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A novel cholinergic projection from the lateral 
parabrachial nucleus and its role in 
methamphetamine-primed conditioned place 
preference
Teng He,1,* Wenwen Chen,1,* Yu Fan,1,2,* Xing Xu,1,* Hao Guo,1 Nanqin Li,1 Xue Lu,1

Feifei Ge1 and Xiaowei Guan1

* These authors contributed equally to this work.

Drug relapse is a big clinical challenge in the treatment of addiction, but its neural circuit mechanism is far from being fully under-
stood. Here, we identified a novel cholinergic pathway from choline acetyltransferase-positive neurons in the external lateral parabra-
chial nucleus (eLPBChAT) to the GABAergic neurons in the central nucleus of the amygdala (CeAGABA) and explored its role in 
methamphetamine priming-induced reinstatement of conditioned place preference. The anatomical structure and functional innerv-
ation of the eLPBChAT–CeAGABA pathway were investigated by various methods such as fluorescent micro-optical sectioning tomog-
raphy, virus-based neural tracing, fibre photometry, patch-clamp and designer receptor exclusively activated by a designer drug. The 
role of the eLPBChAT–CeAGABA pathway in methamphetamine relapse was assessed using methamphetamine priming-induced re-
instatement of conditioned place preference behaviours in male mice. We found that the eLPBChAT neurons mainly projected to 
the central nucleus of the amygdala. A chemogenetic activation of the eLPBChAT neurons in vitro or in vivo triggered the excitabilities 
of the CeAGABA neurons, which is at least in part mediated via the cholinergic receptor system. Most importantly, the chemogenetic 
activation of either the eLPBChAT neurons or the eLPBChAT neurons that project onto the central nucleus of the amygdala decreased the 
methamphetamine priming-induced reinstatement of conditioned place preference in mice. Our findings revealed a previously undis-
covered cholinergic pathway of the eLPBChAT–CeAGABA and showed that the activation of this pathway decreased the methampheta-
mine priming-induced reinstatement of conditioned place preference.
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nucleus; DREADD = designer receptor exclusively activated by designer drug; DRN = dorsal raphe; eLPB = external lateral 
parabrachial nucleus; fMOST = fluorescent micro-optical sectioning tomography; GLU = glutamate; lCeA = lateral region of CeA; 
LPB = lateral parabrachial nucleus; mCeA = medial region of CeA; MEC = mecamylamine; METH = methamphetamine; NAc = 
nucleus accumbens; nAChRs = nicotinic acetylcholine receptors; NeuN = neuronal nuclear antigen; PACAP = pituitary adenylate 
cyclase-activating polypeptide; PKCδ=protein kinase C-δ; sAP = spontaneous action potentials; scp = superior cerebellar peduncle; 
sEPSC = spontaneous excitatory postsynaptic currents; SOM = somatostatin; VAChT = vesicular acetylcholine transporter; WT = 
wild type

Graphical Abstract

Introduction
Methamphetamine (METH) is one of the most commonly 
abused drugs in the world. Drug relapse is a big clinical chal-
lenge in the treatment of addiction, but its neural circuit 
mechanism is far from fully understood. The lateral parabra-
chial nucleus (LPB) is located at the boundary of the pontine 
and midbrain, lateral to the superior cerebellar peduncle 
(scp). According to the anatomical position, LPB can be fur-
ther subdivided into the dorsal lateral parabrachial nucleus 
(dLPB) and external lateral parabrachial nucleus (eLPB). 
The LPB neurons that express calcitonin gene-related 
peptide-expressing neurons (LPBCGRP) or glutamate neurons 
(LPBGLU) have been well-studied in the processes of reward,1

food intake,2,3 emotion and mental disorders including ad-
diction.4–7 In 1993, Bechara et al.6 showed that LPB lesions 
blocked conditioned taste aversion (CTA) produced by low 
intraperitoneal doses of morphine in rats. Subsequently, 
both morphine and cocaine administration in rats,5 as well 
as naloxone-precipitated withdrawal in morphine rats,7 in-
duced significantly increased levels of LPB c-Fos. Recently, 

Lin et al.4 reported that morphine administration activated 
a glutamatergic pathway from the LPB to the dorsal raphe 
(DRN), while blocking the LPB neurotransmission ultimately 
reduced the morphine-induced conditioned place preference 
(CPP) expression in mice, indicating a critical role of the 
LPB neurons in addictive behaviours. However, few studies 
in the literature have reported the role of LPB in drug relapse. 
Noteworthily, a recent study found that choline acetyltrans-
ferase (ChAT)-positive neurons (LPBChAT) exist in the LPB,8

yet their projections and functions have not been explored.
The central nucleus of the amygdala (CeA) is one of the 

main nuclei that receives projections from the LPB.9,10 The 
CeA neurons express nicotinic acetylcholine receptors 
(nAChRs)11,12 and receive cholinergic projections.13,14

Functionally, the CeA is considered to be a key region asso-
ciated with drug relapse, including incubation (drug-seeking 
progressively increases after prolonged withdrawal from ex-
tended access to METH) of METH-seeking behaviours,15

cue-induced reinstatement of METH-seeking behaviours16

and stress-induced reinstatement of cocaine-seeking beha-
viours.17 Optogenetic activation of LPB projections in the 
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CeA decreases food intake3 as well as CTA.18 A recent re-
view hypothesized that LPB-extended amygdala circuits pro-
cess interoceptive and exteroceptive stimuli, which may in 
part contribute to the dysregulated affective state induced 
by abstinence from chronic drug use.19

In the present study, we dissected a novel cholinergic path-
way from eLPBChAT neurons and explored its role in METH 
priming-induced reinstatement of CPP in male mice. 
Reinstatement is a classical extinction-based drug relapse 
model20 that refers to the resumption of drug-seeking beha-
viours after extinction following exposure to drugs, 
drug-associated cues or contexts, or stressors.21

Materials and methods
Detailed experimental methods are provided in Supplementary 
Materials.

Mice
C57BL/6 wild type (WT) and ChAT-Cre male mice weighing 
25–35 g were used.

Immunofluorescence
The following primary antibodies were used: goat polyclonal 
anti-ChAT (1:200, RRID: AB_2079751, Millipore, USA), 
rabbit polyclonal anti-NeuN (1:200, RRID: AB_2651140, 
Cell Signaling Technology, USA) and rabbit polyclonal 
anti-c-Fos (1:1500, RRID: AB_2247211, Cell Signaling 
Technology, USA).

Tracing virus injection
All virus samples in the present study were packaged by 
BrainVTA (Wuhan, China). The following virus samples 
were used: rAAV2/9-ChAT-EGFP (PT-1722, 2.15E+12 vg/ 
ml), rAAV2/9-EF1α-DIO-EGFP (PT-0795, 2.04E+12 vg/ml), 
CTB-555 (CTB-02, 1 μg/μl), rAAV2/9-VGAT1-CRE (PT-0 
346, 3.63E+12 vg/ml, 25 nl), rAAV2/9-DIO-TVA (PT-0021, 
5.56E+12 vg/ml, 25 nl), rAAV2/9-DIO-RVG (PT-0023, 
5.29E+12 vg/ml, 50 nl), RV-EnvA-ΔG-DsRed (R01002, 2.00 
E+08 IFU/ml), rAAV2/9-ChAT-hM3Dq-mCherry (PT-2213, 
5.54E+12 vg/ml) and rAAV2/9-VGAT1-EGFP (PT-3176, 
5.31E+12 vg/ml).

Unless otherwise noted, a volume of 100 nl of virus sam-
ple was injected per side. The following stereotaxic coordi-
nates for the eLPB are used: AP, −5.20 mm; ML, 
±1.55 mm and DV, −3.60 mm. The following stereotaxic 
coordinates of the CeA are used: AP, −0.90 mm; ML, 
±2.70 mm; DV, −4.55 mm.

Fluorescent micro-optical sectioning 
tomography
In fluorescent micro-optical sectioning tomography 
(fMOST), the rAAV2/9-ChAT-EGFP (PT-1722, 2.15E 

+12 vg/ml) virus was unilaterally injected into the eLPB of 
the WT mice. The intact brains were mapped using 
BioMapping 5000N (Oebio, Wuhan, China).

Designer receptor exclusively 
activated by designer drug
Clozapine N-oxide (CNO, 2 mg/kg,22 HY-17366, 
MedChemExpress) was used to specifically modulate the 
eLPBChAT neurons via interaction with the hM3Dq virus 
for 30 min before performing behavioural tests.23

Patch-clamp
In the patch-clamp experiment, rAAV2/9-ChAT 
-hM3Dq-mCherry (PT-2213, 5.54E+12 vg/ml) was bilat-
erally injected into the eLPBs, followed by rAAV2/9 
-VGAT1-EGFP (PT-3176, 5.31E+12 vg/ml) being bilateral-
ly delivered into the CeAs of WT mice.

Preparation of slices was done as previously described.24

The spontaneous action potentials (sAPs) were recorded un-
der the current-clamp mode, while the spontaneous excita-
tory postsynaptic currents (sEPSCs) were recorded under 
the voltage-clamp (voltage holding at −70 mV) mode. 
10 μM of CNO23 was used to activate the terminals of the 
eLPBChAT neurons within the CeA. 50 µM of picrotoxin25

was used to block the GABAA receptors. 5 μM of mecamyla-
mine (MEC)26 was used to non-specifically inhibit nAChRs 
on the CeAGABA neurons.

Fibre photometry
The rAAV2/9-VGAT1-GCaMp6m (PT-3317) virus was bi-
laterally injected into the CeAs, and the rAAV2/ 
9-ChAT-hM3Dq (Gq, PT-2874, 5.54E+12 vg/ml) or 
rAAV2/9-ChAT (Go, PT-0607, 5.50E+12 vg/ml) virus was 
bilaterally injected into the eLPBs of WT mice. The calcium 
signals were obtained by stimulating these cells with a 
405 nm LED (15–20 μW at the fibre tip). F0 is the baseline 
fluorescence signal that was recorded for 1 min prior to 
CNO treatment. F is the real-time fluorescence signal that 
was recorded at 0–50 min. The values of ΔF/F are calculated 
by (F–F0)/F0. The area under curve (AUC) is the integral un-
der recording duration related to the corresponding baseline 
at every trial.

Conditioned place preference
In the CPP experiment, two cohorts of WT mice were ex-
posed to viral injections. In Cohort-1 mice, rAAV2/ 
9-ChAT-hM3Dq-mCherry (Gq, PT-2213, 5.54E+12 vg/ml) 
or rAAV2/9-ChAT (Go, PT-0607, 5.50E+12 vg/ml) was bi-
laterally injected into the eLPBs, forming eLPB-Gq mice 
and eLPB-Go mice. In Cohort-2 mice, rAAV2/ 
9-ChAT-DIO-hM3Dq-mCherry (Gq, PT-2825, 5.08E 
+12 vg/ml) or rAAV2/9-ChAT (Go, PT-0607, 5.50E 
+12 vg/ml) was bilaterally delivered into the eLPBs, followed 
by rAAV2/retro-Cre-EGFP (PT-1168, 5.25E+12 vg/ml, 
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150 nl) being bilaterally injected into the CeAs, forming 
CeA-Gq mice and CeA-Go mice. Mice received CNO 
(2 mg/kg, i.p.) 30 min before each behavioural test.

METH CPP procedures were performed using the 
TopScan3D CPP apparatus (CleverSys, VA, USA). A stand-
ard CPP protocol21,27 was applied, including a pre-test, con-
ditioning, a post-conditioning test, extinction training and a 
METH challenge-primed reinstatement test. Baseline prefer-
ence (pre-test) was assessed by placing the mice in a random 
chamber of the CPP apparatus and allowing them to explore 
all two chambers freely. Conditioning was confined to a pre-
ferred chamber paired with a saline (0.2 ml, i.p.) injection in 
the morning and to a non-preferred chamber paired with a 
METH (3 mg/kg, i.p.) injection in the afternoon for 7 con-
secutive days. During the test and extinction, mice were al-
lowed to freely access the two chambers without any 
injections. For the METH-primed reinstatement test, mice 
were injected with METH (0.5 mg/kg, i.p.) and then allowed 
to freely explore both chambers for 15 min.

The CPP score was calculated by subtracting the duration 
spent in the saline-paired chamber from the METH-paired 
chamber, and the ΔCPP score was the reinstatement CPP 
score minus the extinction CPP score.

Statistical analysis
Statistical analysis was carried out using GraphPad Prism 8.0 
software. The paired t-tests, unpaired t-tests and repeated 
measures of two-way ANOVA with Sidak post hoc tests 
were used to analyse data. Statistical significance was set as 
P < 0.05.

Data availability
The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

Results
Anatomical dissection of the 
eLPBChAT–CeAGABA pathway
First, we dissected the anatomical structure of the potential 
cholinergic pathway from the eLPBChAT to the CeAGABA. 
The neuronal nuclear antigen (NeuN) and ChAT were 
used as specific markers for neurons and cholinergic neu-
rons, respectively. As shown in Fig. 1A, ChAT-positive neu-
rons were mainly located in the eLPB. Immunohistochemical 
analysis revealed that >50% of the eLPB neurons were 
ChAT-positive neurons (eLPBChAT, Fig. 1B). To overview 
the whole-brain atlas of direct eLPBChAT projections, whole- 
brain precise imaging was performed by fMOST by injecting 
rAAV2/9-ChAT-EGFP into the eLPB of WT mice to label 
the eLPBChAT and the axonal projections (Fig. 1C). As shown 
in Fig. 1D, Supplementary Fig. 1A and Video 1, the 
eLPBChAT represented particularly strong inputs to the 

ipsilateral CeA, delineating the previously undiscovered 
eLPBChAT–CeA pathway.

To exclude the possibility that the CeA inadvertently la-
belled eLPBChAT fibres passing through rather than synapsing 
on the CeA, and further to determine the monosynaptic in-
puts from the eLPBChAT to the CeAGABA, anterograde trans- 
synaptic rabies tracing was used in combination with 
Cre-dependent version (Fig. 1E). The eLPBChAT neurons 
were infected by a ChAT promoter-driven virus expressing 
EGFP, while CeAGABA neurons as the starter cells 
(VGAT1-Cre and two Cre-dependent AAV helper virus re-
combinants in the CeA) were infected by rabies virus expres-
sing DsRed (Fig. 1F). As shown in Fig. 1G, rabies 
virus-labelled neurons (DsRed-positive) in the eLPB were co- 
expressed with ChAT-transfected eLPBChAT neurons 
(EGFP-positive), indicating a direct pathway from the 
eLPBChAT to the CeAGABA.

To accurately describe and quantify the eLPBChAT–CeA 
pathway in ChAT-Cre mice, a Cre-dependent anterograde tra-
cing virus labelled with EGFP was injected into the eLPB 
(Supplementary Figure 1B). Immunohistochemical analysis re-
vealed that most of the EGFP-labelled eLPB neurons were also 
immune-positive for ChAT (Supplementary Fig. 1C), and the 
eLPBChAT sent branching axons to the lateral region of the 
CeA (lCeA, Supplementary Fig. 1D). In WT mice, retrograde 
tracing CTB-555 was injected into the CeA (Supplementary 
Fig. 1E, 1F). Immunohistochemical analysis showed that, in 
the eLPB, around 27% of the ChAT-positive neurons were co- 
labelled with CTB-555 retrograded from the CeA, and 68% of 
CTB-555 were co-expressed with the ChAT-positive neurons 
(Supplementary Fig. 1G, H). Together, we found a novel direct 
cholinergic pathway from the eLPBChAT to the CeAGABA, form-
ing an eLPBChAT–CeAGABA pathway.

Functional investigation of the 
eLPBChAT–CeAGABA pathway
To characterize the functional innervation of the eLPBChAT– 
CeAGABA pathway, we combined neuronal activator design-
er receptor exclusively activated by designer drug 
(DREADD) hM3D and patch-clamp recording in acutely 
prepared slices. ChAT-hM3Dq (Gq) virus labelled with 
mCherry was injected into the bilateral eLPBs to infect the 
eLPBChAT neurons, and VGAT1 promoter-driven virus la-
belled with EGFP was injected into the CeA to transfect 
the CeAGABA neurons (Fig. 2A). CNO (CNO) was used to 
chemogenetically activate neurons by interaction with the 
hM3Dq (Gq) virus. As shown in Fig. 2B, the frequency of 
sAP in the eLPBChAT neurons was significantly increased by 
bath application of CNO when compared with its baseline, 
indicating the successful Gq virus models (t = 5.088, df = 5, 
**P = 0.0038 versus baseline). Next, Fig. 2C showed that a 
stimulation of hM3Dq (Gq)-expressed eLPBChAT terminals 
on the CeA slices by CNO increased the frequency of 
sEPSCs in the CeAGABA neurons. In addition, the enhanced 
sEPSC frequency disappeared when CNO was washed out 
from bath artificial cerebrospinal fluid (ACSF), and the 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
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CNO-enhanced sEPSC frequency was blocked by a non- 
specific nAChRs antagonist (MEC) (F(1.597, 7.986) = 6.229, 
P = 0.0275, *P = 0.0464 CNO versus baseline, *P = 0.0325 
MEC versus CNO). However, both CNO and MEC treat-
ment had no effect on the amplitude of sEPSC (F(1.408, 

7.039) = 0.2703, P = 0.6966, N.S.P = 0.9756 CNO versus 

baseline, N.S.P = 0.7498 MEC versus CNO). These results in-
dicate that the activation of eLPBChAT neurons is necessary 
and sufficient to excite CeAGABA neurons, and which was 
at least in part via nAChRs.

To further confirm the innervation of the eLPBChAT on the 
CeAGABA in vivo, real-time calcium signals in free-moving 

Figure 1 Anatomical structure of the eLPBChAT–CeAGABA pathway. (A) Immunohistochemistry for ChAT/NeuN in the eLPB of WT 
mice. Scale bar, 400 μm. (B) The percentage of ChAT-positive cells relative to NeuN-labelled cells in the eLPB, n = 5 mice. (C) Schematic diagram 
of the rAAV2/9-ChAT-EGFP injection in WT mice. (D) The overview of the cholinergic projections from LPBChAT neurons in the brain by fMOST. 
Scale bar, 50 pixels. (E) Schematic diagram of viral injection sites in the eLPB and CeA of WT mice. (F) Representative images of rAAV2/ 
9-ChAT-EGFP injection into the eLPB and RV-EnvA-ΔG-DsRed injection into the CeA. Scale bar, 400 μm. (G) Representative images of EGFP-labelled 
and DsRed-labelled viral signals that are co-expressed within the eLPB. Scale bar, 100 μm.
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mice were recorded in the CeAGABA neurons by injecting the 
VGAT1-GCaMp6m virus into the CeA, and the ChAT 
promoter-driven hM3Dq (Gq) or ChAT alone (Go) virus 

was injected into the bilateral eLPB in WT mice (Fig. 2D). 
The GCaMp6m-positive virus was expressed restrictedly in 
the CeA and was highly overlapping with GAD67 

Figure 2 Functional role of the eLPBChAT–CeAGABA pathway. (A) Schematic diagram of the viral transfection in WT mice and the 
patch-clamp recording in brain slices. (B) Representative images of current-clamp recording on rAAV2/9-ChAT-hM3Dq-mCherry (Gq) transfected 
neurons in the eLPB (left), sample traces and summarized data of sAP in eLPBChAT neurons (right) after CNO treatment. n = 6 cells from six mice. 
Scale bar, 400 μm. (C) Representative images of patch-clamp recording on the rAAV2/9-VGAT1-EGFP transfected neurons in the CeA (left), sample 
traces and summarized data of frequency (middle, n = 6 cells from six mice, one-way ANOVA with Tukey post-test) and amplitude (right, n = 6 cells 
from six mice, one-way RM ANOVA with Tukey post-test) of sEPSC in response to CNO and MEC. Scale bar, 400 μm. (D) Schematic diagram of 
viral transfection and optical fibre implantation in the eLPB and CeA. (E) Heatmap of GCaMp6m fluorescence at 0–50 min after CNO 
administration. (F) Quantification of the peak ΔF/F. (G) Go and Gq-evoked AUC. n = 6 mice, two-way ANOVA with Sidak post-test.
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(Supplementary Fig. 2A,B) (t = 0.8530, df = 4, N.S.P = 0.4417 
versus Go). As shown in Fig. 2E, F and G, after the chemoge-
netic activation of the eLPBChAT neurons by a systemic ad-
ministration of CNO, sustained increases in calcium 
signals at 30, 35, 40, 45 and 50 min were observed in the 
GCaMp6m-transfected CeAGABA neurons (F(4, 40) = 9.687, 
P < 0.0001; **P(30 min) = 0.0004, **P(35 min) < 0.0001, 
**P(40 min) < 0.0001, **P(45 min) < 0.0001, ***P(50 min) = 
<0.0001 versus Go.). In addition, immunohistochemical 
analysis revealed that the systemic administration of CNO 
significantly evoked c-Fos expression in the CeAGABA neu-
rons expressing GCaMp6m (Supplementary Fig. 2C,D) (t = 
3.441, df = 4, *P=0.0263 versus Go). These results con-
firmed the positive innervation of the eLPBChAT–CeAGABA 

pathway under physiological conditions.
Taken together, we found that the specific activation of 

the eLPBChAT neurons in vitro or in vivo excited the 
CeAGABA neurons. In addition, the nAChRs antagonist ef-
fectively inhibited the CNO-enhanced sEPSC in the 
CeAGABA neurons with Gq-transfected terminals from the 
eLPBChAT neurons.

Effect of the chemogenetic activating 
eLPBChAT–CeAGABA pathway on 
METH priming-induced 
reinstatement of CPP
To investigate the role of eLPBChAT neurons in METH re-
lapse, the METH priming-induced reinstatement of the 
CPP procedure was set up in mice (Fig. 3A). Before METH 
CPP training, the ChAT promoter-driven hM3Dq (Gq) or 
ChAT alone (Go) virus was injected into the bilateral 
eLPBs in WT mice (Fig. 3B, C, eLPB-Gq and eLPB-Go 
mice, respectively). The mCherry-positive virus was ex-
pressed restrictedly in the eLPB and was highly overlapping 
with ChAT (Supplementary Fig. 3A, B). As shown in 
Supplementary Fig. 3C–F, no significant differences can be 
found on the METH-induced CPP (F(1, 16) = 6.234, P = 
0.0238. eLPB-Go, baseline versus test: **P = 0.0091; 
eLPB-Gq, baseline versus test: **P<0.0001) and CPP extinc-
tion training (F(14, 224) = 1.473, P = 0.1224) between two 
groups. During the priming test on D24, a single challenge 
of low-dose METH successfully reinstated the 
METH-induced CPP in eLPB-Go mice but failed to reinstate 
it in eLPB-Gq mice after the systemic administration of CNO 
(eLPB-Go: t = 10.60, df = 7, **P <0.0001 versus extinction; 
eLPB-Gq: t = 0.4251, df = 9, N.S.P = 0.6808 versus extinc-
tion; ΔCPP scores, t = 3.546, df = 16, **P = 0.0027 versus 
Go, Fig. 3D–F). In contrast, the total distance travelled by 
the mice between the eLPB-Gq and the eLPB-Go models 
was not significantly different (t = 0.3193, df = 16, N.S.P = 
0.7536 versus eLPB-Go, Supplementary Fig. 3E). These re-
sults indicated that the activation of the eLPBChAT decreased 
the METH priming-induced reinstatement of CPP without 
changing the locomotive abilities in the mice.

To evaluate the role of the eLPBChAT–CeAGABA pathway 
in the METH priming-induced reinstatement of CPP, we ex-
pressed Cre recombinase in the CeA neurons by injecting 
Raav2/Retro-Cre-EGFP into the bilateral CeA and infected 
CeA-projecting ElpbChAT neurons bilaterally with AAV2/ 
9-ChAT-DIO-Hm3Dq-mCherry (Gq) or ChAT alone (Go) 
in WT mice (Fig. 3G–I, CeA-Gq and CeA-Go mice, respect-
ively). As shown in Fig. 3J–L, the chemogenetic activation of 
the eLPBChAT neurons projecting to the CeA neurons obvi-
ously decreased the METH priming-induced reinstatement 
of CPP in CeA-Gq mice, when compared with that in 
CeA-Go mice (CeA-Go: t = 6.579, df = 5, **P = 0.0012 ver-
sus extinction; CeA-Gq: t = 0.6573, df = 5, N.S.P = 0.6573 
versus extinction; ΔCPP scores, t = 3.286, df = 10, **P = 
0.0082 versus Go.). As shown in Supplementary Fig. 3F 
and G, no significant differences were observed during the 
CPP test (F(1, 10) = 0.06524, P = 0.8036. CeA-Go, Test: 
*P = 0.0120 versus Baseline; CeA-Gq, **P = 0.0066, versus 
Baseline) and extinction training (F(14, 140) = 0.7511, P = 
0.7196) between the two groups. There was no significant 
difference in the total distance travelled by the mice between 
the CeA-Gq and CeA-Go models (t = 0.6060, df = 10, N.S.P = 
0.5580 versus CeA-Go, Supplementary Fig. 3H). These re-
sults indicated that the activation of the eLPBChAT–CeA 
pathway effectively decreased the METH priming-induced 
reinstatement of CPP without changing the locomotive abil-
ities in the mice.

Discussion
The cholinergic neurons play critical roles in processing 
reward- and addiction-related information,28–32 and cholin-
ergic dysfunction leads to neurological and psychiatric disor-
ders.33 Cholinergic neurons in the mammalian brain are 
thought to be mainly distributed in five regions, namely the 
pedunculopontine, dorsal lateral tegmental nucleus, thalam-
ic nucleus, striatum and basal forebrain nucleus.34

ChAT-positive neurons can either serve as interneurons lo-
cally or send out long-distance projections to control other 
brain regions.28,29 For example, regulating cholinergic inter-
neurons in the nucleus accumbens (NAc) suppressed cocaine 
CPP, cocaine self-administration, as well as cue-induced re-
instatement of heroin-seeking.35,36 However, a question 
arises as to whether the cholinergic system, especially the 
cholinergic projecting neuron, contributes to METH addic-
tion. In 1999, Kish et al.37 found that exposure to high doses 
of METH caused brain ChAT depletion in autopsied brain of 
chronic METH users. Subsequently, they further found that 
vesicular acetylcholine transporter (VAChT, a ‘stable’ mark-
er of human cholinergic neurons) levels were selectively ele-
vated by 48% in the METH group.38 Until recently, with the 
ChAT-Cre transgenic mice, Nasirova et al.8 reported that 
ChAT-positive neurons existed in the LPB of mouse embryo. 
Consistent with this finding, we found that there existed 
abundant LPBChAT neurons in adult mice, which are concen-
trated in the eLPB. Most importantly, the specific activation 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac219#supplementary-data
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Figure 3 The role of the eLPBChAT–CeAGABA pathway in METH priming-induced reinstatement of CPP. (A) Experimental design 
and timeline of METH priming-induced reinstatement of CPP. (B) Schematic diagram of the viral transfection in WT mice. (C) Representative 
images of rAAV2/9-ChAT-hM3Dq-mCherry (Gq) injection in the eLPB. Scale bar, 400 μm. (D and E), The METH priming-induced reinstatement of 
CPP after activating eLPBChAT neurons by CNO. eLPB-Go: n = 8 mice; eLPB-Gq: n = 10 mice; ΔCPP scores, n = 18. (F) The heatmap of mice 
travelling traces in eLPB-Go and eLPB-Gq mice. (G) Schematic diagram of the viral transfection in the eLPB and CeA of WT mice. (H) 
Representative images of rAAV2/9-ChAT-hM3Dq-mCherry (Gq) injection in the eLPB. Scale bar, 400 μm. (I) Representative images of rAAV2/ 
retro-Cre-EGFP within the CeA. Scale bar, 400 μm. (J and K) METH priming-induced reinstatement of CPP after activating terminals from 
eLPBChAT neurons within the CeA. CeA-Go: n = 6 mice; CeA-Gq: n = 6 mice); ΔCPP scores, n = 12 mice. (L) The heatmap of mice travelling traces 
in CeA-Go and CeA-Gq mice.
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of LPBChAT decreased METH-primed CPP behaviours, indi-
cating the critical role of the eLPBChAT in the METH 
priming-induced reinstatement of CPP.

The CeA is one of the major LPB afferent sources and ef-
ferent targets.10 Some studies showed that the CeA mainly 
received inputs from CGRP-positive neurons 31,39,40 or pitu-
itary adenylate cyclase-activating polypeptide (PACAP) neu-
rons41,42 in the LPB, most of which were glutamatergic 
neurons.43,44 Do eLPBChAT neurons send cholinergic projec-
tions directly to the CeA? Here, we found that there exists a 
direct cholinergic eLPBChAT–CeAGABA pathway, which ex-
tends the knowledge of classic LPB–CeA circuits. It is pos-
sible that some neurons in the LPB co-express the ACh 
with glutamate, which is akin to many LPB neurons expres-
sing CGRP with glutamate.8 ACh plays a role in the 
establishment or refinement of glutamatergic synaptic 
connections,45,46 which would allow ACh to act homosy-
naptically in synapse maturation and plasticity. Here, we il-
lustrated that DREADD-mediated activation of eLPBChAT 

neuron projection into the CeAGABA neurons increased the 
frequency of sEPSCs in vitro and triggered the calcium signal 
in vivo in the CeAGABA neurons, indicating an exciting in-
nervation effect of the eLPBChAT on the CeAGABA neurons. 
Further, the nAChRs antagonist reversed the increases of 
sEPSCs, indicating that the positive innervation of the 
eLPBChAT neurons on CeAGABA was mediated at least in 
part via cholinergic projections.

The CeA contains 95% GABAergic medium-sized neu-
rons.47 Studies have shown that the inactivation of the 
CeA by GABA agonism blocked stress-induced 

reinstatement of cocaine-seeking.17,48,49 Moreover, revers-
ible inactivation (lidocaine or GABAA and GABAB receptor 
agonists) of the CeA decreased cue-induced reinstatement of 
METH-seeking after extinction.16,50 Consistent with previ-
ous studies, we found that the activation of the eLPBChAT 

neurons projecting onto the CeA decreased the METH 
priming-induced reinstatement of CPP in male mice, sup-
porting the concept that the CeA is critical for drug relapse. 
The lCeA receives abundant LPBChAT projections, which ex-
its two types of non-over-lapping but mutually suppresses 
GABA neurons, expressed with protein kinase C-δ (PKCδ) 
or somatostatin (SOM), respectively.51,52 The lCeAPKCδ 

and lCeASOM neurons have opposite effects on the output 
neurons in the medial region of the CeA (mCeA): The 
lCeAPKCδ neurons inhibit these output neurons that promote 
aversive behaviour, while lCeASOM neurons promote moti-
vated behaviour by disinhibiting these output neurons.53,54

Venniro et al.55 demonstrated that METH-forced abstinence 
increased Fos expression in both lCeAPKCδ and lCeASOM. It 
is not known whether and how the two types of lCeA neu-
rons contribute to METH priming-induced reinstatement 
of CPP. They further identified that social choice-induced 
voluntary abstinence decreased METH craving, which was 
mediated by the activation of lCeAPKCδ. In contrast, incuba-
tion after forced abstinence promoted METH craving, which 
was mediated by the activation of lCeASOM.56 In the present 
study, our data showed that activating LPBChAT neurons in 
whole or those projecting to the CeAGABA decreased 
METH-primed CPP in mice, suggesting the important role 
of the eLPBChAT–CeAGABA pathway in METH 
priming-induced reinstatement of CPP. A further study 
should dissect the roles of the eLPBChAT–CeAPKCδ and/or 
the eLPBChAT–CeASOM pathway in the process of METH 
priming-induced reinstatement of CPP in mice.

There are some limitations in the present study. First, it is 
important for reinstatement studies to consider not only 
drug priming, but also the extinction response in the absence 
of a reinstating stimulus. Also, it needs to be ascertained 
whether the manipulation of the eLPBChAT–CeAGABA path-
way could induce reinstatement behaviours during the pro-
cess of extinction training. Second, the molecules in the 
eLPBChAT–CeAGABA pathway that contribute to 
METH-primed reinstatement of CPP are required to be ex-
plored in a future study.

In summary, we identified a novel cholinergic pathway 
from the eLPBChAT neurons to the CeAGABA neurons, form-
ing the eLPBChAT–CeAGABA pathway. Under physiological 
conditions, the activation of the eLPBChAT neurons or their 
terminals on the CeAGABA neurons triggered the excitability 
of these CeAGABA neurons. Under the METH 
priming-induced reinstatement of CPP, activating either 
the eLPBChAT neurons in whole or in the eLPBChAT– 
CeAGABA pathway decreased the METH-primed CPP in 
mice, indicating that the eLPBChAT–CeAGABA pathway is 
involved in coding the process of METH priming-induced 
reinstatement of CPP.

Video 1 The overview of the cholinergic projections from 
LPBChAT neurons within the brain by fMOST. 100 nl of the 
rAAV2/9-ChAT-EGFP (PT-1722, 2.15E+12 vg/ml) virus was 
unilaterally injected into the eLPB of WT mice to label the 
eLPBChAT and the axonal projections. Three weeks later, the intact 
brains were mapped using BioMapping 5000N. The eLPBChAT 

represented particularly strong inputs to the ipsilateral CeA, 
forming the eLPBChAT–CeA pathway. Scale bar, 2000 μm.
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