera-
tures were needed (4l and 4m). For benzyl bromides, most substrates worked well to give
the corresponding cycloaddition products in 70–95% yields under the standard conditions
(4n–4ae). However, the electron effect of substituents was more obvious than the aryl
acetylenes. For example, the substrates containing electron-withdrawing groups at the
para-condition resulted in lower yields than other ones (4s–4v). Longer reaction time was
required for benzyl chloride due to the lower activity for the nucleophilic substitution
reaction between sodium azide and benzyl chloride, which is the first step for the one-pot
1,3-dipolar cycloaddition (4a and 4s).
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Table 3. Investigation of substrate scopes and limitations 1.

Scope of alkynes (14 examples) Scope of benzyl halides (19 examples)

4a: R=H 12 h, 98% 4n: R = 4-Me 12 h, 86%
24 h, 90% (X=Cl) 4o: R = 3,5-di-Me 12 h, 88%

4b: R = 4-Me 12 h, 90% 4p: R = 3-OMe 24 h, 88%
4c: R = 4-Et 24 h, 93% 4q: R = 3,5-di-OMe 24 h, 82%
4d: R = 4-OMe 12 h, 90% 4r: R = 4-t-Bu 14 h, 87%
4e: R = 3-Me 12 h, 92% 2 4s: R = 4-F 12 h, 80%
4f: R = 2-Me 12 h, 90% 24 h, 94% (X=Cl)
4g: R = 4-F 12 h, 97% 4t: R = 4-Cl 24 h, 72%
4h: R = 4-Cl 24 h, 91% 4u: R = 4-Br 24 h, 70%
4i: R = 4-Br 24 h, 90% 4v: R = 4-NO2 12 h, 85% 2

4j: R = 3-F 12 h, 93% 2 4w: R = 4-CF3 15 h, 90%
4k: R = 3-Br 24 h, 91% 2 4x: R = 2-F 24 h, 94%

4y: R = 2-Cl 24 h, 95%
4z: R = 2,5-di-F 24 h, 82%
4aa: R = 3-F 16 h, 90%
4ab: R = 3-Cl 24 h, 94%
4ac: R = 3-Br 15 h, 90% 2

4l, 12 h, 97% 2 4m, 18 h, 66% 2 4ad: R = 3,4-di-Cl 12 h, 76%
4ae: R = 3-Cl, 4-F 24 h, 94%

1 Reaction conditions: 1 (0.5 mmol), 2 (0.6 mmol), 3 (0.6 mmol), Cu@N-C(600) (10 mg), t-BuOH/H2O (2 mL),
50 ◦C, isolated yield; 2 60 ◦C.

Based on the heterogeneous catalyst and mild reaction conditions, as well as excellent
functional-group compatibility, the catalytic system was also used to derivatize two selected
complex drug-like substrates bearing alkyne or azide moieties (Figure 4). Ethisterone
showed suitable efficiency, and the corresponding cycloaddition product was obtained in
82% yield with only increasing the temperature to 70 ◦C (5a). Surprisingly, a quantitative
yield was gained for zidovudine within 1 h (5b). Furthermore, in order to establish
the industrial viability of our method, a gram-scale reaction was carried out under the
optimal reaction conditions, and the expected product 4a was formed in 90% yield (1.18 g),
indicating the synthetic utility of this method from a practical point of view.

Recoverability and reusability of Cu@N-C(600) were investigated in the cycloaddition
between benzyl bromide, NaN3, and phenylacetylene. According to Figure 5, the recycled
catalyst Cu@N-C(600) could be recovered and reused without considerable deterioration in
catalytic activities, and the yield of 4a always remains above 90% after four runs. The XRD
patterns of the recycled catalyst showed no obvious differences of the fresh Cu@N-C(600),
which indicates that the crystallinity and structure of the catalyst can be maintained well
during the process of the reaction (Figure S5). However, different results were observed
from the FE-SEM image of the reused catalysts (Figure 6). The metal particles on the surface
of fresh Cu@N-C(600) disappeared after the first run, but no changes in the second and the
fourth run. The loss of surface copper species may result from the weak binding affinity
and mechanical abrasion-induced exfoliation during the reaction process. The results were
also supported by the EDS and element mapping analysis. As illustrated in Figures S6–S8,
the copper element mapping of the first reused catalyst showed a weaker signal than the
fresh one, but the second and fourth cycles were basically unchanged from the first one.
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Figure 4. Synthetic applications and large-scale preparation.
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Leaching experiments for model reactions between benzyl bromide, sodium azide,
and phenylacetylene were conducted to check the stability of the catalyst. We can see that
1.7% of the initial copper content was detected in the reaction solution by ICP-MS analysis,
which was collected by hot filtration after the first cycle. Lower Cu leaching was observed
in the next three cycles (Table 4), which was in suitable agreement with the FE-SEM results.
Moreover, the reaction with the solution after removal of catalyst via hot filtration at
approximately 20% yield stopped, and the yield of cycloaddition product did not increase
further even after 10 h under the same conditions (Figure 7). These aforementioned results
suggested that Cu(im)2-derived Cu@N-C composites was an excellent stable and reusable
heterogeneous catalyst for this type of reaction.

Table 4. The Cu leaching of Cu@N-C(600) catalyst.

Sample Cu Leaching (%) 1

First run 1.7
Second run 0.5
Third run 0.4

Fourth run 0.5
1 Measured by ICP-MS analysis.
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Figure 7. Time-concentration profile of the model reaction and the yield was determined by 1H
NMR with 1,3,5-trimethoxybenzene as the standard. (a) Reaction under the optimized conditions;
(b) reaction after removal of Cu@N-C(600) catalyst by hot filtration at 2 h.

Finally, we compared the activity of the present MOF-derived catalyst with other
reported heterogeneous copper catalysts in the one-pot 1,3-dipolar cycloaddition reac-
tion (Table S1). The results demonstrated that the present catalyst exhibited a higher
efficiency with higher yields, mild reaction conditions, and broad substrate scopes than
other reported methods.
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4. Conclusions

In summary, by employing a MOF-templated method, we have reported a Cu(im)2-
derived Cu@N-C composite, which was applied for the first time as an efficient, recyclable
heterogeneous catalyst for the synthesis of 1,4-disubstituted 1,2,3-triazoles with high yields.
The catalyst features easily prepared, broad substrate scope with excellent functional
tolerance and regioselectivity, low metal leaching, and ambient reaction conditions. The
catalyst can be separated by simple filtration and recovered at least four times without
declining activity, and the structure maintained well during the reaction process. Further
investigations into other types of Cu@N-C-catalyzed reactions are currently ongoing in our
laboratory and will be reported in due course.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12071070/s1, Figure S1: Powder XRD patterns of Cu(im)2,
Figure S2: (a) FE-SEM image, elemental mapping of (b) C, (c) N, and (d) Cu, and (e) EDS spectrum
of Cu@N-C(400), Figure S3: (a) FE-SEM image, elemental mapping of (b) C, (c) N, and (d) Cu, and
(e) EDS spectrum of Cu@N-C(600), Figure S4: (a) FE-SEM image, elemental mapping of (b) C, (c)
N, and (d) Cu, and (e) EDS spectrum of Cu@N-C(800), Figure S5: Powder XRD pattern of (a) fresh
and (b) used Cu@N-C(600), Figure S6: (a) FE-SEM image, elemental mapping of (b) C, (c) N, and
(d) Cu, and (e) EDS spectrum of the used Cu@N-C(600) (the first run), Figure S7: (a) FE-SEM image,
elemental mapping of (b) C, (c) N, and (d) Cu, and (e) EDS spectrum of the used Cu@N-C(600) (the
second run), Figure S8: (a) FE-SEM image, elemental mapping of (b) C, (c) N, and (d) Cu, and (e)
EDS spectrum of the used Cu@N-C(600) (the fourth run); characterization data of compound 4a–5b,
Table S1: Comparison of catalytic performance between Cu@N-C(600) and other types of catalysts.
References [48–60] are cited in the supplementary materials.
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