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Crimean-Congo hemorrhagic fever (CCHF) is a highly severe and virulent viral disease of
zoonotic origin, caused by a tick-born CCHF virus (CCHFV). The virus is endemic in many
countries and has a mortality rate between 10% and 40%. As there is no licensed vaccine
or therapeutic options available to treat CCHF, the present study was designed to focus on
application of modern computational approaches to propose a multi-epitope vaccine (MEV)
expressing antigenic determinants prioritized from the CCHFV genome. Integrated
computational analyses revealed the presence of 9 immunodominant epitopes from
Nucleoprotein (N), RNA dependent RNA polymerase (RdRp), Glycoprotein N (Gn/G2),
and Glycoprotein C (Gc/G1). Together these epitopes were observed to cover 99.74% of
the world populations. The epitopes demonstrated excellent binding affinity for the B- and
T-cell reference set of alleles, the high antigenic potential, non-allergenic nature, excellent
solubility, zero percent toxicity and interferon-gamma induction potential. The epitopes
were engineered into an MEV through suitable linkers and adjuvating with an appropriate
adjuvant molecule. The recombinant vaccine sequence revealed all favorable
physicochemical properties allowing the ease of experimental analysis in vivo and in vitro.
The vaccine 3D structure was established ab initio. Furthermore, the vaccine displayed
excellent binding affinity for critical innate immune receptors: TLR2 (−14.33 kcal/mol) and
TLR3 (−6.95 kcal/mol). Vaccine binding with these receptors was dynamically analyzed in
terms of complex stability and interaction energetics. Finally, we speculate the vaccine
sequence reported here has excellent potential to evoke protective and specific immune
responses subject to evaluation of downstream experimental analysis.

Keywords: Crimean-Congo hemorrhagic fever, Crimean-Congo hemorrhagic fever virus, vaccine, immunoinformatics,
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INTRODUCTION

Hemorrhagic fevers are caused by several distinct families of
viruses and referred as viral hemorrhagic fevers (VHFs) (1).
Hemorrhagic fever associated viruses usually found in moderate
and tropic environments and can affect individuals of both sexes
and all ages (2). Among these viruses, Crimean-Congo
hemorrhagic fever virus (CCHFV), which is ssRNA tick-borne
infectious virus, has the potential of causing serious outbreaks of
hemorrhagic fever in humans (3). The CCHFV disease is
prevalent in more than 30 countries, majorly across the Middle
East, Eastern Europe, Asia, and Africa (4). In China, the Xinjiang
strain of CCHFV is well known for causing local Xinjiang
fever (5).

CCHFV is a Nairovirus from the family of Bunyaviridae,
which transmit to humans through domestic livestock and wild
organisms (6). Human beings can catch the virus by the bite of
infected animals and exposure to contaminated tissues or blood
(7, 8). CCHFV is a negative-sense single-stranded RNA virus and
its genome comprised of three particular fragments indicated as:
S, M, and L, for small (nucleocapsid protein), medium
(glycoproteins), and large (RNA-directed RNA polymerase
enzyme), respectively (4, 8). The structural glycoproteins make
spikes on the virus surface and facilitate entry into the host cell.
Like other Noroviruses, CCHFV also encodes a glycoprotein-38
(GP38). The GP38 protein is key in interactions with the
vertebrates/tick hosts and critical in cell tropism. It also has an
additional key role in CCHFV associated immune response (9,
10). Crystal structure analysis of the glycoprotein demonstrates a
unique fold majorly composed of a tri-helical bundle and a b-
sandwich. The molecular weight of GP-38 is 38 kDa, and it
shares no structural or sequence similarity with the rest of
cellular and viral proteins (9, 11). The RNA-directed RNA
polymerase enzyme functions in replication and ascription of
the viral genome, whereas the nucleocapsid protein is imported
in establishing the infection (12).

Major symptoms of CCHFV infection usually involve
headache, diarrhea, high fever, myalgia, ecchymosis, epistaxis,
emesis, and bleeding gums (4, 8). Ribavirin is usually employed
as therapeutic medication; however, the drug use is controversial
especially in the later phases of the virus infectious cycle (13, 14).
Besides, several vaccine studies have been done in the recent past
but due to high toxicity, less protection in case of strain sequence
variability, and safety concerns, till, to date, no licensed vaccines
are available to fight CCHFV infection (15).

The use of computational immunology and vaccine
informatics approaches to engineer a multi-epitope vaccines
which are free from allergic, toxic, and unwanted peptide
fragments are gaining popularity and now routinely used
before experimental vaccinology (16–18). These approaches are
successfully applied for number of bacterial, viral, and infectious
pathogens (19–26). The main objective of immunoinformatics is
to underline immunodominant, safe, and antigenic epitopes,
which can evoke strong and safe immunological responses
against the pathogen and fulfil all vaccine candidacy
benchmarks (27). As the CCHFV is associated with
significantly elevated mortality and morbidity across the globe,
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computational studies needed to develop a hypothetical vaccine
construct that can easily be tested for protection against CCHFV
in further experiments (28).

Recently, Khan et al. proposed a multi-peptide vaccine
candidate using computational approached against CCHFV by
targeting only its glycoprotein (28). Since the vaccine constructs
have high rate of failure in subsequent analyses and CCHFV
exhibits extensive glycoproteins sequence diversity across strains,
therefore, more comprehensive vaccine constructs need to be
developed from multiple/conserved proteins of CCHFV. Thus,
the present study is performed in order to underline the epitopes
of CCHFV and highlights the antigenic determinants of N,
RdRp, Gn/G2, and Gc/G1 proteins, which can be substantial
target for the synthesis of a comprehensive construct to combat
CCHFV associated infections. Different bioinformatics tools
were employed to predict and evaluate the antigenic/conserved
determinants from the multiple proteins of CCHFV, which were
integrated further with b-defensin to initiate and augment a life-
long immunogenic potential. In order to understand the binding
pattern of the construct to innate immune receptors TLR2 (29)
and TLR3, blind docking of the construct with these receptors
was performed. Further to assess the structural stability and
dynamics of the construct, the complexes were subjected to
molecular dynamic simulations. Lastly, the binding energies of
complexes and all noticeable amino acid residues critical for
maintaining complex stability were evaluated in order to validate
intermolecular forces of interactions. Conclusively, the current
study provides exceptional and novel outcomes for the
experimentalists to develop an effective vaccine to combat and
control CCHFV infection.
MATERIALS AND METHODS

The comprehensive in silico analysis performed in this study to
design a multi-epitope vaccine (MEV) based on the multiple
CCHFV proteins is presented in Figure 1.

B-Cell and T-Cell Epitopes Prediction
For epitope screening, the primary amino acid sequence of N,
RdRp, Gn/G2, and Gc/G1 proteins were retrieved from complete
proteome (Taxonomy ID: 980519) of CCHFV from NCBI (30).
The prediction of both B-cell and T-cell epitopes was done via
Immune Epitope Data Base (IEDB) server (31). Linear B cell
epitopes were predicted using Bepipred Linear Epitope
Prediction 2.0 method (32), and those with a prediction score
of >0.5 were considered in T-cell epitopes mapping. Shortlisting
of T-cell epitopes was made based on their strong association
with a reference set of major histocompatibility complex (MHC):
MHC- I and MHC- II alleles. Epitopes of minimum percentile
score are high-affinity binders of the MHC alleles. Filtered
epitopes were further used in MHCPred 2.0 (33) for the
interpretation of their potential binding compatibility to the
highly prevalent HLA II DRB*0101 allele in human
populations and those having IC50 value < 100 nM were
graded as efficient binders of DRB*0101 (34). Virulent epitopes
June 2021 | Volume 12 | Article 669812
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were predicted through VirulentPred (35) using a cutoff value of
0.5. Further, antigenic epitopes were forecasted using VaxiJen 2.0
(36). AllerTop 2.0 (37) was used to disclose allergenic epitopes
and toxic peptides were discarded via ToxinPred (38). To
evaluate tendency of inducing IFN-g responses, the filtered
non-toxic epitopes were examined by IFN epitope server (39),
and only IFN-g positive epitopes were opted for further analysis.
Finally, IFN-g–inducing epitopes were investigated via IEDB
population coverage analysis (40).

Multi-Epitopes Vaccine Design
AAY linkers were utilized to associate all processed epitopes to
produce a MEV construct (18). To design a complete vaccine
ensemble, the processed sequence was coupled with
immunogen i c b - d e f en s i n i n o rd e r t o max im i z e
immunogenicity of MEV (41). The physicochemical properties
of the complete vaccine unit were estimated using the ProtParam
tool of EXPASY server (42). The MEV construct was evaluated
for antigenicity, immunogenicity, solubility, and allergenicity
using VaxiJen v2.0/ANTIGENpro (36, 43), IEDB/ProPred (31,
44), Proetin-sol/SOLpro (45, 46), and AllerTOP/Allergen FP (37,
47), tools, respectively. SOPMA (48) was used to analyze
secondary structure of MEV. As the MEV is constructed by
joining different epitopes from different proteins and no suitable
template found during homology search, an ab initio modeling
of the vaccine was implemented to build its 3D structure with the
help of 3Dpro of SCRATCH protein server (43). Later on, loop
modeling in the 3D structure of vaccine was carried out by using
Galaxy Loop (49), and then refined through Galaxy Refine (50)
Frontiers in Immunology | www.frontiersin.org 3
of Galaxy Web server. Disulfide bonds were introduced in the
vaccine 3D structure to achieve structural stability and were done
by disulfide by Design 2.0 (51). The MEV protein sequence was
reverse translated into gene sequence for in silico expression
cloning analysis. First, the codon usage of the vaccine was
adjusted as per E. coli K12 expression system utilizing (JCat)
Java Codon Adaptation Tool (52), and expression was
determined by (CAI) Codon adaptation index value and GC
percentage. The RNA secondary structure of an optimized
sequence was predicted using Mfold server (53). The cDNA of
the vaccine was then cloned into pET-28a (+) expression vector
using SnapGene (https://www.snapgene.com/).

Host Immune System Simulation
The MEV was subjected to C-ImmSim server (54) to
computationally elucidate its potential to trigger host immune
system. This server operates by machine learning and position-
specific scoring matrix (PSSM) to evaluate host immune responses
toward antigen (54). Three anatomical parts are associated with the
host immune system, including thymus, bone marrow, and lymph
nodes. The input criterion for the immune simulations included a
standard volume of 10, random seed 12345, 100 steps, number of
injections calibrated to three (4 weeks space in each dose), and HLA
(A0101, A0101, B0702, B0702, DRB1_0101, DRB1_0101) and
keeping other features as default.

Molecular Docking
At this phase, molecular docking of designed MEV with human
TLR2 and TLR3 (PDB ID: 5D3I and 1ZIW) was performed to
FIGURE 1 | In silico approaches implemented to design vaccine construct against CCHFV. Multi-Epitopes Vaccine Design.
June 2021 | Volume 12 | Article 669812
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assess the vaccine’s affinity to the said receptors. TLR3 is a
pattern recognition receptor family transmembrane protein.
RNA viruses’ infection is detected and responded by eliciting
the expression of NF-kB (Nuclear Factor kappa-light-chain-
enhancer) and interferon regulatory transcription factor
(IRF3). In contrast to other TLRs, TLR3 recruits TIR-domain-
adapter-inducing interferon-b (TRIF). The innate immune
system is stimulated and activated due to IRF3, which
increases type I interferons development, that substantially
induces adaptive immunity (55, 56). Vaccine was blindly
docked to the TLR2 and TLR3 receptors through
PATCHDOCK web server (57). Docked solutions resulting
from docking were instantly refined for interactions using Fire
Dock server (58). This imparts effective refinement of the
substructure of PATCHDOCK complexes. Complexes with low
global energies were selected and visualized in UCSF Chimera
(59) for in-depth visualization.

Molecular Dynamics Simulation
To better understand dynamics, stability, and structural integrity
of docked complexes, molecular dynamics simulation was run
over a period of 100 ns. This analysis was distributed into three
phases, including complexes parameterization, pre-processing,
and simulation production. During the initial stage, an
antechamber module of AMBER18 (60) was utilized to
generate parameters for vaccine and receptors. Complexes
were solvated in 12 Å TIP3P solvation box and accomplished
through Leap module of AMBER. Ff14SB force field (61) was
used to define both receptors and vaccine parameters. To
neutralize charge density, Na+ ions were introduced to systems
as counter ions. During the pre-processing step, several rounds
of complexes energy minimization were done; hydrogen atoms
energy minimization for 500 steps, water molecules energy
minimization for 1000 steps with restrain of 200 kcal/mol—Å2

on the remaining system, 1000 steps of energy minimization of
all atoms exception to 5 kcal/mol—Å2 restraint on alpha carbon
atoms, and 300 steps energy minimization on non-heavy atoms
with the restraint of 100 kcal/mol—Å2 on rest of the complex.
Systems were later heated to 300K (NVT ensemble).
Temperature on the systems was maintained through Langevin
dynamics (62), and hydrogen bonds were restricted using
SHAKE algorithm (63). The complexes were equilibrated for
1000 ps. The system was compressed with NPT ensemble
constraining Ca atoms of 5 kcal/mol energy–Å2. The
production run for each system was accomplished for 100 ns.
CPPTRAJ module (64) of AMBER was used for simulation
trajectories analysis. The visualization and analysis of MD
simulation trajectories were done in VMD software (65).

Radial Distribution Function
The radial distribution function describes probability
distribution to determine the center of a particle in the
distance “r” from the center of a reference (66). This
parameter provides packing structures information and detail
long-range inter-particle correlation and how they are organized.
Radial distribution function plots of the interactions involved in
giving specific patterning of the vaccine-TLR systems were
Frontiers in Immunology | www.frontiersin.org 4
extracted using AMBER’s PTRAJ module. The idea was to
look for the stability of each system’s interactions during the
simulation and to predict whether interacting pattern remains
constant over a period of time.
Computing Binding Free Energies
The binding energies and solvation free energies for vaccine,
receptors, and complexes were estimated by using MMPBSA.py
module (67) of AMBER18. The mean value of these energies was
evaluated as the overall binding free energy of the systems.
Mathematical interpretation of MMPBSA binding energy can
be done as:

DGbind,  solv = DGbind,  vaccum + DGsolv,  receptors − (DGsolv,  vaccine

+ DGsolv,  receptors)

Estimation of binding energy for all three components was
made either by Generalized Born (MMGBSA) or Poisson
Boltzman (MMPBSA) equation. The solvation energy is
further split as:

DGsolv = Gelectrostatic,  ϵ=80 − Gelectrostatic,  ϵ=1 +  DGhydrophobic

whereas the vacuum phase energy can be described by the
following equation,

DGvacuum = DEmolecular  mechanics − T(DS)
RESULTS

Prediction of Potential Epitopes
Prediction of potential antigenic epitopes was done based on the
amino acid sequences of N, RdRp, Gn/G2, and Gc/G1 proteins of
CCHFV and then engineered into a MEV. The predicted
epitopes were prioritized using several steps, each ensured
selection of potential epitopes that fulfil requirements of an
effective MEV candidate. An ideal multi-epitope vaccine
should contain B and T-cell epitopes to stimulate an extensive
immune response network. Initially, the proteins were analyzed
for B-cell epitopes, and total 10 epitopes were predicted from N,
6 from RdRp, 5 from Gn/G2, and 11 from Gc/G1 proteins. The
predicted epitopes were 5 to 100 amino acids long. The B-cell
epitopes then subsequently investigated for T-cell epitopes and
only strong binders to both MHC-I and MHC-II were selected
based on the lowest percentile score. The selected epitopes were
then examined for common peptides. For selection of T-cell
epitopes, only the reference set of MHC alleles was opted. Each
epitope further go-through sequence similarity check with
human proteome to discard epitopes homologous with the
host. This is a pre-requisite, as any epitope similar to the host
may lead to strong autoimmune reactions and instead of
protection, the MEV may deteriorate the host health. To
facilitate experimental testing of MEV before clinical trials, the
epitopes sequence identity was also tested against the mouse
proteome and results revealed no similarity. All the filtered
June 2021 | Volume 12 | Article 669812
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epitopes were also found free from transmembrane helices, that
might ease the cloning and expression analysis. One key factor
which is essential for downward analysis is the epitopes’ binding
ability to the host immune system products, which means their
antigenicity potential. All the filtered epitopes were predicted to
be strongly antigenic. Moving forward, only epitopes were
selected that have a high capacity of adhesion. The epitopes
were also found non-allergic, thus reducing the chances of
causing vaccine-associated allergic responses. Finally, careful
evaluation resulted into 31 epitopes which were safe and non-
allergic (Table 1). Next, the epitopes were subsequently
prioritized based on their solubility (21 in number), non-
toxicity (18 in number) and IFN-gamma producing ability (9
in number) (Figure 2). Importantly, the overall population
coverage of these epitopes was 99.74% (Table S1).

MEV Designing
The MEV construct was designed by combining filtered epitopes
from all the target proteins. Designing of such vaccines is a
promising technique, as it circumvents many limitations
associated with the whole organism-based vaccines, as well as
sub-unit vaccines. Moreover, due to limited antigenic capabilities
of induvial epitope-based peptide vaccines, MEV designed from
multiple conserved proteins strengthen immune stimulation and
generate strong and specific immune response. To combine the
selected epitopes, AAY linkers were employed. These linkers
increased a-regions and reduced b-, turn-, and coil-regions, thus
making the epitopes lesser flexible. To the N-terminus, EAAAK
linker is rigid and keep the functional domain separated and
allow its proper presentation to the host immune system. b-
defensin was attached as adjuvant, which is a powerful immune
adjunct as it significantly amplifies lymphokines secretion
leading to the regulation of T cell-mediated immune response
and the synthesis of antigen-specific immunoglobulin (68). MEV
is schematically illustrated in Figure 3A. The sequence of
designed MEV sequence is:

“GIINTLCKYYCRVRGGRCCVCSCCPKEEQIGKCSTRGRK
CCRRKKEAAAKPVSHEHVDWAAYRAQSAQIDTAAYRT
NTETNNPAAYLFPDKFEDFAAYESSSILAFKAAYTQNV
TTSEKAAYPVNAIDAEMAAYDLKARPTYGAAAYRLAD
RRIAEL”.

Physicochemical Properties of MEV
The MEV is 157 amino acids long and has molecular weight of
17.44 7 kDa. Generally, vaccine of molecular weight < 110 kDa, is
supposed to be feasible during purification process. Theoretical
pI scores the vaccine was 8.90. This can aid in tracking the
vaccine on a 2D gel. The aliphatic index score was 61.21,
indicating its thermostable nature of the vaccine. The vaccine
has 17 negatively charged, and 24 positively charges residues.
Later, GRAVY score was predicted for the vaccine, and that was
−0.477, indicating hydrophilicity. The half-life of the vaccine in
reticulocytes of mammals, in vitro was 30 h, and Escherichia coli
in vivo >10 h, and yeast in vivo > 20 h. The net entropy observed
was 17.01 and have no transmembrane helices (alpha-helical
transmembrane protein, 0.04 and beta-barrel transmembrane,
Frontiers in Immunology | www.frontiersin.org 5
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0.006); hence, no difficulties can be anticipated in cloning and
expression analysis. Next, the MEV construct was evaluated for
antigenicity, immunogenicity, solubility, and allergenicity by
using multiple tools to ensure the accuracy. The results
revealed that designed MEV is highly antigenic (scores: 0.50
and 0.87), immunogenic, soluble (scores: 0.59 and 0.98), and
non-allergic.

Modeling and Refinement of MEV
The secondary structure analyses revealed that 50.32% (69)
residues form a-helix, while 8.28% (13), 4.46% (7), and 36.94%
Frontiers in Immunology | www.frontiersin.org 6
(58) establish b-strand, b-turn, and random coils, respectively
(Figure 3B). Since the MEV is combination of epitopes derived
from different proteins of CCHFV, there was no appropriate
template for homology modeling of the MEV was available, thus
the 3D structure of the MEV was modeled ab initio using 3Dpro
predictor tool. The 3D structure of MEV is demonstrated in
Figure 3C. The MEV 3D acquired 90.3% of residues in the
Ramachandran plot favored, 8.3% in additionally allowed
regions, 0.0% generously allowed regions, and 1.4% residues
belonged to the disallowed regions (Figure 3D). As there were
loops in the structure, several rounds of proper loop modeling
FIGURE 2 | Venn diagram presenting the number of epitopes filtered at different phases. SBTCE, Shared B and T cell epitopes; AE, Antigenic Epitopes; NAE,
Non-Allergen Epitopes; SE, Soluble Epitopes; FENTIF, Final set of Epitopes Nontoxic and IFN gamma positive producer.
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were performed on the structure. Five loops of amino acid
residues were subjected to loop modeling: Tyr10-Glu28,
Cys33-Gly37, Alas48-Val57, Thr76-Glu99, Thr116-Ala121, and
Leu136-Tyr139. Afterward, loop modeled structure underwent
refinement for structural contractions and relaxations to get a
processed structural model. Among the generated models, the
first model was chosen for subsequent analyses (Table S2).
Model selection was done based on a better Ramachandran
favored score, improved clash score of 1.9, lowest stable galaxy
energy of −3151.35, and refined values of MolProbity (1.266).
Similarly, poor rotamers were missing in the structure as
compared to its original conformation. Ramachandran’s
statistics for the refined 3D structure were observed in
following order: 0% in generously allowed regions, 90.3% in
Ramachandran favored residues, 0% in disallowed regions, and
9.4% in additionally allowed regions.

Disulfide Engineering and In Silico Cloning
Disulfide engineering of the MEV was accomplished for 14 pairs
of amino acid residues. These pairs were: Cys11-His56
(c3 angle,+126.49, energy value, 7.71 kcal/mol), Arg14-Cys18
(c3 angle, −71.10, energy value, 6.37 kcal/mol), Lys26-Gln29 (c3
angle, −100.70, energy value, 2.68 kcal/mol), Lys44-Ala48 (c3
angle,+88.42, energy value,5.95 kcal/mol), Val57-Ala60
(c3 angle, −98.14, energy value, 2.22 kcal/mol), Ala73-Glu79
(c3 angle, −83.45, energy value, 2.75 kcal/mol), Tyr74-
Tyr110 (c3 angle, −104.92, energy value, 2.48 kcal/mol),
Ala85-Phe88 (c3 angle,+125.58, energy value,4.80 kcal/
mol), Leu87-Phe106 (c3 angle, −113.76, energy value, 3.52
kcal/mol), Ala108-Asn113 (c3 angle, +118.50, energy value,
Frontiers in Immunology | www.frontiersin.org 7
4.11 kcal/mol), Ala126-Ala150 (c3 angle, +91.62, energy value,
4.67 kcal/mol), Asp128-Met131 (c3 angle, +113.53, energy
value, 1.34 kcal/mol), Ala132-Ala146 (c3 angle, −58.52, energy
value, 7.37 kcal/mol), and Ala133-Gly143 (c3 angle, +118.04,
energy value, 4.81 kcal/mol). As these residues had highly
unstable energy level of >1.34 kcal/mol and c3 angle out of
range (< −87 and > + 97). The mutated MEV 3D structure is
shown in Figure 4A. Further, in silico cloning of MEV was
achieved in pET28a(+) expression vector to assist genetic
engineers and molecular biologist in cloning the MEV
experimentally and get a high possible expression. Reverse
translation and codon optimization of the MEV was done as
per E. coli K12 system to optimize the expression (Figure 4B).
The CAI value of the MEV was 1, indicating ideal expression.
The GC content was 54.56% almost equal to the E. coli K12. In
addition, no hairpin loop or pseudoknot was found at the
starting site of MEV RNA secondary structure (Figure 4C).
The cloned construct is illustrated in Figure 4D.

MEV Immune Simulation
Immune simulation of the host immune system in response to
the MEV revealed robust primary and secondary immune
reactions. The host immune system response in terms of
different antibodies titers and cytokines and interleuckins
responses to the MEV are illustrated in Figure 5. As can be
noticed, elevated IgM and IgG + IgG titers to the MEV was
witnessed at the primary feedback, subsequently IgG1 + IgG2,
IgM, and IgG1 were observed at both primary and secondary
levels with prompt antigen clearnace. Moreover, vigorous
reactions of high levels of IFN-g, IL-10, and IL-2 were also
A B

DC

FIGURE 3 | (A) Schematic representation of MEV construct for CCHFV, (B) Secondary structure of MEV construct, (C) Predicted 3D structure of designed MEV
construct and (D) Ramachandran plot of MEV construct.
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observed. These responses demonstrated effective immune
system simulation efficiency of the MEV. Furthermore, higher
populations of B-cell production and different isotypes, together
with memory cells suggests a life-long memory cell synthesis and
immunoglobulin class switching. Moreover, helper T-cells plus
cytotoxic T-cells and their corresponding memory generation are
in close association with the robust response toward the antigen.

Binding Mode and Interactions of MEV
With Immune Receptors
Molecular docking of the designed MEV was carried out with
specific immune response receptors, TLR2 and TLR3. Stable
Frontiers in Immunology | www.frontiersin.org 8
interactions with these receptors are essential to produce an
effective immune reactions. TLR3 has a marked effect in
recognition of virus linked molecular patterns leading to
activation of NF-kappa B and type I interferons. For both
receptors, 20 docked solutions were generated and ranked
based on binding energy (Table S3). The assessments were
also made on the basis of binding conformations of molecules,
with respect to each other through size, area, rigid
transformation, desolvation energy, and scoring functions.
Subsequently, the complexes were processed to FireDock web
server (70) analysis for structural refinement. This was
significant in removing false-positive predictions made by
A

B DC

FIGURE 4 | (A) 3D structure of the MEV after disulfide engineering with mutated residue are shown in cyan-green spheres, (B) Reverse translated primary DNA
sequence of the MEV, (C) Closeup view of start-site of MEV RNA structure (full structure is given in Figure S1) and (D) In silico cloning of MEV (shown in red) in
pET28a(+) vector.
A B

FIGURE 5 | Host immune system simulation in response to. The immune response (generation of Igs) by antigen exposure are shown in (A), and cytokines and
interleukins production in different stated with Simpson index is shown in (B).
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initial docking run. Solution 5 of TLR2 (net global energy, −14.33
kJ/mol) and 3 of TLR3 (net global energy, −6.95 kJ/mol) were
selected for further analysis. The selected TLR2 solution net
energy is the attribute of −42.75 kJ/mol attractive van der Waals
energy, and 32.11 kJ/mol of repulsive van der Waals energy, 7.58
kJ/mol of atomic contact energy (ACE), and −5.46 kJ/mol of
hydrogen bond energy. In case of TLR3 selected solution, the
energy can be split as, −7.70 kJ/mol attractive van der Waals
energy, and 1.50 kJ/mol of repulsive van der Waals energy, −2.47
kJ/mol of ACE, and 0.00 kJ/mol of hydrogen bond energy. The
configuration of docked MEV and intermolecular interacting
residues of the MEV with TLR receptors is illustrated below in
Figure 6. Visual examination of both solutions indicated strong
binding of the MEV at the central cavity of TLR2 preferentially
by weak van dar Waals forces and hydrogen bonds. The MEV
was detected to form associations with the residues including
Ser33, Lys55, Ser56, Val80, Gln79, Gln152, Asn177, Arg316,
Glu344, Asn345, Glu369, Arg422, Glu481, Tyr483, Val503,
Lys505, Arg507, Thr527, Glu529, Val556, Asp557 of TLR2,
and Tyr307, Lys330, Arg331, Lys335, Glu363, Asp364, Ser387,
Lys416, Leu440, Tyr465, Lys613, Thr638, Glu639, Ile654, Al655,
Trp656, Phe657 of TLR3.

Molecular Dynamics Simulations
Molecular dynamics (MD) simulation was further performed on
the docked MEV and TLRs complexes to investigate stability and
affinity of the systems at thermobaric condition and time
(Figure 7). MEV and TLRs receptor conformational behavior
were evaluated by estimating backbone root-mean-square
deviation (RMSD) using the initial structure as a reference.
Frontiers in Immunology | www.frontiersin.org 9
Both the systems were seen in good stability, especially after 20
ns. The mean RMSD of MEV-TRL2 is 4.09 Å (± 0.418), whereas
the mean RMSD reported for the MEV-TLR3 is 4.99 Å (± 0.93).
Further, from residues flexibility perspective, TLRs were found
stable. However, due to the presence of unmodelled loops, the
residues displaced limited flexibility. The mean root-mean-
square fluctuation (RMSF) of MEV-TLR2 was 1.52 Å (± 0.97)
and MEV-TLR3 was 2.02 Å (± 1.39). The folding and
compactness of the systems were elucidated through a radius
of gyration (RoG) analysis. Like RMSD, a similar trend in
systems stability was observed. For instance, MEV-TLR2 mean
RoG was 35.95 Å (± 0.14) and MEV-TLR3 RoG was 32.00 Å (±
0.44). After an initial minor change in folding, which is expected
to adopt the dynamics environment, both systems achieved
higher structure equilibrium toward the end of simulation
time. The systems’ stability was evident due to formation of a
large number of hydrogen bonds, and therefore, MEV complex
attained a more favorable conformation over the period of 100 ns
MD simulation time period.

Radial Distribution Frequency Analysis
The hydrogen bonds formation between MEV and TLRs were
further studied in term of their radii distribution during
simulation time. It was revealed that the binding of MEV to
TLR2 is dominated by several interactions leading to strong
stability of the complex. RDF plots were generated for some of
the close intermolecular contacts and are presented in Figure 8.
The plot demonstrated the stable interactions of MEV in the
pocket of TLRs, and the radii distribution remains uniform
throughout the simulation period.
A

B

FIGURE 6 | Molecular docking between MEV and TLR receptors. (A) Docked conformation and residues interaction map of MEV (shown in pink) to TLR2 (shown in
purple), and (B) Docked conformation and residues interaction map of MEV (shown in red) to TLR3 (shown in cyan green).
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MMGB/PBSA Binding Free Energies and
Residues Decomposition Analysis
The atomic-level interaction energies were investigated using
MMGB/PBSA. The MM-PBSA.py module of AMBER18 was
used as an end state free energies computation approach as it is
computationally easy to perform and more reliable than docking
scoring functions (71). Binding free energies for both TLR2 and
TLR3 complexes computed viaMMGBSA andMMPBSAmethods
are tabulated in Table 2. Compared to TLR3, TLR2 complex with
MEV was highly stable with total MMGBSA binding free energy
(DGtotal) of −260.14 kcal/mol and MMPBSA energy of −309.77
kcal/mol. The system energy is dominated by electrostatic energy
(−889.10 kcal/mol in MMGB/PBSA) and favorably supported by
van der Waals energy (−224.50 kcal/mol). The system solvation
energy is 853.46 kcal/mol in MMGBSA (878.61 kcal/mol of polar
solvation energy and −25.15 kcal/mol non-polar solvation energy),
and MMPBSA 803.83 kcal/mol (815.54 kcal/mol of polar solvation
energy and -11.71 kcal/mol of non-polar solvation energy).
Further, the net energy of MEV-TLR2 system was decomposed
into residues of TLR2 to underline residues that are hotspot in
interactions with the MEV. The following are the hotspot residues
for the MEV-TLR2 system; Ser33, Ser56, Lys55, Gln79, Gln152,
Asn177, Val80, Gly344, Asn345, Arg422, Tyr483, Val503, Lys505,
Arg507, Val556, Asp557, and Glu629.

For TLR3, the total binding energy (DGtotal) of −50.18 kcal/
mol in MMGBPSA and −89.72 kcal/mol in MMPBSA. In
MMGBSA, delta energy for MEV-TLR3, TLR3, and MEV is
−70725.09 kcal/mol, −57301.02 kcal/mol, and −13373.87 kcal/
mol, respectively. High contribution in MMPBSA was observed
Frontiers in Immunology | www.frontiersin.org 10
from MEV, followed by receptor TLR3, and MEV-TLR3
complex. Total electrostatic energy estimated for the system in
both MMGBSA and MMPBSA was −987.49 kcal/mol and
dominate the overall energy of the system. This energy can be
split into, MEV electrostatic contribution (−9500.50 kcal/mol),
TLR3 (−45202.56 kcal/mol), and MEV-TLR3 (−55690.56 kcal/
mol). Van der Waals energy is also favorable with net system
energy is −144.20 kcal/mol (MEV-TLR3, −6432.18 kcal/mol;
TLR3, −5259.64 kcal/mol; and MEV, −1058.32 kcal/mol). Total
solvation free energy for the system was noticed unfavorable, i.e.
MMGBSA (1051.51 kcal/mol) and MMPBSA (1011.97 kcal/mol)
mainly because of polar energy (MMGBSA, 1068.96 kcal/mol
and MMPBSA, 1027.65 kcal/mol). Non-polar solvation energy,
on the other hand, seems favorable in both MMGBSA and
MMPBSA is −1101.70 kcal/mol. List of hotspot residues in
MMGBSA and MMPBSA is given in Table S4. The following
residues are hotspot residues for the MEV-TLR3 system; Hie3,
Val5, Asp7, Leu135, Asn143, Ala190, Ser207, Asn236, Thr237,
Leu24, Met249, Ala266, Gly291, Ser337, Leu343, Asp390,
Arg453, Arg454, Ser463, Thr603, Phe609, Ile619, Phe622,
Asn627, Glu628, Thr629, Thr634, Lys637, Tyr638, Arg641,
Val642, Arg646, Val649, Lys679, Hie683, Cys686, Trp688,
Gln694, Arg704, Lys720, Phe721, Glu722, Val743, and Thr744.
DISCUSSION

Vaccines are the potential factors in controlling infectious
diseases and improving public health. The traditional vaccine
A B

DC

FIGURE 7 | Molecular dynamics simulation analysis of MEV and TLR receptors. (A) RMSD, (B) RMSF, (C) RoG and (D) Hydrogen bond analysis.
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development approaches are labor intensive, expensive and time
consuming. In addition, failure chances are high in later trials
(20). Therefore, researchers are now focusing on cutting edge
next generation approaches to facilitate the vaccine development
process. These approaches mainly include reverse vaccinology,
immunoinformatics, vaccine informatics, and subtractive
proteomics. These approaches provide variety of databases,
servers and tools, and enable researchers to identify pathogen
proteins that are most suitable for vaccine designing, followed by
the prediction of highly antigenic, non-toxic, non-allergic, and
safe candidate epitopes, which can be further employed in
vaccine design process and tested directly in experimental
analyses. CCHFV is a global health concern with 10% to 40%
mortality rate and un-availability of proper therapeutics (28). To
date, no approved vaccine is available against CCHFV.
Therefore, present study was designed to construct an effective
and novel MEV against CCHFV by utilizing integrated
computational pipeline based on reverse vaccinology, vaccine
informatics and biophysics approaches. MEV design was
Frontiers in Immunology | www.frontiersin.org 11
preferred because it can induce humoral, innate, and cellular
immunity response together. In addition, MEV is safer compared
to other types of vaccines (72).

Previously, two different vaccines were designed based on two
major structural CCHFV proteins (N and G) (28, 73). Although
results of these studies were promising, but the methodology they
applied was not rigorous enough, and several extensive
computational steps were missing. Deyde et al. studied 13
complete genomes of CCHFV and found that N, RdRp, Gn/G2,
and Gc/G1 proteins were highly variable (74). Therefore, the
framework applied in this work used deeper and more extensive
in silico steps and used all four major antigenic proteins of the
CCHFV for MEV design. This effort is novel and presenting unique
immunodominant epitopes from multiple conserved proteins. An
ideal MEV should contain B- and T-cell epitopes to stimulate an
extensive immune response network. Hence, immunodominant
epitopes from target proteins (N, RdRp, Gn/G2, and Gc/G1) were
predicted and analyzed rigorously by employing various
approaches. The most potent nine epitopes were chosen based on
their immunogenic properties (i.e., antigenicity, allergenicity,
toxicity, and cytokine production) for further analyses. The
selected epitopes showed 99.74% global coverage. This result
suggested that the MEV would be effective on majority of the
world population round the globe. Next, the MEV sequence was
designed by joining selected epitopes through linkers and adjuvant.
An adjuvant (b-defensin) was added to the N-terminal of the MEV
along with EAAAK linker, and epitopes were fused together
through AAY linkers. b-defensin serves as an excellent adjuvant
due to its antimicrobial and immunomodulatory properties, and it
has been used in several previous studies (24, 25, 75), whereas AAY
Linkers were added to help maintain the function of individual
epitopes, so that after being transported into the host body, they can
work accurately (76).

To ease follow up experimental analyses of the MEV and allow
successful setting of in vitro and in vivo experiments,
physicochemical properties of the vaccine were assessed. The
designed MEV was found to be highly antigenic, immunogenic,
soluble, thermostable, and non-allergenic, demonstrating the
epitope vaccine’s ability to elicit robust immune responses
without causing allergic reactions. Tertiary and secondary
structures provide information about a protein’s function,
interactions with other proteins/ligands, and dynamics (77). The
desirable characteristics of MEV improved significantly after
predicted 3D structure refinement. The Ramachandran plot
analysis shows that 90.3% of residues are in a favored region,
with 0% residues in the disallowed region, indicating that the model
is of good quality. Additionally, MEV was subjected to disulfide
engineering to optimize vaccine molecule structure and confer
substantial structural stability (78). Disulfide engineering
introduces disulfide bridges into the final MEV construct and
significantly increases protein’s thermostability and also aid in the
examination of genetic components of the vaccine. The serological
immune-reactivity test is one of the first steps to validate a candidate
vaccine (69). Recombined protein must be expressed in an
appropriate host. Reverse transcription, codon optimization, RNA
secondary structure analyses followed by in silico cloning revealed
A

B

FIGURE 8 | Radial distribution plots for close interactions of MEV and TLRs.
(A) Plots for MEV and TLR2 and (B) Plots for MEV and TLR3.
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that our designed MEV will be expressed at a high level in E. coli
K12 system.

Theoratically, since the MEV designed by joining multiple B
derived T cell epitopes, it should elicit strong cellular and humoral
immune responses. However, the immune system response may
vary according to the different factors, mainly because of
mechanism of pathogencity (18). Therefore, the MEV was
subjected to host immune simulation response analysis (79). Our
candidate vaccine demonstrated the highest development of IFN-g
during immune simulation validation, with substantial IL-10 and
IL-2 activities. There have also been noticed excess active
immunoglobulins (i.e. IgG, IgM, and their isotypes which can be
involved in the isotype switching). For efficient transporation into
the host, vaccine candiate should posses potential binding
capabalities with the host immune system receptors, such as
TLR2 and TLR3 (80). Molecular Docking and 100 ns MD
simulation not only verified the strong interactions between TLRs
and MEV but also showed that a very small amount of energy was
required for this stable binding in the MMGB(PB)SA analysis.
During MD simulations, minor fluctuations were observed. Thus,
these results suggested that the MEV will be able to strongly bind
with immune receptors and effectively transported into the body.
Vaccines developed through conventional techniques are more
effective if subject to the immune system of model organisms but
are found to be ineffective when administered to humans due to the
complex nature of the human immune system (81). Therefore,
using reliable reverse vaccinology, vaccine informatics and
biophysics approaches, a safe, specific, and highly effective vaccine
candidate was developed in this scientific study that could provide
long-term immunity against CCHFV.
CONCLUSIONS

In the current study, we presented an integrated computational
framework describing the design of an MEV by targeting major
Frontiers in Immunology | www.frontiersin.org 12
antigenic/conserved proteins of the CCHFV. The formulated
MEV strongly elicit both primary and secondary immune
responses, showed a good affinity of binding with innate
immunity TLR2 and TLR3 receptors, thus providing the
adaptive immunity to establish and counter the pathogen
properly. The intermolecular affinity was validated by
molecular dynamics simulations that predicted highly stable
binding of the MEV with the receptors, which was evident by
strong chemical interactions. Despite keeping high standards in
the computational methodology for MEV design against
CCHFV, there are still several limitations that can be improved
and investigated in future studies. For example, the vaccine is
immunogenic but the real extent of immune protection against
the pathogen is something that needs to be explored
experimentally. The current results are preliminary and still
need to be uncovered in vitro and in vivo; however, the
selection criteria for filtering epitopes and post analysis were
quite stringent, which facilitate the designed MEV to be the
potent candidate against CCHFV. In a nutshell, the presented
MEV construct must be evaluated experimentally to uncover its
real immunogenicity for practical applications.
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