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ABSTRACT

Motivation: Functional module detection within protein interaction
networks is a challenging problem due to the sparsity of data and
presence of errors. Computational techniques for this task range from
purely graph theoretical approaches involving single networks to
alignment of multiple networks from several species. Current network
alignment methods all rely on protein sequence similarity to map
proteins across species.

Results: Here we carry out network alignment using a protein
functional similarity measure. We show that using functional similarity
to map proteins across species improves network alignment in terms
of functional coherence and overlap with experimentally verified
protein complexes. Moreover, the results from functional similarity-
based network alignment display little overlap (<15%) with sequence
similarity-based alignment. Our combined approach integrating
sequence and function-based network alignment alongside graph
clustering properties offers a 200% increase in coverage of
experimental datasets and comparable accuracy to current network
alignment methods.

Availability: Program binaries and source code is freely available at
http://www.stats.ox.ac.uk/research/bioinfo/resources

Contact: ali@stats.ox.ac.uk

Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

The availability of large-scale protein interaction datasets has
made it possible to carry out high level graph theoretic analysis
of the interactomes of several species [see Bork et al. (2004)
for a review]. Many studies have searched for higher level
organization and modularity within the network by breaking it
up into relatively independent modules, which may correspond
to biologically relevant complexes (Han er al., 2004; Kashtan
and Alon, 2005; Spirin et al., 2003). Several algorithms have
been designed in recent years which use interaction information
alone to identify functional modules and complexes. Most of
these algorithms identify dense regions of high connectivity with
relatively low connectivity to the rest of network (Bader and Hogue,
2003; Krogan et al., 2006). These dense sub-graphs are treated as
potential functional modules. For instance, MCODE (Bader and
Hogue, 2003) first identifies putative complexes using local network
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density and then filters away those which do not contain sub-
graphs with minimal degree two. Another graph-based method,
MCL (Dongen et al., 2000), simulates a large number of quenched
random walks of varying length from each node of the graph using an
expansion step and combines this with an inflation step to partition
the graph into subsets that do not have paths between them.

Several methods have also been proposed for identifying
functional modules by simultaneous analysis of the network and
RNA expression data. Ideker et al. (2002) introduced a framework
for identification of active sub-networks, that is, connected regions
of the network that show significant changes in expression over a
particular subset of the conditions. Segal et al. (2003) provided a
probabilistic formulation, in which a module is a group of genes
with high pair-wise similarities of expression profiles and with a
significant fraction of possible interactions. Taking the combined
approaches even further, Tanay et al. (2004) described an integrative
framework allowing the integration of protein interaction data with
gene expression, phenotypic sensitivity and transcription factor (TF)
binding, using the SAMBA bi-clustering algorithm (Tanay et al.,
2002).

As suggested by increasing evidence, protein interaction modules
that are conserved across species may exist. Proteins in the same
pathway have been found to be present or absent in a genome
as a group (Kelly et al., 2003; Pellegrini et al., 1999), and many
protein interactions in the yeast network have also been identified
for the corresponding protein orthologs in worm (Matthews et al.,
2001). These discoveries have led to research directed at identifying
complexes and functional modules through network alignment,
analogous to traditional sequence alignment (Dandekar et al., 1999;
Kelly et al., 2004; Ogata et al., 2000). Given two or more networks,
the aim of network alignment algorithms is to identify modules
that are conserved across the networks. The premise is that patterns
of interactions which are conserved across species have biological
significance and hence are more likely to correspond to real protein
complexes or functional modules. Most alignment algorithms first
define an alignment graph where each node represents a set of
orthologous proteins. The edges in the alignment graph represent
conserved interactions. A search is then carried out over this
alignment graph for high scoring sub-graphs.

One of the earliest network alignment algorithms, NetworkBlast
(Sharan and Ideker, 2006) defines the network alignment graph
by identifying sequence similar proteins from several species and
carries out a search over this graph for dense clusters of interactions.
NetworkBlast has been used to perform three-way comparisons of
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yeast, worm and fly which yielded conserved modules displaying
good overlap with MIPS (Mewes et al., 2004) complexes. Graemlin
(Flannick et al., 2006) use progressive pair-wise alignments to
compare multiple networks. Graemlin’s probabilistic formulation
of the topology-matching problem eliminates restrictions on the
possible architecture of conserved modules such as those imposed
by NetworkBlast. However, it requires parameter learning through
a training set of known alignments. The sensitivity of the method
was assessed by counting the number of KEGG (Kanehisa et al.,
2000) pathways in the alignments. The KEGG coverage of the
alignment results was between 21 and 39%. In terms of speed, it far
outperforms NetworkBlast with a running time approximately linear
to the number of networks. Other alignment algorithms have tried
to take into account the evolutionary forces shaping the interaction
networks. For example, MaWISH (Koyuturk et al., 2006), which
implements a duplication divergence model to carry out pair-wise
network alignment. In one test, the yeast and human interaction
networks were aligned using MaWish, identifying 151 modules. The
identified modules were compared to MIPS complexes of size 3—
25, and the reported MIPS coverage was 20%. More recently an
evolutionary-based multiple network alignment algorithm CAPPI
(Dutkowski and Tiuryn, 2007) was developed which tries to
reconstruct the ancestral network for the input species and maps
it back onto the extant networks to identify common modules.
In a comparison with NetworkBlast, CAPPI identified a lower
number of conserved modules when aligning the yeast, worm and
fly networks but the results were more functionally pure. Graemlin
2.0 (Flannick et al., 2008) is also a multiple network aligner, with
a scoring function that can use evolutionary events. Some other
network alignment methods proposed recently include IsoRank
(Singh et al., 2008) and IsoRankN (Liao et al., 2009), GNA and
PATH (Zaslavskiy et al., 2009) and DOMAIN (Guo and Hartemink,
2009). DOMAIN is the first algorithm to introduce protein domains
into the network alignment problem and uses a novel direct-edge-
alignment paradigm to directly detect equivalent interaction pairs
across species. IsoRankN is a global multiple network alignment
based on spectral clustering on the induced graph of pairwise
alignment scores. GNA formulates alignment as two different graph
matching problems depending on whether strict constraints on
protein matches based on sequence similarity are given, or whether
an optimal compromise between sequence similarity and interaction
conservation in the alignment is desired. It should be noted that
global network alignment methods such as IsoRank and GNA do
not directly address the conserved module detection problem.

A disadvantage of network alignment is that despite its success
in identification of conserved modules in multiple species, it offers
limited coverage compared to graph clustering methods. It is also
highly dependent on the graph topology for correct results, thus
error rates pose a special challenge. This is a critical issue due to
the unusually high percentage of false positive and false negative
interactions in current networks. Recent estimates have put these
numbers as high as 70 and 90%, respectively (Hart er al., 2006;
Saeed and Deane, 2008). A common theme in all previous studies
of protein interaction network alignment has been the use of protein
sequence similarity to map orthologous proteins across different
species. However, this does not necessarily provide a complete
picture of orthologous relationships in the context of interaction
networks. When aligning networks from species that are very
distant in evolutionary terms, the proteins may not display enough

sequence similarity to achieve a reasonable degree of mapping. This
would result in a severely restricted alignment graph that may miss
biologically conserved regions in the networks. Here, we explore
the possibility of using a different measure of protein similarity.
Since the goal of alignment is to extract modules that correspond
to specific biological processes, we examined the use of functional
similarity of proteins across networks to aid alignment. We present
a novel functional similarity-based measure to carry out network
alignment that increases the number of conserved interactions
found by more than 30%. The modules found using our measure
display 15% higher functional coherence on average compared to
sequence-based alignment. Module detection was carried out purely
through alignment of functionally similar proteins across species.
Specifically, functional similarity of proteins within a species was
not used to guide module detection. We also go on to investigate the
benefits of combining network alignment with clustering techniques
to identify larger modules. The combined method improves the
coverage of experimentally verified complex datasets by nearly
200% compared to either sequence or function-based network
alignment alone.

Finally, we present a novel representation that attempts to perform
simultaneous clustering of multiple networks constrained by the
similarity links between them. This method accounts for the errors
in interaction data by completely relaxing the restrictions on the
module topology and can identify conserved and non-conserved
modules at the same time.

2 METHODS

2.1 Functional similarity score

To be useful for network alignment, a subjective concept like functional
similarity must be expressed in a quantitative form that reflects the closeness
in the biological functions of the proteins being compared. Functional
annotation of proteins is an ongoing scientific activity and one of the most
widely used resources is Gene Ontology (GO; Ashburner et al., 2000). GO
offers substantial coverage of major protein databases and provides a species-
specific, structured set of terms describing gene products. We devised a
simple measure of functional similarity which is based on the most specific
and hence most informative GO annotation of each protein. For simplicity we
focus here only on the Biological Process category of GO, the method being
identical for the other top categories of Molecular Function and Cellular
Component.

Let there be a total of N proteins in the dataset under consideration and
the GO functional annotation of each protein be defined as a set of terms
Sa. We define a multi-set of size n as a pair (S,0) where o: S — N, with the

conditions:
s={Usi. D om=n
N

YES
Here, o is a function that maps a GO term to the number of times it occurs
in the dataset. Terms having fewer proteins annotated to them occur less
frequently in the dataset and are thus classified as more specific. For any two
proteins A and B with annotation sets S4 and Sg, the functional similarity
score (funsim) is then calculated as follows:
. o(1)
funstm(A,B):max(l—T),IG{SAQSB} (€))]
The above scoring scheme assigns higher functional similarity to protein
pairs that share more specific GO annotations. It should be noted that other,
more sophisticated scoring schemes for functional similarity based on GO
are possible. Several measures of functional similarity have been proposed
in recent years making use of the information content of GO terms as well as
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the semantics ( ‘is a’, ‘part of”) of the GO relationships (Pandey et al., 2008;
Resnik et al., 1995; Schlicker et al., 2006). We compared our score to the one
proposed by Pandey et al. and found the lists of functionally similar proteins
generated in both cases to be in good agreement. We carried out pair-wise
alignments of the human and yeast as well as human and fly interaction
networks using our score. The results were compared to sequence-based
alignment using several existing methods.

2.2 Combining function and sequence

Analysis of the results from function and sequence-based alignment led
us to the development of an extended algorithm. This method combines
high quality sequence and function-based alignment results with common
clustering measures to identify larger modules in a network. A seed set of
edges is first identified from the weighted interaction network, where the
weights are based on the degree of conservation and other complementary
measures. Modules are then expanded from this set in a greedy fashion as
described later.

2.2.1 Alignment-based edge score Intuitively, an interaction that is con-
served across many species should have a high score. We align the query
network with each of the other input networks separately using the Match-
and-Split (MAS) algorithm (Narayanan et al., 2007). For each edge in the
query network a track is kept of the number of alignments, x, in which it
was found to be conserved. The alignment-based score is found through a
logistic scoring function,
Ali S AS)= K 2

ignment Score (AS) = e r 2)
This choice is motivated by the initial exponential growth of the function
followed by saturation. This models the requirement that the score increases
rapidly initially as an edge is found to be conserved in multiple species and
then should slowly approach a limiting value with increasing evidence of
conservation. Here, the parameters k, ¢ and f can be adjusted to set an upper
limit on the score as well as the saturation point. In our implementation these
have been set to 1, 20 and 2, respectively. This choice limits the alignment
score to a maximum of 1, like the graph and co-expression-based scores, and
also ensures that the score saturates when an edge is found to be conserved
in two species (as we carried out our tests on pair-wise alignments).

We align the networks using both sequence and our functional similarity
measures. Each edge will therefore have two alignment scores assigned
to it, AS,,, (for sequence-based alignment) and ASj,. (for function-based
alignment).

2.2.2 Graph-based edge score The graph-based score is constructed from
two commonly used graph statistics. The clustering coefficient is a local
network measure of how close a vertex and its neighbors are to being a
clique. Consider a selected node i in a network, having k; neighbors. The
value of the clustering coefficient of the node i is given by the ratio between
the number of edges E; that actually exist between these k; nodes and the total
number k;(k;—1)/2 of such edges that could exist in the neighborhood of i
2E;

c ki(ki—1) @
As the clustering coefficient is a node-based score and our algorithm is based
on edge scoring, we assigned to each edge the average clustering coefficient
of its endpoints, so that an edge which links two nodes with high clustering
coefficients is more likely to be within a dense cluster.

The betweenness (B) of an edge is defined as the number of shortest paths
between pairs of nodes that run along it (Girvan and Newman, 2002). If
a network contains groups or communities that are only loosely connected
by a few inter-group edges then all the shortest paths between different
communities must go along one of these edges. Thus, the edges connecting
communities will have high betweenness while edges inside the clusters
would tend to have lower betweenness.

To favor edges that have both a high clustering coefficient and low
betweenness, we use the product of normalized edge betweenness values
(NB) and edge clustering coefficients to calculate the graph-based edge score:

Graph Score (GS)=C(1 —NB) 4)

2.2.3 Co-expression-based edge score Co-expression by itself is not
necessarily an effective measure of co-membership in a module, though
it is still a useful indicator of biological coordination between proteins.
Combined with the other measures presented above, it may contribute to
better module detection. Co-expression data for human proteins was obtained
from Obayashi et al. (2008). We use the Pearson correlation coefficient
values (ranging from —1 to 1) as the Co-expression Score (CS). Where
no co-expression data is available, a CS of 0 is assigned.

2.2.4 Combined edge score and module expansion The four different
scores for each edge in the network are finally integrated through a weighted
linear combination:

Final Edge Score = aAS;e; + BASfinc +yGS+8CS 5)

The weights («, B,7,8) can be adjusted to assign relative importance to the
different techniques, depending upon the confidence level attributed to them
and the type of results sought. In our implementation we assigned the set
of weights (¢ =9,8="7,y=2,5=1) based on regression tests. The weights
were learned through edges extracted from a set of 100 randomly selected
experimentally verified complexes (details in Supplementary Material). This
set of complexes was subsequently removed from the validation set. To test
the robustness of the combined score, weights were inferred from the human-
yeast analysis and the same set of values was then used for all subsequent
analyses, including human—fly, fly-yeast and human-worm comparisons
(In the Supplementary Material, we also determined optimized weights for
yeast—fly analysis to test how the weights differ for different comparisons).
We found that using weights optimized for one species can be used for
the analysis of other species with little effect on the results. This can of
course be better tested as data for more species becomes available. After
edge-weighting, modules are extracted from the network using the highest-
scoring edges (Algorithm 1). First, a seed set is selected consisting of edges
with scores >3, u being the average edge score of the network. These seeds
are then expanded stepwise into modules. At each step, the highest scoring
neighbor of a seed is added to the module if it does not decrease the average
score, S, of the module (averaged over all edge scores in the module) by
more than a user defined threshold, ¢. We carried out all our tests with ¢ set
to 0.75. The algorithm terminates when no more edges can be added. At this
point, the input network is divided into a set of modules which potentially
correspond to real biological complexes.

2.3 Simultaneous clustering

An inherent issue with alignment-based methods is low coverage due to
emphasis on only conserved modules along with sensitivity to errors in
network topologies. To tackle these problems we introduce the concept of
simultaneous clustering. A basic implementation of this concept takes as
input multiple interaction networks along with the similarity relationships
between proteins from different species. A ‘global’ graph is then built with
all the nodes present in the input networks and two types of links: inter- and
intra-species edges. We stress here that the global graph is different from
the alignment graph used in network alignment algorithms. In particular,
the alignment graph is a product of the input species networks where each
node is a merged representation of orthology relationships. In contrast, the
global graph does not involve merging of nodes and edges and all orthologs
are represented individually. The alignment task can then be reduced to
a clustering of this global graph based on edge density. Proteins in a
species that are highly connected to each other as well as to a highly
connected group of proteins in another species through similarity links
would be clustered together and identified as meta-clusters (Fig. 1). These
meta-clusters represent putative conserved modules.
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Algorithm 1: Combined Method

Subroutine Network-Weighting
Input Unweighted graph G = (V, E), parameters &, /3,),6
List of conserved interactions
List of coexpression values for each edge e € E
Output Weighted graph G = (V, E)
foreachedgee € E
AS,., ASj, — Calculate alignment scores
GS - Calculate graph scores
CS — Co-expression value
weight(e) — aAS, + BAS,,. +7GS+5CS
end for

func

Subroutine Module-Expansion
Input: Weighted graph G = (V, E); Expansion threshold ¢
Output: Set of modules M

2 weight(e)
— ecE
T
M — initialized as set of modules each with a single
edge with weight > 3u
for each module m in M
do
Jor each edge e € neighbors(m)
t:f weight(m) + weight(e) S tx weight(m) hen
|m + 1| |m|
m.add(e)
foreach k € {M-m}
if |k m| > 0then
merge (k,m)
end if
end for
end if
end for
until no more edges added to m
end for

Fig. 1. A meta-cluster within the global graph composed of networks of
multiple species. The meta-clusters are characterized by relatively higher
number of intra-species links (protein interactions, bold lines) as well as
high number of inter-species links (orthology relationships, dotted lines).

The crucial difference to network alignment is that to be part of the same
meta-cluster, clusters from different species need not be very similar in edge
topology: they only need to be well-connected within as well as with each
other. Moreover, unlike network alignment, module detection using this
technique is not limited to only conserved regions. Dense regions in the
interaction network of one species that do not have sufficient similarity links
to any other species will still be clustered into modules. In this case the
meta-cluster would only contain proteins from that particular species. For
the clustering process, any of the myriad of already available algorithms can
be used, provided they can deal with the presence of two different types of
links in the global graph. We used an implementation of the popular clustering
algorithm, MCL to carry out our tests, where the inter- and intra-species links
are differentiated by their weights.

2.4 Data sources

The species selected for analysis were Homo Sapiens (human),
Saccharomyces Cerevisiae (yeast), Drosophila Melanogaster (fly) and
Caenorhabdidits Elegans (worm). Interaction data for yeast (4941 proteins,
17387 interactions), fly (6701 proteins, 20092 interactions) and worm
(2328 proteins, 3495 interactions) was downloaded from the Database of
Interacting Proteins (DIP; Xenarios et al., 2002), while data for human (9305
proteins, 35458 interactions) was taken from the Human Protein Reference
Database (HPRD; Prasad et al., 2008).

2.5 Alignment algorithm

We tested our new similarity measure using the MAS network alignment
algorithm. Instead of creating an alignment graph, MAS uses a recursive
process that alternately identifies locally matching nodes across two networks
and then splits the matching sub-graphs into connected components. Nodes
are deemed locally matching if they share sequence similarity as well as
network neighborhood. In the case of multiple orthologs for a node, the
orthologs are aligned independently of each other. They can therefore be
part of different sub-graphs in the alignment. MAS is relatively fast and uses
a flexible node similarity component that uses BLAST (Altschul ez al., 1990)
E-values in the original implementation. We modified it to use our functional
similarity scores. A cutoff score of 0.9 was used to select highly similar
proteins. We found that this particular choice of cutoff identifies functional
matches for a significant proportion of proteins across two species whilst
keeping multiple hits within reasonable limits.

2.6 Testing criteria

The modules recovered were analyzed in terms of their functional coherence
and compared to experimentally determined complexes to assess their
quality. We define the functional coherence of a module M, as the average
functional similarity of all possible protein pairs (i,j) in the module. Pairs
for which functional similarity could not be calculated due to lack of GO
annotation for one or both proteins were not included.

Functional Coherence = ﬁ Z Sfunsim(i,j) (6)
ijeM

To check whether the extracted modules corresponded to real complexes we
compared them to high quality datasets containing experimentally identified
complexes. Experimentally determined complexes for yeast and human were
downloaded from MIPS CYGD (Guldener et al., 2005) and MIPS CORUM
(Ruepp et al., 2008) databases, respectively. For each MIPS complex (A),
we identify its best matching complex in the solutions (M) as the one having
the greatest value of the following comparison score:

[ANM|
|M|

MIPS Comparison Score = (@)

We compared the performance of function and sequence-based network
alignment by aligning the human network with yeast and fly networks.
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Table 1. Summary of results from all methods used (human network)

Sequence-based  Function-based Combined  MaWISH Network  Combined Simultaneous GO clustering
alignment alignment method blast method 3-way clustering

Number of clusters 74 94 303 242 2353 430 1197 1093

Number of proteins 457 727 1479 543 894 1603 7371 6663

MIPS coverage 96 126 283 83 153 327 424 346

MIPS accuracy 0.18 0.24 0.21 0.1 0.08 0.17 0.05 0.03

Functional coherence 0.36 0.51 0.43 0.32 0.3 0.40 0.23 0.29

Run time (s) 3061 5432 21 663 68 977 29 369 112
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Fig. 2. Comparison of methods on extracted from the Human network: cumulative frequency distribution of (a) functional homogeneity and (b) MIPS
comparison scores. (Results for the simultaneous clustering method not included.) Plots shifted towards right (higher values of functional homogeneity and

MIPS score) indicate better results.

Function-based alignment was carried out using MAS only, while sequence-
based alignment was done using MAS, MaWISH and NetworkBlast. For
sequence-based alignment, the orthology file was generated by selecting
pairs of proteins with BLAST E-values <1le—7 following the cut-off used
by Sharan et al. (2005). The combined method was tested by using alignment
results from MAS (both sequence and function based) as input. To observe
the effect of multiple networks combined method was executed using sets of
two (human-yeast, human—fly, fly—yeast and human—-worm) as well as three
(human—yeast—fly) networks.

In addition to comparisons with alignment-based methods, we also
compared our methods to the more commonly used clustering of single
networks. This was done by weighting the edges using GO functional
similarity of interacting proteins, co-expression and graph properties and
then using our combined method for module detection. This method (GO
clustering) is in contrast to our alignment-based combined method, which
makes use of interaction conservation.

3 RESULTS

Here we discuss results for the human network aligned with yeast.
Detailed results including the human—fly and other comparisons can
be found in the Supplementary Material (Results in the main text

and Supplementary Material follow the same pattern. Any significant
differences are pointed out in the detailed results below).

Function-based alignment using our similarity score was
successful in uncovering a larger number of proteins participating in
conserved interactions than sequence-based alignment. As shown in
Table 1, the number of conserved modules discovered in the human
network increased from 74 (spanning 457 unique proteins) to 94
(spanning 727 unique proteins). Moreover, the two sets share only
58 proteins (<15%), indicating that the modules targeted by the two
methods are nearly disjoint. We successfully exploit this observation
in our combined method.

In addition to greater coverage, modules identified using
function-based alignment displayed higher biological coherence
than sequence-based alignment using any of the other methods
(Fig. 2a). Almost 50% of the modules identified by our technique
scored 0.5 or more compared to only 30% when using sequence-
based MAS; MaWISH and NetworkBLAST both performed far
worse. As illustrated in Figure 2b, function-based alignment also
identifies modules that correlate better with experimentally verified
complexes. Around one-third of the modules correspond well
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Fig. 3. Coverage of interactions in MIPS plotted against accuracy for each
method (Human network). The combined method clearly offers the best
coverage-accuracy tradeoff.

(overlap >50%) with a MIPS complex as opposed to only one—tenth
of the modules from MaWISH and NetworkBlast.

Using the combined method, in the human—yeast case a total
of 303 modules (1479 proteins) were identified, far higher than
either sequence or function-based alignment alone. This increased
overage does not affect the module quality as both the functional
coherence and overlap with MIPS complexes is still better than
sequence-based alignment methods. An even greater number of
modules are found when the fly network is also added for a three-
way analysis (Table 1, combined method three-way), accompanied
by an increase in MIPS coverage (Fig. 3). Figure 3 plots the
coverage and accuracy of the various methods in terms of the total
number of MIPS interactions captured by the identified modules.
The simultaneous clustering approach exhibits the highest coverage
although its accuracy is relatively low. This is probably because
this method clusters the entire network, instead of identifying only
the conserved regions. This would extract many modules that are
not yet present in MIPS and thus drive down the accuracy of the
method. As illustrated in Figure 3, our combined method offers a
superior coverage-accuracy trade-off amongst all techniques. The
plots for yeast (against human) show higher values (Supplementary
Fig. 2), while those for human (against fly) show lower values
(Supplementary Fig. 3), though the combined method performs best
in all cases. The coverage of MIPS interactions using this approach is
better than any of the other alignment-based methods, accompanied
by a higher accuracy than MaWISH and NetworkBlast. Finally, GO
clustering of single networks performs worse than all methods based
on multiple networks. Specifically, this method suffers a 5-fold drop
in accuracy compared to our combined method (with three networks)
for a marginal increase in coverage. Upon detailed inspection of the
results we found that while some of the modules extracted using this
technique are highly functionally homogeneous (by construction),
this comes at the cost of a substantial number of spurious clusters.
These results also support the view that module detection based on

* 71 AWISH
NerworkBlast

O Combined Method

Fig. 4. Identification of the human DAB complex (MIPS ID 493) using
MaWISH, NetworkBlast and the Combined method. Circular nodes in the
figure represent components of the DAB complex while other nodes represent
proteins that were mistakenly classified as part of the same complex by any
of the methods.

evidence from multiple species leads to more reliable, though fewer
results.

Table 1 also shows the execution time for each of the methods
on a machine with a 1.66 GHz processor with 1 GB RAM. Further
analysis of other species (Supplementary Material) indicates that
the run times of the alignment algorithms are extremely sensitive to
the number of orthologs between two species. The simultaneous
clustering approach is an exception to this, as it does not
experience an explosion in the number of possible alignments due
to multiple possible orthologs, experienced by MAS, NetworkBlast
and MaWISH.

3.1 An example: the human DAB complex

The human DAB (Moldanodo et al., 1990) is a multi-protein
complex involved in transcription initiation and consists of the
TFID complex, TFIIA complex and TFIIB. It is present in the
MIPS database as complex ID 493 which lists 16 proteins as its
subunits, 15 of which are transcription initiation factors and 1 is a
TATA-box binding protein. It is a typical target of module detection
methods both in terms of the number of proteins involved as well as
the tight functional relationships between them. Figure 4 shows the
performance of our combined approach along with NetworkBlast
and MaWish in terms of their ability to correctly identify this
complex in the human network.

It must be noted that the human network from HPRD on which
all module detection methods were tested was missing four out
of the 16 protein subunits of the DAB complex. We have found
this to be a widespread problem with over 30% of MIPS proteins
missing from the HPRD network. Circular nodes in the figure
represent components of the DAB complex while other nodes
represent proteins that were mistakenly classified as part of the same
complex by any of the methods. MaWish and NetworkBlast which
use only sequence similarity to carry out network alignment manage
to capture <50% of the complex. Both these methods capture almost
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the same set of proteins while missing the rest. This probably
indicates an inherent weakness of using just sequence information,
rather than the alignment algorithms themselves. Note that the
combined method which uses sequence and functional similarity
with additional module expansion correctly identifies almost the
entire complex except two proteins, one of which is not identified
as part of the complex by any of the methods.

The above example is just one of several cases in which
the combined method improves the coverage of real complexes
demonstrating the ability of functional mapping to capture conserved
interactions independently of sequence similarity. In addition to
a comparison of alignment-based methods, this example also
demonstrates the benefits of cross-species analysis. When we carried
out GO clustering of the single human network, the DAB complex
was detected as part of a much larger cluster consisting of 23
proteins, of which only nine are present in the real complex (results
not shown in Fig. 4). Similarly, analysis of the human Rap1 complex
(MIPS complex ID 1204) using the combined method detects all six
component proteins, while GO clustering misclassifies three of the
components as part of a different cluster. The use of interaction
evidence from multiple species can therefore not only identify
modules at a higher resolution, but can also detect components
missed by single-network clustering.

4 DISCUSSION

At present, all protein network alignment studies use sequence
similar proteins across species to aid the network comparison
process. Here, we have for the first time used a quantitative measure
of functional similarity to align protein interaction networks.
Our results indicate that modules found by alignment using
functional similarity exhibit higher functional coherence compared
to sequence similarity-based alignment. This is encouraging because
functionally coherent modules are more likely to be biologically
relevant. These observations were further confirmed by the
comparison of identified modules to experimentally determined
complexes in the MIPS database. Again, the modules found
using our functional similarity score displayed higher levels of
overlap with real complexes. Given that <15% of interactions were
common in the modules from the functional similarity and sequence
similarity-based alignments, a question that arises naturally is
whether using both techniques simultaneously can increase the
power of computational complex detection.

Our combined method that uses network alignment based on both
function and sequence similarity led to several improvements in the
module detection results. First, the combined approach produced
better results in terms of agreement with experimental datasets. The
coverage of MIPS was more than twice that of using sequence-
based alignment alone. In terms of the functional coherence of
the detected modules, the combined method performs far better
than sequence-based alignment. Adding simple clustering measures
from graph theoretic methods and gene co-expression information
improves the results further by increasing the size of the solution set.
While these two measures alone are not powerful enough to produce
high quality results, they can be used to expand the solution sets of
alignment-based methods and thus increase their coverage. Finally,
the weighted combination of different techniques in our method
provides a natural way of optimizing the results for a particular
measure of goodness. Modules with high functional coherence can

be produced by assigning a relatively high weight to the functional
similarity-based alignment component (see Supplementary Fig. 5),
while higher weights for the graph-based component will identify
larger modules.

Results for our simultaneous clustering-based alignment method
are less conclusive. The coverage of MIPS is naturally much higher
in this case, though the modules are not of comparable quality to
the other approaches. This could be a consequence of the larger
sample size, more likely to contain highly connected sub-graphs
with no biological relevance. Furthermore, not all real modules are
expected to be completely functionally homogeneous (Spirin e? al.,
2003). Still, several improvements in our method are possible with
the potential to improve the results. We differentiated between inter-
and intra-species links by assigning them different weights whereas
they might need to be treated entirely differently, for instance as
a bi-partite graph. Also, currently all networks in the global graph
are treated at the same level. One way forward could be to take a
more evolutionary realistic approach and assign relative ordering to
the protein orthology links based on how evolutionary distant the
respective species are.

In conclusion, we have demonstrated that using function as a
metric for protein network alignment offers improved performance
over traditional sequence-based network comparisons. The two
measures manage to identify an almost disjoint set of conserved
interactions which indicates that network alignment methods
may benefit by exploiting still other ways of mapping similar
proteins across species. We have also simultaneously clustered
entire networks from several species using both protein similarity
and interaction links as constraints. This method offers far
greater coverage than any network alignment approach and fewer
restrictions on module topology make it more suitable for error-
prone data.
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