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Is wave–particle objectivity compatible with
determinism and locality?
Radu Ionicioiu1,2, Thomas Jennewein3,4, Robert B. Mann3,4,5 & Daniel R. Terno6

Wave–particle duality, superposition and entanglement are among the most counterintuitive

features of quantum theory. Their clash with our classical expectations motivated

hidden-variable (HV) theories. With the emergence of quantum technologies, we can test

experimentally the predictions of quantum theory versus HV theories and put strong

restrictions on their key assumptions. Here, we study an entanglement-assisted version of the

quantum delayed-choice experiment and show that the extension of HV to the controlling

devices only exacerbates the contradiction. We compare HV theories that satisfy the

conditions of objectivity (a property of photons being either particles or waves, but not both),

determinism and local independence of hidden variables with quantum mechanics. Any two

of the above conditions are compatible with it. The conflict becomes manifest when all three

conditions are imposed and persists for any non-zero value of entanglement. We propose an

experiment to test our conclusions.
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Q
uantum mechanics is proverbially counterintuitive1,2. For
many years, thought experiments were used to dissect its
puzzling properties, while hidden-variable (HV) models

strived to explain or even to remove them1–4. The development of
quantum technologies5,6 enabled us not only to perform several
former gedanken experiments1,2, but also to devise new ones7–11.
One can gain new insights into quantum foundations by
introducing quantum controlling devices10–12 into well-known
experiments. This has led, for example, to a reinterpretation11–14

of Bohr’s complementarity principle15.
Wave–particle duality is best illustrated by the classic Wheeler

delayed-choice experiment (WDC)16–18, Fig. 1a,b. A photon
enters a Mach–Zehnder interferometer (MZI) and its trajectory is
coherently split by the beamsplitter BS1 into an upper and a lower
path. The upper path contains a variable phase shift j. A random
number generator controls the insertion (b¼ 1) or removal
(b¼ 0) of a second beamsplitter BS2. If BS2 is present, the
interferometer is closed and we observe an interference pattern
depending on the phase shift j. If BS2 is absent, the MZI is open
and the detectors measure a constant probability distribution
independent of j. Thus, depending on the experimental setup,
the photon behaves in two completely different ways. In the case
of the closed MZI, the interference pattern suggests that the
photon travelled along both paths simultaneously and interfered
with itself at the second beamsplitter BS2, hence showing a wave-
like behaviour. However, if the interferometer is open, since
always only one of the two detectors fires, one is led to the
conclusion that the photon travelled only one path, hence
displaying a particle-like behaviour.

The complementarity of the interferometer setups required to
observe particle or wave behaviour obscures the simultaneous

presence of both properties, allowing the (objective) view that, at any
moment of time, a photon can be either a particle or a wave. The
WDC experiment uncovers the difficulty inherent in this view by
randomly choosing whether or not to insert the second beamsplitter
(BS2) after the photon enters the interferometer (Fig. 1a). This
delayed choice prevents a possible causal link between the
experimental setup and the photon’s behaviour: the photon should
not know beforehand if it has to behave like a particle or like a wave.

The delayed-choice experiment with a quantum control
(Fig. 1c) highlights the complexity of space–time ordering of
events, once parts of the experimental setup become quantum
systems11. The quantum-controlled delayed-choice experiment
has been recently implemented in several different systems19–23.
To ensure the quantum behaviour of the controlling device, one
can either test the Bell inequality23 or use an entangled ancilla19.

The theoretical analysis of the quantum WDC involved so far a
single binary HV l describing the classical concepts of wave/
particle. Here, we introduce a full HV description for both the
photon A and the ancilla. We analyse the relationships between
the concepts of determinism, wave–particle objectivity and local
independence of HV in the entanglement-controlled delayed-
choice experiment. We show that, when combined, these
assumptions lead to predictions that are different from those of
quantum mechanics, even if any two of them are compatible with
it. We propose and discuss an experiment to test our conclusions.

Results
Notation. We use the conventions as in refs 3,12; q(a, b,y) are the
quantum-mechanical probability distributions and p(a, b, . . . , L)
the predictions of HV theories with a HV L. We consider either a
single HV L, which fully determines behaviour of the system, or
refine it as L1, L2 pertaining to different parts of the system. For
simplicity, we assume L is discrete; the analysis can be easily
generalized to the continuous case.

Quantum system. The system we analyse consists of three qubits:
a photon A and an entangled pair BC (Fig. 1d). We denote the
measurement outcomes for the photon A as a¼ 0, 1 and for the
two ancilla qubits as b and c; the corresponding detectors are DA,
DB and DC. The system is prepared in the initial state
j 0iAð

ffiffiffi
Z
p j 00iþ ffiffiffiffiffiffiffiffiffiffiffi

1� Z
p j11iÞBC; for Z ¼ 1

2, BC is a maximally
entangled EPR pair.

Photon A enters a MZI in which the second beamsplitter is
quantum-controlled by qubit B. The third qubit C undergoes a sy

rotation RyðaÞ ¼ eiasy followed by a measurement in the
computational basis. The state before the measurements is

jci ¼ð ffiffiffiZp cos a j pi j0iþ
ffiffiffiffiffiffiffiffiffiffiffi
1� Z

p
sin a jwi j1iÞAB j 0iC

�ð ffiffiffiZp sin a jpi j0i�
ffiffiffiffiffiffiffiffiffiffiffi
1� Z

p
cos a jwi j1iÞAB j1iC:

ð1Þ

The counting statistics that result from the particle-like
state jpi ¼ 1ffiffi

2
p ðj0iþ eij j1iÞ and the wave-like state jwi ¼

eij=2ðcos j
2 j0i� i sin j

2 j1iÞ are discussed below (equations (3
and 4) and Methods).

Constraints on HV theories. Our strategy is to show that q(a, b,
c) cannot result from a probability distribution p(a, b, c, L)
of a HV theory satisfying the requirements of wave–particle
objectivity, local independence and determinism. Any viable
HV theory should satisfy the adequacy condition: namely, it
should reproduce the quantum statistics by summing over all
HVs L:

qða; b; cÞ ¼ pða; b; cÞ ¼
X
L

pða; b; c; LÞ: ð2Þ
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Figure 1 | The evolution of the delayed-choice experiment. (a) In

Wheeler’s classic experiment, the second beamsplitter is inserted or

removed after the photon is inside the interferometer; this prevents the

photon from changing its mind16 about being a particle or a wave. The

detectors observe either an interference pattern depending on the phase f
(wave behaviour), or an equal distribution of hits (particle behaviour). A

quantum random number generator (QRNG) determines whether BS2 is

inserted or not. Quantum networks: (b) in the classic delayed-choice

experiment the QRNG is an auxiliary quantum system initially prepared in

the equal superposition state jþ i ¼ 1ffiffi
2
p ð j0iþ j 1iÞ and then measured. The

Hadamard gate H is the quantum network equivalent of the beamsplitter;

(c) delayed choice with a quantum control11; (d) entanglement-

assisted quantum delayed-choice experiment19. The ancilla C is measured

along the direction � a, equivalent to the application of a rotation RyðaÞ ¼
eiasy before a measurement in the computational basis.
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We encapsulate the additional classical expectations into three
assumptions (see Box 1 for the formal definitions of the concepts
we consider in this section).

For a given photon, we require the property of being a particle
or a wave to be objective (intrinsic), that is, to be unchanged
during its lifetime. This condition selects from the set of adequate
HV theories those models that have meaningful notions of
particle and wave11. For each photon, the HV L should
determine unambiguously if the photon is a particle or a wave,
thus allowing the partition of the set of HVs L into two disjoint
subsets, L¼Lp,Lw, where the subscript indicates the property,
particle or wave.

The particle (wave) properties are abstractions of the particle
(wave) counting statistics in open (closed) MZI, respectively. The
behaviour of a particle (wave) in a closed (open) MZI is not
constrained; this allows for significant freedom in constructing
HV theories. Experimentally, the wave or particle behaviour
depends only on the photon and the settings of the MZI:

pða jb; c; LÞ ¼ pða jb; LÞ; ð7Þ

for all values of a, b, c and L.
By replacing the single-qubit ancilla with an entangled pair,

one can take advantage of both the quantum control and the
space-like separation between events. The rationale behind the
third qubit C is that it allows us to choose the rotation angle a
after both qubits A (the photon) and B (the quantum control) are
detected. This is not possible in the standard quantum WDC11,
Fig. 1c, where the quantum control B has to be prepared (by
setting the angle a) before it interacts with A. As discussed in
Methods, there is a unique assignment of probabilities that
satisfies all the requirements of adequacy, wave–particle
objectivity and determinism. Adopting this assignment, we
reach the same level of incongruity as in ref. 11, since the
probability p(l) of photon A being a particle or a wave is

determined by the entanglement between B and C,

pðlÞ ¼ ðZ; 1� ZÞ: ð8Þ

This incongruity becomes an impossibility when the photon A
and the entangled pair BC are prepared independently. In this
case, their HVs are generated independently; that is, a single HV
L not only has the structure L¼ (L1,L2), where the subscripts 1
and 2 refer to the photon A and the pair BC, respectively, but the
prior probability distribution of HV has a product form. To
realize this condition experimentally, we rely on the absence of
the superluminal communication and a space-like separation of
the two events.

Unlike the typical Bell-inequality scenarios, we have a single
measurement setup which involves two independent HV
distributions. Moreover, by performing the rotation Ry(a) and
the detection DC sufficiently fast, such that the information about
A and L1 cannot reach the detector DC, the detection outcome is
determined only by L2. Since being a wave (particle) is assumed
to be an objective property of A, l¼ l(L1) is a binary function of
the HV L1 only.

Contradiction. We show in Methods that for Za0, 1 (these two
cases correspond to an always closed or opened MZI), the
requirements of adequacy, wave–particle objectivity, determinism
and local independence are satisfied only if

cos 2a ¼ 0: ð9Þ

This proves our main theoretical result: determinism, local
independence and wave–particle objectivity are not compatible
with quantum mechanics for any aa±p/4, ±3p/4. We will later
discuss how exactly a HV theory that satisfies the three classical
assumptions is inadequate.

Proposed experiment. In Fig. 2, we show the proposed experi-
mental setup for the entanglement-controlled delayed-choice
experiment. Two pump pulses (blue) are incident on two non-
linear crystals and generate via spontaneous parametric down-
conversion two pairs of entangled photons (red). One of the
photons is the trigger and the other three are the photons A, B, C,
with BC being the entangled pair.

Photons A and B are held in the lab (with appropriate delay
lines) and together they implement the controlled MZI. The
central element is the quantum switch, which is the controlled-

Hadamard gate C(H)¼ (W#I)C(Z)(W#I), where W ¼ szeip8sy .
The photonic controlled-Z gate C(Z) is implemented with a
partially polarizing beamsplitter and is done probabilistically via
post-selection24,25. Optical wave plates perform single-qubit
rotations (gates H, j and W) on photon A. Photon C is sent
through a channel at a distant location, then measured in a
rotated basis. Two independent lasers generate the two photon
pairs (Fig. 2 (refs 26,27)); in this case, we can use equation (6) to
describe independent probability distributions for L1 and L2.

Discussion
In this section, we consider how exactly a HV theory, which
satisfies the three classical assumptions, fails the adequacy test.
The interference pattern measured by the detector DA0 is
IA(j)¼Tr(rA|0S/0|), with rA¼TrBC|cS/c|, the reduced
density matrix of photon A. The data can be postselected
according to the outcome c resulting in IA|c. The visibility of the
interference pattern (Methods) is V¼ (Imax� Imin)/(Imaxþ Imin),
where the min/max values are calculated with respect to j.

Box 1 | Three classical assumptions.

Wave–particle objectivity. We define particles and waves according to
the experimental behaviour in an open, respectively closed, MZI11. A
particle in an open interferometer (b¼0) is insensitive to the phase
shift in one of the arms and therefore has the statistics

pða j b ¼ 0; LÞ ¼ ð12; 1
2Þ; 8L 2 Lp: ð3Þ

In contrast, a wave in a closed MZI (b¼ 1) shows interference

pða j b ¼ 1; LÞ ¼ ðcos2 j
2; sin2 j

2Þ; 8L 2 Lw: ð4Þ

The sets Lp and Lw must be disjoint; otherwise, there are values of L
that introduce wave–particle duality. Writing Lp,Lw¼L, the wave/
particle property is expressed by a mapping l:L/{p, w} and the sets
Lp¼ l� 1(p), Lw¼ l� 1(w) are the pre-images of p, w under the
function l.

Determinism. The HV L determines the individual outcomes of the
detection3. Specifically, for the setup of (Fig. 1d)

pða; b; c jLÞ ¼ wabcðLÞ; ð5Þ
where the indicator function w¼ 1, if L belongs to some predetermined
set, and w¼0 otherwise.

Local independence. The HV L are split into L1 and L2, and the prior
probability distribution has a product structure

pðLÞ ¼ f ðL1ÞFðL2Þ; ð6Þ
for some probability distributions f and F, where the subscripts 1 and 2,
respectively, refer to the photon A and the pair BC. Such bilocal
variables have been previously considered in ref. 29.
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The postselected visibility for c¼ 0 is (Fig. 3)

VA j c¼0 ¼
ð1� ZÞsin2 a

Z cos2 aþð1� ZÞsin2 a
ð10Þ

The full (non-postselected) visibility is VA¼ 1� Z and gives
information about the initial entanglement of the BC pair. On the
other hand, if one assumes that the HV are distributed according
to equation (6) and satisfy the wave–particle objectivity and
determinism, the visibility is independent of c,

VHV
A � VHV

A j c¼0 ¼ VHV
A j c¼1 ¼ 1� f ; ð11Þ

in contrast with the quantum-mechanical prediction (Fig. 3).
Details of this calculation are in Methods.

This incompatibility between the basic tenets of HV theories
and quantum mechanics has two remarkable features. First, the
contradiction is revealed for any, arbitrarily small, amount of
entanglement. This test is in sharp distinction with Bell-type
experiments insofar as our result is free from inequalities. Wave–
particle objectivity, revealed only statistically, is more intuitive
and technically milder than the assumption of sharp values of
quantum incompatible observables. Second, in our setup, any two
of the classical ideas together are compatible with the quantum-
mechanical predictions. This fact, and the way we arrived at the
contradiction, invite questions concerning the internal consis-
tency of classical concepts28.

Methods
Quantum-mechanical analysis. The initial state of photons A, B and C is

j0iAð
ffiffiffi
Z
p j 00iþ

ffiffiffiffiffiffiffiffiffiffi
1� Z

p
j11iÞBC: ð12Þ

The ancilla qubits B and C are maximally entangled for Z ¼ 1
2. The final state

before measurement is given by equation (1). From it, we calculate the quantum
statistics q(a, b, c), where each of a, b, and c take the values {0, 1}. The probability
distribution for c¼ 0 is

qða; b; c ¼ 0Þ ¼ð12Z cos2 a; ð1� ZÞsin2 a cos2 j
2;

1
2Z cos2 a; ð1� ZÞsin2 a sin2 j

2Þ:
ð13Þ

where the four entries correspond to the values (a, b)¼ (00, 01, 10, 11). For c¼ 1,
we obtain

qða; b; c ¼ 1Þ ¼ð12Z sin2 a; ð1� ZÞcos2 a cos2 j
2;

1
2Z sin2 a; ð1� ZÞcos2 a sin2 j

2Þ:
ð14Þ

This in turn yields

qða; bÞ ¼ ð12Z; ð1� ZÞcos2 j
2;

1
2Z; ð1� ZÞsin2 j

2Þ; ð15Þ

qðb; cÞ ¼ ðZ cos2 a; Z sin2 a; ð1� ZÞsin2 a; ð1� ZÞcos2 aÞ; ð16Þ

qðbÞ ¼ ðZ; 1� ZÞ; ð17Þ

qðcÞ ¼ ðZ cos2 aþð1� ZÞsin2 a; Z sin2 aþð1� ZÞcos2 aÞ: ð18Þ
For Z ¼ 1

2; the probability distributions for b and c are equal. If Z 6¼ 1
2, B and C

are no longer maximally entangled and the symmetry between them is broken: a
rotation a on C no longer corresponds to a rotation a on B. The conditional
probabilities are

qðc jbÞ ¼ ðcos2 a; sin2 a; sin2 a; cos2 aÞ; ð19Þ
and from Bayes’ rule q(b|c)¼ q(c|b)q(b)/q(c).

Solution to the three constraints. We now show that it is possible to construct a
HV model that is adequate, objective and deterministic. The unknown parameters
at our disposal are 16 probabilities p(a, b, c, l). These probabilities are derived from
the underlying distribution p(L) summed over appropriate domains. At this stage,
we do not enquire about the connection with the HV L. The probabilities p(a, b, c,
l) satisfy seven adequacy constraints, equations (13) and (14), plus the normal-
ization constraint. The adequacy conditions can be written as

qða; b; cÞ ¼ pða; b; cÞ ¼ pða; b; c; pÞþ pða; b; c; wÞ: ð20Þ
In addition, equation (7) and the standard rules for the conditional

probabilities, such as

pða jb; lÞ � pða jb; c; lÞ ¼ pða; b; c; lÞ
pð0; b; c; lÞþ pð1; b; c; lÞ ; ð21Þ

imply the existence of four additional constrains,

pð0; 0; c; pÞ ¼ pð1; 0; c; pÞ; ð22Þ

pð0; 1; c; wÞsin2 j
2 ¼ pð1; 1; c; wÞcos2 j

2: ð23Þ
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Figure 3 | Visibility. The visibilities VA|c¼0 (yellow) and VA|c¼ 1 (blue), are

calculated in Methods. In HV theories, the visibility does not distinguish

between the c¼0, 1 cases. The inset illustrates this for pðpÞ ¼ Z ¼ 1
2, with

the straight line representing the HV visibility prediction.
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Figure 2 | Proposed experimental setup. Two space-like separated pump

pulses (blue) generate, via spontaneous parametric down-conversion, two

pairs of entangled photons (red). The first photon is the trigger and the

other three the photons A, B, C. Inset: the quantum-controlled MZI. The

optical delays in the three photon arms, tA, tB, tC can be adjusted to ensure

the desired time ordering of the detection events.
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The resulting linear system has a four-parameter family of solutions. However,
a straightforward calculation shows that for all these solutions p4(a, b, c, l), the
resulting statistics in an open/closed MZI is independent of l,

p4ða jb ¼ 0; pÞ ¼ p4ða jb ¼ 0; wÞ ¼ ð12; 1
2Þ; ð24Þ

p4ða jb ¼ 1; wÞ ¼ p4ða jb ¼ 1; pÞ ¼ ðcos2 j
2; sin2 j

2Þ; ð25Þ

that is, the statistics of DA is determined solely by the state of the interferometer.
We can avoid the reintroduction of wave–particle duality using a special

solution

psðb jlÞ ¼ dlpdb0 þ dlwdb1 � psðl jbÞ; ð26Þ

which imposes the b–l correlation (compare ref. 11). As a result,

pðb ¼ 0; l ¼ wÞ ¼ pðb ¼ 1; l ¼ pÞ ¼ 0; ð27Þ

and since the probabilities are positive,
X
a; c

pða; 1; c; pÞ ¼
X
a; c

pða; 0; c; wÞ ¼ 0; ð28Þ

the eight above probabilities are zero individually. The system appears
overconstrained, but it still has a unique solution

psða; b; c; lÞ ¼ qða; b; cÞpsðb jlÞ: ð29Þ

In particular,

psðlÞ ¼
X
a; b; c

psða; b; c; lÞ ¼ ðZ; 1� ZÞ: ð30Þ

Deriving the contradiction. In addition to the partition of L according to the
values of l¼ p, w, we will use the decomposition of the set of HV according to the
outcomes of DC. The two branches c¼ 0, 1 correspond to the partition

L ¼ L0[L1; ð31Þ

where for LALc, the outcome of DC is c. The assumption of local independence
implies a Cartesian product structure

L ¼ fL1g�ðL2
0[L2

1Þ ¼ ðL1
p[L1

wÞ�ðL2
0[L2

1Þ; ð32Þ

of the set of HV, where the subsets depend on the experimental setup. When the
superscripts 1 and 2 on L are redundant, we may omit them.

Now, we show that under the assumptions of adequacy and the three classical
assumptions of the wave–particle objectivity, determinism and local independence,
it is impossible to derive the solution p(a, b, c, l) with any arrangement of the
probabilities p(L). The probability of the outcome c satisfies

qðcÞ � pðcÞ ¼
X
L2Lc

pðLÞ ¼
X

L2Lp\Lc

pðLÞþ
X

L2Lw\Lc

pðLÞ: ð33Þ

To simplify the calculations, we enumerate the variables L1,2 by the indices i, j,
respectively. The domain L2

c corresponds, according to the hypothesis, to the index
set Jc of L2, and the domains L1

p and L1
w to the index sets Ip and Iw of L1,

respectively. In particular,

pðlÞ ¼
X
i2Ip

fi;
X
i2Iw

fi

0
@

1
A; ð34Þ

for some fi � f ðLi
1Þ. The prior distribution of HV and the domains of summation

can depend on the parameters Z, j and a.
The putative behaviour of a wave (l¼w) in an open (b¼ 0) interferometer and

of a particle (l¼ p) in a closed (b¼ 1) one is characterized by two unknown
distributions xij, iAIw and yij, iAIp, respectively

pða jb ¼ 0; L ¼ ðLi
1;L

j
2ÞÞ ¼ ðxij; 1� xijÞ; i 2 Ip ð35Þ

pða jb ¼ 1; L ¼ ðLi
1;L

j
2ÞÞ ¼ ðyij; 1� yijÞ; i 2 Iw ð36Þ

allowing for a possible dependence on a value of L2. The remaining two sets of
variables are the probability distributions for b conditioned on the values of HVs L:

pðb jL ¼ ðLi
1;L

j
2ÞÞ ¼ ðzij; 1� zijÞ; i 2 Ip; ð37Þ

pðb jL ¼ ðLi
1;L

j
2ÞÞ ¼ ðuij; 1� uijÞ; i 2 Iw: ð38Þ

The requirement of adequacy means that the proposed HV theory reproduces
the quantum statistics given above. For compactness, we refer to the probability of
having the HV values ðL1 ¼ Li

1;L2 ¼ Lj
2Þ, pðLi

1;L
j
2Þ, as pij, using the same

convention as for xij, yij, zij and uij. For c¼ 0, we have

qð0; 0; 0Þ ¼ 1
2Z cos2 a � 1

2

X
i2Ip ;j2J0

zijpij þ
X

i2Iw ;j2J0

xijuijpij; ð39Þ

qð0; 1; 0Þ ¼ ð1� ZÞsin2 a cos2 j
2

�
X

i2Ip ;j2J0

yijð1� zijÞpij þ cos2 j
2

X
i2Iw ;j2J0

ð1� uijÞpij; ð40Þ

qð1; 0; 0Þ ¼ 1
2Z cos2 a � 1

2

X
i2Ip ;j2J0

zijpij þ
X

i2Iw ;j2J0

ð1� xijÞuijpij; ð41Þ

qð1; 1; 0Þ ¼ ð1� ZÞsin2 a sin2 j
2

�
X

i2Ip ;j2J0

ð1� yijÞð1� zijÞpij þ sin2 j
2

X
i2Iw ;j2J0

ð1� uijÞpij; ð42Þ

with analogous expressions for c¼ 1. Adding and subtracting equations (39) and
(41) we obtain, respectively

X
i2Ip ;j2J0

zijpij þ
X

i2Iw ;j2J0

uijpij ¼ Z cos2 a ð43Þ

X
i2Iw ;j2J0

ð1� 2xijÞuijpij ¼ 0 ð44Þ

Adding equations (40) and (42) yields

ð1� ZÞsin2 a ¼
X

i2Ip ;j2J0

ð1� zijÞpijþ
X

i2Iw ;j2J0

ð1� uijÞpij; ð45Þ

which on substitution back into equation (40) results in
X

i2Ip ;j2J0

cos2 j
2 � yij

� �
ð1� zijÞpij ¼ 0: ð46Þ

Four additional equations (giving a total of seven independent equations) are
obtained for jA J1 with cos2 a2sin2 a.

From equation (26), it follows that uij¼ 0, i A Iw and zij¼ 1, i A Ip. Hence, for
c¼ 0, only two equations are not automatically satisfied,

Z cos2 a ¼
X

i2Ip ;j2J0

pij; ð1� ZÞ sin2 a ¼
X

i2Iw ;j2J0

pij: ð47Þ

The corresponding equations for c¼ 1 are

Z sin2 a ¼
X

i2Ip ;j2J1

pij; ð1� ZÞcos2 a ¼
X

i2Iw ;j2J1

pij; ð48Þ

which are in agreement with q(c), equation (18).
Now we use the product structure of the probability distribution, equation (6),

pðLÞ ¼ f ðL1ÞFðL2Þij ¼ fiFj: ð49Þ
Using equations (28) and (30), we find that

X
i2Ip

fi ¼ Z: ð50Þ

Adding the pairs of equations in (47) and (48) and summing over the index i,
we express the adequacy condition qðcÞ ¼

P
j2Ic

Fj,

Z cos2 aþð1� ZÞsin2 a ¼
X
j2J0

Fj; ð51Þ

Z sin2 aþð1� ZÞcos2 a ¼
X
j2J1

Fj; ð52Þ

but on the other hand, for Za0, 1 summing over i in each of these four equations
separately and using equation (50) we get

X
j2J0

Fj ¼ cos2 a ¼ sin2 a ¼
X
j2J1

Fj: ð53Þ

These equations can be satisfied for any Z only if

cos2 a ¼ sin2 a; ð54Þ

resulting in the contradiction (for arbitrary a) cos 2a¼ 0.

Experimental signature. The interference pattern measured by the detector DA is
IA(j)¼Tr(rA|0S/0|), with rA¼TrBC|cS/c| the reduced density matrix of
photon A. The data can be postselected according to the outcome c resulting in IA|c.
The intensity (signal) measured by detector DA for c¼ 0 (and no post-selection
on b) is:

IA j c¼0 ¼ 1
2Z cos2 aþð1� ZÞsin2 a cos2 j

2; ð55Þ
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giving the visibility

VA j c¼0 ¼
ð1� ZÞsin2 a

Z cos2 aþð1� ZÞsin2 a
: ð56Þ

A similar calculation gives the visibility for c¼ 1

VA j c¼1 ¼
ð1� ZÞcos2 a

Z sin2 aþð1� ZÞcos2 a
: ð57Þ

The full intensity measured by detector DA (without postselecting on c) is
IA ¼ 1

2Zþð1� ZÞcos2 j
2 and the corresponding visibility

VA ¼ 1� Z: ð58Þ
Thus the visibility of detector DA gives information about the entanglement of

the BC pair.
We now calculate the visibilities predicted by a non-trivial HV theory that is

assumed to satisfy the three classical assumptions. Using equation (26), we rewrite
the counting statistics as

pð0; 0; 0Þ ¼ 1
2

X
i2Ip ;j2J0

fiFj; ð59Þ

pð0; 0; 1Þ ¼ 1
2

X
i2Ip ;j2J1

fiFj ð60Þ

pð0; 1; 0Þ ¼ cos2 j
2

X
i2Iw ;j2J0

fiFj; ð61Þ

pð0; 1; 1Þ ¼ cos2 j
2

X
i2Iw ;j2J0

fiFj: ð62Þ

For the product probability distribution above, we get

pð0; 0 j jÞ ¼ pð0; 0; jÞ
pðc ¼ jÞ ¼

1
2

P
i2Ip ;k2Jj

fiFk

P
k2Jj

Fk
¼ 1

2 f ð63Þ

pð0; 1 j jÞ ¼ pð0; 1; jÞ
pðc ¼ jÞ ¼

cos2 j
2

P
i2Iw ;k2Jj

fiFk

P
k2Jj

Fk
¼ cos2 j

2ð1� f Þ ð64Þ

for j¼ 0, 1 separately, where f ¼
P
i2Ip

fi . As a result,

IHV
A j c¼0 ¼ IHV

A j c¼1 ¼ 1
2 f þ cos2 j

2ð1� f Þ ð65Þ

giving

VHV
A j c¼0 ¼ VHV

A j c¼1 ¼ 1� f ; ð66Þ

for the visibilities in HV theories.
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