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Objective biomarkers for the clinically heterogeneous adult-onset neurodegenerative disorder amyotrophic lateral sclerosis are cru-

cial to facilitate assessing emerging therapeutics and improve the diagnostic pathway in what is a clinically heterogeneous syn-

drome. With non-coding RNA transcripts including microRNA, piwi-RNA and transfer RNA present in human biofluids, we

sought to identify whether non-coding RNA in serum could be biomarkers for amyotrophic lateral sclerosis. Serum samples from

our Oxford Study for Biomarkers in motor neurone disease/amyotrophic lateral sclerosis discovery cohort of amyotrophic lateral

sclerosis patients (n¼ 48), disease mimics (n¼ 16) and age- and sex-matched healthy controls (n¼ 24) were profiled for non-coding

RNA expression using RNA-sequencing, which showed a wide range of non-coding RNA to be dysregulated. We confirmed signifi-

cant alterations with reverse transcription-quantitative PCR in the expression of hsa-miR-16-5p, hsa-miR-21-5p, hsa-miR-92a-3p,

hsa-piR-33151, TRV-AAC4-1.1 and TRA-AGC6-1.1. Furthermore, hsa-miR-206, a previously identified amyotrophic lateral scler-

osis biomarker, showed a binary-like pattern of expression in our samples. Using the expression of these non-coding RNA, we

were able to discriminate amyotrophic lateral sclerosis samples from healthy controls in our discovery cohort using a random forest

analysis with 93.7% accuracy with promise in predicting progression rate of patients. Importantly, cross-validation of this novel

signature using a new geographically distinct cohort of samples from the United Kingdom and Germany with both amyotrophic

lateral sclerosis and control samples (n¼ 156) yielded an accuracy of 73.9%. The high prediction accuracy of this non-coding

RNA-based biomarker signature, even across heterogeneous cohorts, demonstrates the strength of our approach as a novel plat-

form to identify and stratify amyotrophic lateral sclerosis patients.
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in MND/ALS; CA ¼ classification accuracy; Cq ¼ quantitative cycle; DM ¼ disease mimics; ELISA: enzyme-linked immunosorbent
assay; fALS ¼ familial amyotrophic lateral sclerosis; GA ¼ galaxy-based analysis; HC ¼ healthy controls; NC ¼ neurological con-
trol; ncRNA ¼ non-coding RNA; miRNA ¼ microRNA; MND ¼ motor neurone disease; NIV ¼ non-invasive ventilation; PE ¼
paired end; PEG ¼ percutaneous endoscopic gastrostomy; piRNA ¼ piwi-RNA; QA ¼ Qiagen-based analysis; RNA-seq ¼ RNA-
sequencing; ROC ¼ receiver operating characteristic; rRNA ¼ ribosomal RNA; RT-qPCR ¼ reverse transcription-quantitative
PCR; sALS ¼ sporadic amyotrophic lateral sclerosis; snoRNA ¼ small nucleolar RNA; snRNA ¼ small nuclear RNA; tRNA ¼
transfer RNA; UMI ¼ unique molecular indexes

Introduction
The majority of those with the adult-onset neurodegener-

ation amyotrophic lateral sclerosis (ALS) typically develop

a syndrome of rapidly progressive muscle weakness sec-

ondary to motor neuronal loss, resulting in death within

3 years of first symptoms, typically from ventilatory in-

sufficiency (Kiernan et al., 2011). Despite a common clin-

ical core of combined upper and lower motor neuron

signs, there is variation in the mix of clinical signs, the

site of initial weakness and the rate of disability progres-

sion, which contribute to a persistent diagnostic delay for

many. The identification of biomarkers has been recog-

nized as a priority for therapeutic development in a clin-

ically heterogeneous syndrome like ALS, for determining

subgroups in relation to pathogenesis and phenotype, and

as early indicators of treatment response (Turner et al.,
2009). Biomarker sources that are minimally invasive,

ubiquitously available and time efficient in their measure-

ment are key and those derived from biofluids are well

suited for this.

One class of biofluid-based molecules increasingly

investigated as potential biomarkers are short non-coding

RNA species (ncRNA). MicroRNA (miRNA) are common

candidates as they have relatively simple structures,

increased stability from RNase degradation and freeze-

thaw cycles, and are present in blood (Chen et al., 2008;

Jin et al., 2013). Dysregulated miRNA in the biofluids of

ALS patients, including cerebrospinal fluid (CSF), and in

blood-derived components plasma and serum, have been

found, (summarized in Joilin et al., 2019). While hsa-

miR-206 has emerged as a leading candidate and shown

previously up-regulated in ALS patient muscle biopsies

(Bruneteau et al., 2013; Russell et al., 2013; Toivonen

et al., 2014; de Andrade et al., 2016; Di Pietro et al.,

2017; Waller et al., 2017a), this is not specific to ALS

and few other miRNA candidates are common across

studies. However, only a small subset of circulating

ncRNA have been investigated. Several other ncRNA spe-

cies are present in serum including ribosomal RNA

(rRNA) and transfer RNA (tRNA) which have been used

as potential biomarkers in other diseases (Liao et al.,

2010; Cheng et al., 2014; Lopez et al., 2015; Iliev et al.,
2016; Umu et al., 2018; Yoffe et al., 2018). Efficient in-

vestigation of these ncRNA requires the use of RNA-seq,

and to date only one study has detected ncRNA in ALS

biofluid samples, though they did not further consider

these as biomarkers (Matamala et al., 2018). We

hypothesized that multiple ncRNAs are dysregulated in

ALS, potentially reflecting key aspects of the syndrome’s
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clinical heterogeneity. Therefore, using minimal amounts

of serum, we undertook an RNA-seq screen followed by

TaqMan RT-qPCR to identify ncRNA-based diagnostic

and prognostic biomarkers in ALS. We identified seven

dysregulated ncRNA in the serum of ALS patients and

showed integrating the expression of this set of ncRNAs

using a random forest algorithm correctly categorize the

samples with 93.7% and 73.9% accuracy in the discov-

ery cohort and a distinct confirmation cohort of samples,

respectively.

Materials And Methods

Patient information

The discovery cohort of samples were patients recruited

as part of the Oxford Study for Biomarkers in MND/

ALS (BioMOx) from the Oxford MND Centre. Ethical

approval for extraction and use of the biofluid samples

and associated clinical data were obtained from South

Central Oxford Ethics Committee B (08/H0605/85) and

NRES Central Committee South Central—Berkshire (14/

SC/0083). All participants provided written consent (or

gave permission for a carer to sign on their behalf). The

study included patients with ALS, patients with ALS

mimic conditions [including multifocal motor neuropathy

and Kennedy’s disease; disease mimics (DM)] and healthy

control (HC) subjects. Patients with ALS and mimic dis-

orders were diagnosed according to standard criteria by

two experienced neurologists (M.R.T., K.T.) and clinically

re-assessed on the day of sampling (A.G.T., M.R.T.). For

the confirmation cohort of samples, these were obtained

from the ALS Biomarker Study from Queen Mary,

University of London, and the Ulm Neurological Biobank

from the University of Ulm to form the confirmation co-

hort. Participants from the ALS Biomarkers Study

(London—City & East Research Ethics Committee 09/

H0703/27) were consented in the study and baseline sam-

ples taken at or shortly after diagnosis by MND neurolo-

gist (A.M.), based on established criteria. This cohort of

samples included healthy controls, disease mimics, neuro-

logical controls and ALS patients. Samples from the Ulm

Neurological Biobank (Ethics Committee of Ulm

University, proposal number 20/10, year 2010; n¼ 16)

were admitted to the Department of Neurology at Ulm

University Hospital, Germany and were diagnosed by an

MND neurologist (A.L.), and included neurological con-

trols and ALS patients. ALS disease mimics in the con-

firmation cohort were similar to the BioMOx cohort,

while neurological controls included multiple sclerosis,

migraine, amnesia and spinal ischaemia.

For both cohorts, healthy control subjects were typical-

ly spouses and friends. Additional clinical information

was collected, including information relevant to this study

like time from disease onset, diagnostic delay, mean dis-

ease duration, site of disease onset and progression rate

to last visit, calculated as 48 (approximation of neuro-

logical status at disease onset minus ALSFRS-R score at

the time of sampling divided by time from onset to sam-

pling in months). For both cohorts, patients were classi-

fied as having fast- or slow-progressing ALS based on

their rate of change in the ALSFRS-R clinical rating, with

a threshold of 0.6 points per month selected based on

the median value seen clinically to divide the samples

(Table 1). The number of ALS cases on percutaneous

endoscopic gastrostomy (PEG) or non-invasive ventilation

(NIV) at the time of sampling are also reported. Lastly,

genetic testing for the most common mutations were

undertaken on the samples, though samples in The ALS

Biomarker Study were only tested for C9orf72

expansions.

Sample collection, preparation and
RNA extraction

Blood was collected from patients into BD Vacutainer

SST tubes, left to clot at room temperature and centri-

fuged at 3000 rpm for 10 min at 4˚C. The serum super-

natant was then removed and aliquoted into 1.8 ml

aliquots and stored at �80˚C. Minimal red blood cell

lysis was checked using a haemoglobin ELISA

(ab157707, Abcam) with a threshold of 0.6 g/l (Lippi

et al., 2006), with one disease mimic sample excluded.

Small RNA was isolated from a 200 ml sub-aliquot of in-

dividual serum samples using the miRNeasy Micro kit

(Qiagen) with a DNase I treatment (Qiagen). Qubit

miRNA assay (Invitrogen) quantification was used to give

relative amounts of small RNA present in each sample.

RNA sequencing

Healthy control, ALS-SP and ALS-FP samples from the

BioMOx discovery cohort were split into three age- and

sex-matched groups of eight samples each. For each pool,

2.5 ng of small RNA per sample were combined and con-

centrated using a SpeedVac at ambient temperature for

40 min from 50 ml to 8 ml. Each sample pool was then

converted into RNA-Seq libraries using the QIAseq

miRNA library kit (Qiagen) following the recommended

parameters for serum RNA. These libraries then under-

went 75 bp PE sequencing on an Illumina MiSeq machine

at the Oxford Genomics Centre, United Kingdom.

Data were pre-processed to remove 50 and 30 adaptors

and then underwent two analysis pipelines. The auto-

mated Qiagen QIASeq miRNA pipeline read the unique

molecular indexes (UMI), sequentially aligned the RNA-

seq data to a database of ncRNA transcripts using

Bowtie. The second method used the Galaxy web servers

using a range of open access script packages (Afgan

et al., 2018). Adapter only, short or low quality reads

were removed using Trim, and reads were then aligned

using Salmon (Patro et al., 2017) to a database of

ncRNA from miRBase, piRNA Bank (piRNA with NCBI
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accession numbers), gtRNAdb and Ensembl, with tran-

scripts with the same sequence merged together. Reads

from both Qiagen and Galaxy were then normalized and

differential expression calculated between sample groups

using DESeq2 (Love et al., 2014).

RT-qPCR confirmation and analysis

Using the TaqMan Advanced miRNA RT-qPCR chemis-

try, a fixed volume of 2 ml of RNA extracted from serum

from both the BioMOx discovery cohort and The ALS

Biomarker Study and Ulm Neurological Biobank confirm-

ation cohort was converted to cDNA with pre-amplifica-

tion and diluted 10-fold. Three samples from the healthy

controls and fast-progressing ALS patients were not

included because of insufficient RNA. Using pre-designed

primers and master mixes (Applied Biosystems; miRNA

commercially available probes: Supplementary Table 1;

piRNA and tRNA: custom-designed probes), candidate

transcripts were quantified using fast cycling conditions

on an ABI Viia7 cycling machine. Cq values were aver-

aged and normalized to the arithmetic average of hsa-

miR-718 and hsa-piR-31068 (DQ570956), which were

identified using NormFinder (Andersen et al., 2004). An

average for the healthy control samples was calculated

and all samples were compared to this average for a

DDCq value.

Statistical analysis and modelling

Statistical analysis for RT-qPCR were conducted on

DDCq values for each sample with GraphPad Prism 6.0

and SPSS v24. Outliers were identified using the ROUT

method in GraphPad Prism 6.0 (Q¼ 1%). Distribution of

the data was determined using a Shapiro–Wilks normality

test. One-way ANOVA was carried out across the four

groups with Tukey’s multiple comparison for parametric

data and a Welch’s one-way ANOVA with Gomes–

Howell multiple comparison when non-parametric.

Correlations were analysed using Pearson’s and

Spearman’s rank correlation tests if the data were para-

metric and nonparametric, respectively. All statistics were

two-tailed and significance was set at P< 0.05.

Modelling of the data to predict sample classification

was carried out using Orange. Three BioMOx samples

that underwent RT-qPCR expression profiling were

excluded from this analysis as they did not have expres-

sion data across the six ncRNA biomarkers showing dif-

ferential expression. Hsa-miR-206 was not included as it

does not have a normally distributed expression pattern.

Normalized DCq data for the remaining samples were

run through a random forest model, generating 10 replic-

able trees with no subset smaller than 5. Disease state

was the grouping variable, with the ncRNA as independ-

ent variables entered together.T
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Data availability

The data that support the findings of this study are avail-

able from the corresponding author, upon reasonable

request.

Results

Small RNA-seq analysis highlights
dysregulated ncRNA in the serum
samples from ALS patients

To obtain an overview of small ncRNA expression dysre-

gulation in ALS, we profiled serum samples from slow-

and fast-progressing ALS patients, and healthy controls

from the BioMOx discovery cohort. Small ncRNA

extracted from 200 mL of serum were pooled together,

with libraries created from these pools to improve the

signal-to-noise ratio as we have shown previously (Jones

et al., 2012; Caserta et al., 2016; Caserta et al., 2017).

Using Illumina-based RNA-seq, 3,438,537 reads per

pooled sample on average were generated, which we ana-

lysed using two different approaches: the Qiagen auto-

mated analysis (QA) and an optimized open-sourced

software-based workflow hosted on the Galaxy web serv-

ers (GA).

Following pre-processing, QA aligned 17.5% of reads

to annotated sequences on the human genome

(Supplementary Table 2), and although this is low, this

is reflective of the variable intact status of RNA in

serum and consistent with previous studies (Waller

et al., 2017b; Coenen-Stass et al., 2018; Matamala

et al., 2018; Dufourd et al., 2019; Wong et al., 2019).

Across all sample pools, most aligned reads were

miRNA, followed by rRNA and tRNA, with none of

the other ncRNA species including piRNA making more

than 5% of all ncRNA (Fig. 1A; Supplementary Table

3). On average, seven of the top ten read targets pre-

sent across all sample pools were miRNA, though the

piRNA hsa-piR-31068 (NCBI: DQ570956) had the

highest count (Fig. 1B), its high expression previously

seen in serum from colon cancer patients (Vychytilova-

Faltejskova et al., 2018). Correction with the randomly

generated hexamer unique molecular indexes (UMI) for

clonal amplification bias during the polymerase chain

reaction (PCR) amplification of the libraries made no

difference to the overall proportion of ncRNA, sup-

ported by a strong positive Spearman’s correlation be-

fore and after [rs (2369) ¼ 0.9724, P< 0.001], and

consistent with previous studies showing minimal clonal

amplification bias (Jayaprakash et al., 2011; Fuchs

et al., 2015). However, QA undertakes a sequential an-

notation approach biasing towards miRNA, as any

reads that align to miRNA are then subsequently

removed from the analysis. This may in part lead to the

results being skewed if the read is from another

ncRNA, thus reducing the ability to detect other

ncRNA. Additionally, QA restricts differential expres-

sion calculations to miRNA and piRNA.

Therefore, we complemented our analysis by using an

open-sourced software hosted on the Galaxy web servers

(GA) for concurrent alignment with a custom-made an-

notation file of all ncRNA transcripts including miRNA,

rRNA, tRNA, piRNA, small nucleolar RNA (snoRNA)

and snRNA. As piRNA is annotated to multiple loci on

the genome and may be discarded for multiple align-

ments, we used the transcript aligner Salmon which gen-

erated an average alignment of 6.4% to annotated

sequences, allowing for multiple mapping due to the

short nature of the reads and target sequences

(Supplementary Table 3). While lower than QA, this re-

duction in alignment is likely due to not including lon-

ger rRNA sequences such as 18S, 28S and 45S in our

annotations, as their inclusion increased alignment to

12% on average. Indeed, this is not surprising as our

GA pipeline aligns the reads to a specific subset of small

ncRNA transcripts, or transcriptome, and not the whole

genome. As such, reads that may align to mRNA or

long ncRNA will not be detected and included in the

analysis. Across all sample pools in the GA analysis, the

highest number of reads aligned to tRNA, followed by

miRNA, piRNA and other ncRNA species making up

less than 5% of all aligned ncRNA reads (Fig. 1C;

Supplementary Table 3). Those most expressed accord-

ing to GA included three piRNA, three tRNA, two

miRNA and two rRNA (Fig. 1D), five of them consist-

ent with QA. This is reinforced by a limited correlation

in the number of reads aligned and annotated to the

same ncRNA between QA and GA [rs (546) ¼ 0.2653,

P< 0.001].

These differences persisted into those ncRNA signifi-

cantly dysregulated between ALS patients and healthy

controls. QA showed 32 differentially expressed miRNA

or piRNA in ALS-FP and 103 in ALS-SP (aligned reads

> 5 per ncRNA across all samples, P< 0.05) (Fig. 2A)

with similar proportions of up- and down-regulated

ncRNA in the two groups. In contrast, GA, which iden-

tified 52 and 44 differentially expressed ncRNA in ALS-

FP and ALS-SP respectively, showed non-consistent

directional proportions (Fig. 2B). Further, differentially

expressed ncRNA from QA and GA revealed minimal

overlap (Fig. 2B), with only five targets overlapping and

of these, three were dysregulated in the same direction

[hsa-miR-9-5p, hsa-miR-142-5p and hsa-piR-33151

(DQ593039)]. This is despite a significant moderate cor-

relation between the two analyses on all ncRNA and

differential expression between the two groups [rs(489)

¼ 0.3961, P< 0.0001; Supplementary Fig. 1A]. This is

not surprising as not only are there large and significant

differences in the ncRNA annotations and those

included for differential expression affecting the normal-

ization and the consequent results, in addition there are

a low number of reads. To ensure there were no issues
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with the analysis methods, we undertook these two

pipelines with an RNA-seq dataset from 200 ng of RNA

from CD8þ T-cells (Heinicke et al., 2020). While there

was an increased alignment rate, there was a similar

correlation of differentially expressed ncRNA between

the two analyses [rs(1803) ¼ 0.3934, P< 0.0001;

Supplementary Fig. 1B]. Further, while there was a

greater overlap of those trending in the same direction

(91/105; 86%), this might be reflective of more robust

changes between samples.

Of those significantly differentially expressed, QA

showed miRNA were the dominant dysregulated species

when compared only to piRNA (Fig. 2C). However, with

GA detecting a wider range of ncRNA species, tRNA

were the dominant species and consistent with their

prevalence in reads overall (Figs 1C and 2C). Most spe-

cies showed a decreased share of those differentially

expressed in GA, largely driven by snoRNA making up a

larger proportion of dysregulated ncRNA though these

snoRNA were present just above the thresholds defined

for differential expression (Fig. 2C).

RT-qPCR confirms differential
expression of six ncRNA across
sample groups

To confirm the dysregulation of the most promising

ncRNA identified in our pooled RNA-seq analyses, we

used RT-qPCR on individual samples from the BioMOx

discovery cohort. Using NormFinder on our RNA-seq

data, we identified two stably expressed normalizers,

hsa-miR-718 and the highly expressed piRNA, hsa-piR-

31068. We confirmed this using RT-qPCR analysis on

individual samples from the BioMOx discovery cohort,

with an average Cq value of 28.2, a coefficient of varia-

tions of 7.2% and 8.7% across all samples respectively,

Figure 1 Serum ncRNA reads for small RNA-seq. (A) Proportion of total aligned reads annotated to ncRNA species across all sample

pools for the Qiagen-based analysis (QA). Other ncRNA species includes hairpin RNA, snRNA, snoRNA and Y RNA. Number of distinct

transcripts are in brackets, except for rRNA and mRNA, which QA does not provide. (B) Top ten read targets present on average across all

samples, shown as raw sequencing reads, and after unique molecular indexes have been taken into account for QA. (C) Proportion of total

aligned reads annotated to ncRNA species across all sample pools for the Galaxy-based analysis (GA). Other ncRNA species includes scRNA,

sRNA, mt_rRNA, mt_tRNA, scaRNA and vaultRNA. Number of distinct transcripts are in brackets. (D) Top ten read targets present on average

across all samples in GA, shown as raw sequencing reads. Bars: average 6 SEM.
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with their average 7.4%, and their expression correlated

with each other [rs (81) ¼ 0.7404, P< 0.0001].

We selected 20 ncRNA to assay from both the Qiagen-

and Galaxy-generated lists independently, based on their

differential expression, expression level and in the case of

miRNA evolutionary conservation to ensure they reflect

real differences. By using both lists, we were able to iden-

tify the best targets from both analyses since there was

very little overlap and the analysis pipeline differed.

Furthermore, potential biomarkers were initially selected

from those that were differentially expressed in ALS-FP

compared to controls, as the assumption was that any

changes should be more pronounced in this group. Using

TaqMan Advanced miRNA RT-qPCR assays, hsa-miR-

16-5p, hsa-miR-21-5p, hsa-miR-92a-3p, hsa-piR-33151,

TRV-AAC4-1.1 and TRA-AGC6-1.1 were confirmed to

be differentially expressed between the four sample

groups (Fig. 3A; fold changes presented in Supplementary

Table 4). Significant dysregulation was observed between

healthy controls and both ALS groups for hsa-miR-21-

5p. Hsa-piR-33151, one of three differentially expressed

ncRNA in both QA and GA, did not show dysregulation

when compared to the healthy controls, but did with the

ALS groups and to the disease mimics, the latter of

which showed a greater but non-significant change com-

pared to healthy controls. Detection of two 50-tRNA frag-

ments, TRV-AAC4-1.1 and TRA-AGC6-1.1, identified

only a significant difference between the healthy controls

and the disease mimics for the former, with the latter

showing differences between ALS-SP and the healthy con-

trols and disease mimics; a unique and unexpected ex-

pression pattern not seen in any of the other results.

While hsa-miR-16-5p showed no significant differential

expression between the ALS patients and healthy con-

trols, inconsistent with the RNA-seq, the differences be-

tween the disease mimics and both ALS-FP and ALS-SP

was consistent with the RNA-seq results. Additionally,

hsa-miR-92a-3p also showed no statistically significant

differential expression between the ALS patients and

healthy controls; however, it did show changes between

the other groups. Interestingly, both these miRNA

showed smaller variation in the ALS groups compared to

the healthy controls, suggesting a previously observed dis-

ease-driven change in RNA expression (Ho et al., 2008;

Mar et al., 2011). Further, only decreases in hsa-miR-16-

5p and increases in hsa-miR-92a-3p serum expression

Figure 2 Differential expression of ncRNA in the fast-progressing (ALS-FP) and slow-progressing (ALS-SP) ALS patients

compared to healthy controls. (A) Proportion of ncRNA reads differentially expressed (aligned reads > 5, P< 0.05) that are up-regulated or

down-regulated across the two sample groups or the two analyses. (B) Overlap of ncRNA differentially expressed in both ALS groups between

the two different analyses. Only five ncRNA were identified as being changed in both Qiagen-based analysis (QA) and Galaxy-based analysis

(GA), with three being in the same direction in both. In addition levels of a further five and six ncRNA were altered in both ALS groups in QA

and GA, respectively. However, the average expression of these ncRNA in the RNA-seq was low and thus were not included in those

biomarkers assayed. (C) Proportion of ncRNA species detected as being differentially expressed in QA and GA. Number of distinct transcripts

are in brackets.
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were correlated with higher rates of disability progression

measured by an average monthly change in ALSFRS-R

score [hsa-miR-16-5p: r (41) ¼ �0.4424, P¼ 0.004; hsa-

miR-92a-3p: r (41) ¼ 0.3533, P¼ 0.02; Fig. 3B). While

both miRNA are enriched in red blood cells (Pritchard

et al., 2012), no significant correlation between their ex-

pression and haemoglobin levels was present [hsa-miR-

16: rs (79) ¼ �0.1448, P¼ 0.20; hsa-miR-92-3: rs (79) ¼
0.1972, P¼ 0.08), suggesting the changes did not reflect

sample contamination. Comparison of biomarkers with

age at time of sampling showed no significant correlation

to the ncRNA expression. Hsa-let-7a-5p, hsa-let-7f-5p,

hsa-miR-143-3p, hsa-miR-151a-3p, hsa-miR-451a, hsa-

piR-36243 (DQ598177), hsa-piR-35982 (DQ597916),

TRC-GCA2-2.1 and TRK-TTT3-1.1 were all tested but

did not show significant dysregulation in ALS samples

compared to controls (P> 0.05). Furthermore, hsa-miR-9-

5p and hsa-miR-142-5p were shown to be differentially

expressed in both RNA-seq analyses, but could not be

confirmed with RT-qPCR. We also attempted to profile

hsa-miR-493-3p and hsa-miR-6748-5p but were unable

to get reliable amplicon amplification across all samples.

Cross-validation of model and
differential expression in a
distinct cohort

To cross-validate our biomarkers identified from the

BioMOx cohort, we obtained samples from The ALS

Biomarker Study at Queen Mary, University of London,

United Kingdom (n¼ 141) and the Ulm Neurological

Biobank at the University of Ulm, Germany (n¼ 16). These

samples in this confirmation cohort consisted of both slow-

and fast-progressing ALS samples, along with healthy con-

trols, neurological controls (including headaches, amnesia

and multiple sclerosis) and disease mimics (neurological dis-

eases similar to ALS). Firstly, with the addition of these

samples, our normalizers continued to correlate with each

other [rs (156) ¼ 0.7873, P< 0.0001] with a coefficient of

variation of 7.8% and 9.3% for hsa-miR-718 and hsa-piR-

31068, respectively. Using RT-qPCR, we profiled the ex-

pression of the six ncRNA that showed differential expres-

sion in the discovery cohort on these new samples, and

found that while there was a trend for consistent regulation,

these did not reach significance (Fig. 4). Indeed, dysregula-

tion of hsa-miR-21-5p and hsa-miR-92a-3p was no longer

detected in the confirmation cohort. In contrast, some of

the biomarkers showed greater differences in the confirm-

ation cohort with hsa-piR-33151 and TRV-AAC4-1.1

showing differences between the control and the ALS

groups. Additionally, it can be noted that the small amount

of variation detected in the ALS groups for ALS-SP and

ALS-FP for hsa-miR-16-5p and hsa-miR-92a-3p in the

BioMOx cohort was not seen in the new cohort, in which

increased variation was seen across all biomarkers and sam-

ple groups. Additionally, no significant correlations between

our six biomarkers and progression speed or haemolysis of

our samples were identified.

Figure 3 Differential expression of ncRNA biomarkers in ALS patient serum samples using RT-qPCR in the BioMOx discovery

cohort. (A) Overall effects of disease state were found across all six ncRNA. (B) A correlation (Pearson’s) was found between the progression of

ALS as determined by the monthly change in the ALSFRS-R score and hsa-miR-16-5p and hsa-miR-92a-3p expression. hsa-miR-21-5p/hsa-piR-

33151: one-way ANOVA with Tukey post-hoc; hsa-miR-16-5p/hsa-miR-92a-3p/TRV-AAC4-1.1/TRA-AGC6-1.1: Welch’s one-way ANOVA with

Games–Howell post hoc. Normalized to hsa-miR-718 and hsa-piR-31068. Relative expression to the average expression of healthy controls.

Healthy controls n¼ 21, disease mimics n¼ 16, slow-progressing ALS (ALS-SP) n¼ 23, fast-progressing ALS (ALS-FP) n¼ 21. Bars: average 6 SD.
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While these results suggest that there are differences be-

tween our discovery and confirmation cohorts, we did

group the two cohorts together to observe if there was

an overall effect in the dysregulation of these ncRNA.

This analysis showed that there was differential expres-

sion detected between our healthy controls and the ALS

groups for a number of our biomarkers including hsa-

miR-16-5p, hsa-piR-33151 and TRV-AAC4-1.1

(Supplementary Fig. 2). However, TRA-AGC6-1.1

showed no significant differential expression across any

of the five groups.

Hsa-miR-206 is detected mainly in
disease samples but not healthy
controls

Both of our Qiagen and Galaxy analyses showed that

hsa-miR-206 is upregulated in both ALS groups, but also

in disease mimics, suggesting that this dysregulation of

hsa-miR-206 is not specific to ALS. TaqMan RT-qPCR

confirmation showed a unique pattern where hsa-miR-

206 was only detected in one of 21 healthy control

samples (4.8%) compared to the ALS-FP (66.7%) and

ALS-SP (79.2%) samples, and disease mimics (81.3%;

Fig. 5A) from the BioMOx discovery cohort. The RNA-

seq data also highlighted hsa-miR-16-3p and hsa-miR-

23a-5p as showing binary pattern of expression between

the groups but RT-qPCR revealed little or no amplifica-

tion of these miRNA across all samples. When hsa-miR-

206 was tested in our confirmation cohort, we found a

similar pattern of expression, with a low number of sam-

ples in our healthy controls (30.4%) and neurological

controls (18.2%) expressing hsa-miR-206. Meanwhile, a

high proportion of the disease mimic (96.3%) and ALS

samples showed expression for hsa-miR-206 (ALS-SP:

80.8%; ALS-FP: 95.8%; Fig. 5B), suggesting that binary-

like expression is consistent across cohorts.

Random forest model accurately
predicts sample classification

With any biomarker discovery study, it is important to

determine if the targets identified are able to help assign

samples to their specific diagnostic criteria. Therefore, we

compared the sensitivity and specificity of the seven

ncRNA biomarkers to each other to determine their abil-

ity to distinguish control samples (including the disease

mimics) to that of the ALS patients in the BioMOx

Figure 4 Differential expression of ncRNA biomarkers in ALS patient serum samples using RT-qPCR in the ALS Biomarker

Study & Ulm Neurological Biobank confirmation cohort. Hsa-miR-16-5p/hsa-miR-21-5p/hsa-miR-92a-3p/TRV-AAC4-1.1/TRA-AGC6-

1.1: one-way ANOVA with Tukey post-hoc, hsa-piR-33151: One-way ANOVA with Gomes–Howell post hoc. Normalized to hsa-miR-718 and

hsa-piR-31068. Relative expression to the average expression of healthy controls. Healthy control (HC): n¼ 46; neurological controls (NC):

n¼ 33; disease mimics (DM): n¼ 27; slow-progressing ALS (ALS-SP): n¼ 27; fast-progressing ALS (ALS-FP): n¼ 24. Bars: average 6 SD.
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discovery cohort. Hsa-miR-16-5p (AUC¼ 0.7033), hsa-

miR-21-5p (AUC¼ 0.7071), hsa-miR-92a-3p

(AUC¼ 0.6429), hsa-miR-206 (AUC¼ 0.6864) and TRA-

AGC6-1.1 (AUC¼ 0.7015) all showed a significant ability

to distinguish the two groups apart. Combining the ex-

pression of the seven biomarkers in a logistic regression

model however did not provide improved discrimination

(AUC¼ 0.6162).

To determine whether this could be improved, we

investigated using predictive classification modelling to in-

crease the predictive performance of our biomarker signa-

ture. We excluded hsa-miR-206 from the modelling as

many require the data to be normally distributed, which

the binary nature of hsa-miR-206 expression does not

demonstrate. We used a random forest model, which cre-

ates a number of decision trees, and uses a majority vote

approach to determine the classification of the sample.

This random forest model classified our samples between

ALS and non-ALS samples 93.7% of the time in our dis-

covery cohort (AUC¼ 0.992; Fig. 6A and C). To test for

overfitting, partitioning was undertaken, and resulted in

continued high classification (100-fold two-third partition-

ing: CA¼ 73.9%, AUC¼ 0.785).

However, as the model was tested with the samples

that underpinned it, we then utilized our samples from

the confirmation cohort to test it. Interestingly, despite

the differences in differential expression in our selected

biomarkers in the confirmation cohort as described

above, when we used the existing random forest model

generated from the BioMOx samples to classify these

new samples, we found that the model classified them

with an accuracy of 73.9% (AUC¼ 0.656; Fig. 6B and

C). One observation though was that ALS cases from the

confirmation cohort were not as well classified as con-

trols based on the BioMOx discovery cohort, most likely

underpinned by the differences in expression between the

two for some of our biomarkers. To explore this, we did

undertake an analysis to partition the combined dataset

(n¼ 236), using 20% of all the samples to create the

model and to test the classification with the other 80%.

Undertaking this analysis, we found that after an initial

high classification (CA¼ 97.9%; AUC¼ 0.996), in the

partition cross-validation, we continued to see an accur-

acy of 69.4% (AUC¼ 0.755). While this was less overall

than the previous model, we did find there was a minor

increase in the number of ALS samples that were classi-

fied in comparison (59.6%). Therefore, through using the

expression of these biomarkers, this is a first step in

establishing a biomarker signature to identify patients

with ALS.

Discussion
RNA-seq analysis enabled us to identify and confirm,

using RT-qPCR, dysregulation of four miRNA, one

piRNA and two tRNA across our sample groups.

Together, this ncRNA biomarker signature can categorize

over 90% of individual samples into whether they come

from ALS and non-ALS patients in our discovery cohort

and over 73% in a distinctly separate cohort of samples.

As such, this shows the strength of using next generation

RNA-seq to look at small ncRNA, but it is important to

note that there are challenges at investigating ncRNA in

Figure 5 Expression of hsa-miR-206 in our serum samples. (A) Detection of hsa-miR-206 in the four sample groups in the BioMOx

discovery cohort, showing a single sample with hsa-miR-206 expression in healthy controls, but in over 65% of the other three groups.

(B) Detection of hsa-miR-206 in the combined confirmation cohort of samples from The ALS Biomarker Study & Ulm Neurological Biobank. A

low number of samples in healthy and neurological controls expressed hsa-miR-206 in serum compared to the disease samples. BioMOx: Healthy

controls (HC) n¼ 21, disease mimics (DM) n¼ 16, slow-progressing ALS (ALS-SP) n¼ 23, fast-progressing ALS (ALS-FP) n¼ 21; The ALS

Biomarker Study & Ulm Neurological Biobank: HC: n¼ 46; neurological controls (NC): n¼ 33; DM: n¼ 27; ALS-SP: n¼ 27; ALS-FP: n¼ 24.
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the serum, chief among them are those caused by the

low abundance of intact small RNA and increased levels

of degraded longer RNA transcripts. While not new, they

continue to be an issue as these degraded reads are able

to soak up reagents and reads, which in part could result

in low alignment scores we observed. This has been

observed in other studies using the same RNA-seq kit

and target tissue, including a study that also used 200 ml

serum to find an average alignment of around 18%

(Coenen-Stass et al., 2018; Dufourd et al., 2019; Wong

et al., 2019; Heinicke et al., 2020). As such, this can

limit the power of the analysis and may result in small

but consistent dysregulation of those transcripts with low

expression being missed, but these types of changes

would not be suitable for use as a biomarker. Further,

combined with the different approaches to what reads

were aligned to (genome versus ncRNA transcriptome),

this could explain why we saw small overlap in the tar-

gets identified between analyses. Therefore, careful con-

sideration of the data in order to encompass the greatest

number of possible targets must be undertaken, and so

investigating all small ncRNA, not just miRNA, should

be undertaken. As such, this is why we utilized the gener-

ated list of potential targets from both QA and GA since

they both looked at different subsets of the ncRNA tran-

scriptome through different methods.

Indeed, our RNA-seq identified non-miRNA ncRNA

dysregulated in ALS patients. While the precise function

of piRNA outside of gene regulation in germline cells is

uncertain, their role in other tissues is starting to become

evident. Indeed, for our ncRNA biomarker hsa-piR-

33151, one of our most consistently changed biomarker

in both cohorts, it has been reported to increase in the

exponentially growing breast cancer cell line MCF-7 com-

pared to those that are quiescent (Hashim et al., 2014).

We also detected the presence of two 50-tRNA fragments

(Park and Kim, 2018). While only one of these continued

to show changes in our confirmation cohort, the presence

of these fragments has been found to be induced by

stress, and consequently affects RNA translation within

U2OS cells and the assembly of stress granules

(Yamasaki et al., 2009; Emara et al., 2010). It is possible

that this might be occurring in ALS, where stress-related

responses have been observed. Further work is required

to investigate the sources and functions of these circulat-

ing ncRNA in ALS. hsa-miR-206, a myomiR or miRNA

highly expressed in muscle, has previously been linked to

ALS both biologically and as a biomarker (Williams

et al., 2009; Bruneteau et al., 2013; Russell et al., 2013;

Toivonen et al., 2014; de Andrade et al., 2016; Di Pietro

et al., 2017; Waller et al., 2017a). The working hypoth-

esis is that hsa-miR-206 is released into the blood stream

as a result of muscle death. As such, it is not surprising

that in our disease control population, which is made up

of neuropathies and other muscle related diseases, hsa-

miR-206 is still detected—consistent with other studies

identifying hsa-miR-206 as a blood-based biomarker for

other muscle-related diseases (Matsuzaka et al., 2014;

Coenen-Stass et al., 2017; Wang et al., 2017). However,

in our neurological control cohort, which has patients

with headaches and amnesia, and are not motor related,

very few patients show hsa-miR-206. Interestingly, while

previous studies detected hsa-miR-206 in control samples,

we were only able to detect it in disease samples in a

binary-like expression pattern in our cohorts. We hy-

pothesize this is likely due to the lower volume of serum

that we used in comparison to other studies, and that

hsa-miR-206 in healthy controls and neurological con-

trols is so low that there is an insufficient amount to de-

tect it even with RT-qPCR.

Importantly, the expression of none of our biomarkers

were shown to correlate with the levels of haemolysis

Figure 6 Predictive classification modelling using the biomarkers and cross-validation. (A) Confusion matrix of the sample

classification from the random forest model generated from the BioMOx samples. Overall, 93.7% of all the samples entered into the model were

correctly predicted to their observed classification. (B) Confusion matrix of the sample classification cohort on The ALS Biomarker Study and

Ulm Neurological Biobank samples from the random forest model generated from the BioMOx cohort. Overall, 73.9% of all the validation

samples entered into the pre-existing model were correctly predicted to their observed classification. (C) ROC graph of the random forest

model showing the curves for the classifications of ALS patients in the BioMOx cohort (blue line; AUC ¼ 0.9959) and in the cross-validation

cohort from The ALS Biomarker Study and Ulm Neurological Biobank (red line; AUC¼ 0.656). Non-ALS controls include healthy controls,

neurological controls, and disease mimics. ALS samples included both slow- and fast-progressing ALS patient samples.
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present in our samples, including hsa-miR-16-5p and hsa-

miR-92a-3p which have been shown to be enriched in

red blood cells (Pritchard et al., 2012). While this sug-

gests their expression is not due to their enrichment in

red blood cells, we do recognize if this moves forward

into a clinical setting that there is a risk that significant

levels of haemolysis in patient samples could affect their

expression, and affect their utility as part of the biomark-

er signature. Furthermore, while significant but weak cor-

relations were found between monthly changes in

ALSFRS-R score and the normalized Cq values of both

hsa-miR-16-5p and hsa-miR-92a-3p in the discovery ALS

samples, these did not translate through to the confirm-

ation cohort. This may explain why the four group ran-

dom forest model, which aimed to separate ALS patients

based on progression speed, did not validate in the con-

firmation cohort. Interestingly, both of these miRNA

have previously been reported to be down-regulated in

the CSF of ALS patients using RNA-seq (Waller et al.,

2017b), suggesting there might be related regulation of

these miRNA between these two biofluids. Paradoxically

though, while hsa-miR-92a-3p showed a down-regulation

in our serum samples with RNA-seq in the discovery co-

hort, RT-qPCR showed an opposite regulation, and no

change in our confirmation cohort. While additional sam-

ples may elucidate a resolution, no obvious explanation

for these data is currently evident. Lastly, hsa-miR-21-5p

has been linked to axonal regeneration following spinal

injury (Strickland et al., 2011; Hu et al., 2013), and pro-

tection of neurons against ischaemic death (Buller et al.,

2010). Therefore, it is possible that the observed reduc-

tion in hsa-miR-21-5p expression in serum may reflect

decreased hsa-miR-21-5p in neural cells mediating neuro-

protective mechanisms.

Using six of our ncRNA biomarkers in combination as

a signature to classify the disease state of our samples,

we observed a 93.7% classification accuracy between

ALS and non-ALS samples, which cross-validated with a

second cohort of samples to 73.9% accuracy. This is sig-

nificant as it demonstrates that these biomarkers may

prove to be useful in diagnosis of the disease, but further

work is required to test whether these changes are pre-

sent before symptom onset, something which has been

remarked upon as being crucial, including for example in

non-symptomatic people with disease-causing mutations

(Turner, 2019). However, we recognize that although the

signature model has been tested in a new cohort and

been cross-validated to 73.9% accuracy, this model is to

an extent constrained, exemplified by a limited ability to

classify ALS samples in the confirmation cohort. Indeed,

our initial results suggest that slight differences in genetic

and environmental background may result in the differen-

ces that we see in the dysregulation of our biomarkers

between the discovery and confirmation cohort, which ul-

timately impacts on the ability to classify ALS samples

using our model. Additionally, these biomarkers by them-

selves are not yet sufficient to help with prognosis or

phenotypic characterization. As such, further work is

required to elucidate and include more ncRNA candidates

to increase the power of this analysis, along with inclu-

sion of larger and more diverse cohorts with longitudinal

samples, to develop this biomarker signature further.

Overall, we have demonstrated that there are changes in

expression of our ncRNA in ALS, which can be used in

combination to stratify patient samples. This is an im-

portant initial step in the analysis of all species of

ncRNA in the serum for establishing a biomarker signa-

ture for ALS and highlights the potential of this approach

for other neurodegenerative diseases.

Supplementary material
Supplementary material is available at Brain

Communications online.
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