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Abstract: We report on the synthesis of alpha manganese dioxide (α-MnO2) nanorods using natural
extracts from Vitis vinifera grape stems and Malus domestica ‘Cortland’ apple peels. We used a two-step
method to produce highly crystalline α-MnO2 nanorods: (1) reduction of KMnO4 in the presence
of natural extracts to initiate the nucleation process; and (2) a thermal treatment to enable further
solid-state growth of the nuclei. Transmission electron microscopy (TEM) and field emission scanning
electron microscopy (FESEM) images provided direct evidence of the morphology of the nanorods
and these images were used to propose nucleation and growth mechanisms. We found that the
α-MnO2 nanorods synthesized using natural extracts exhibit structural and magnetic properties
similar to those of nanoparticles synthesized via traditional chemical routes. Furthermore, Fourier
transform infrared (FTIR) shows that the particle growth of the α-MnO2 nanorods appears to be
controlled by the presence of natural capping agents during the thermal treatment. We also evaluated
the catalytic activity of the nanorods in the degradation of aqueous solutions of indigo carmine dye,
highlighting the potential use of these materials to clean dye-polluted water.

Keywords: nanorods; manganese oxide; natural extracts; dye degradation; oriented attachment;
green synthesis

1. Introduction

During the past decade, the synthesis of anisotropic metal oxide nanoparticles has attracted
considerable attention because of their unique size- and shape-dependent properties [1–3].
Self-assembly processes driven by diverse interactions can generate a myriad of nanostructures
by using nanocrystals as building blocks. Shape control of these structures can be achieved by tuning
some of the synthesis parameters such as temperature, type of ligands, and interaction of the ligands
with the precursors and/or the nanoparticles [4–6]. This means that the thermodynamics and kinetics
of nucleation and growth can also be controlled [7,8]. Among the variety of possible shapes, nanorods
are some of the most studied anisotropic materials as the combination of chemically induced growth
and shape anisotropy can offer an additional level of control during self-assembly processes driven by
structural and chemical selectivity [9,10].

Although many approaches have been followed for the synthesis of nanomaterials, the need
to minimize toxic reagents, and to develop green synthesis processes that yield nanomaterials with
similar properties to those synthesized using traditional methods remain a valid one [11]. Methods for
the synthesis of nanoparticles using plant and fruit extracts are well-established in the scientific
literature and several nanoparticles have been synthesized using natural extracts including gold [12,13],
platinum [14], iron oxide [15–17], copper [18,19], palladium [20,21], zinc oxide [22], and silver [23–27].
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Few studies have explored the synthesis of manganese oxide nanoparticles using a green synthesis
route [28–30]. To our knowledge, there are no studies exploring the use of natural extracts for the
oriented growth of highly crystalline alpha manganese dioxide (α-MnO2) nanorods, which is the main
topic of this paper.

The synthesis of manganese oxide nanoparticles continues to be an area of active research as
these particles can be used in catalysis [31], batteries [32], and supercapacitor applications [33,34].
MnO2 nanoparticles have been synthesized by a variety of techniques and in several shapes
such as nanorods [32,33], nanowires [35], whiskers [36], and dandelion-like three dimensional
structures [37]. Among the catalytic applications for manganese oxides are the degradation of
dyes [38–41], water-oxidizing processes [42], and the photocatalytic oxidation of organic pollutants
in waste water [43]. The most commonly used reducing agents include nitric acid (HNO3) [32],
sodium hydroxide (NaOH) [33], hydrochloric acid (HCl) [40], and ammonium fluoride (NH4F) [35].
Alternative synthesis methods for manganese oxide particles include hydrothermal processes [44,45],
molten salt routes [46], and microemulsion methods [47].

We hereby report a simple approach using natural extracts from apple peels and grape stems, to
fabricate α-MnO2 nanorods. We found that the morphological and structural properties of the nanorods
produced using these natural extracts are similar to the properties of the nanorods synthesized using
traditional methods [32,33,48,49]. We also propose a mechanism to explain the formation of α-MnO2

nanorods. Furthermore, we tested the catalytic activity of the synthesized α-MnO2 nanorods on the
degradation of aqueous solutions of indigo carmine dye. Finally, we found that these nanorods are
very stable and suitable for repeated use. The synthesis method reported here may be easily extended
to a wide variety of other metal oxide nanomaterials.

2. Results and Discussion

2.1. Materials Synthesis and Characterization

Figure 1 shows the X-ray diffraction (XRD) patterns of samples V6 and V8, corresponding to the
nanorods synthesized using the Vitis vinifera extracts, as well as samples A6 and A8, corresponding
to the specimens synthesized with the Malus domestica extracts. According to the XRD patterns,
the crystallinity of the synthesized products improves with further calcination at 600 ◦C and 800 ◦C,
and this behavior is consistent with prior observations for the synthesis of α-MnO2 nanocrystals [50–52].
For the as-synthesized powders made with the Malus domestica extract (Figure 1a), few diffraction
peaks can be observed. In contrast, the as-synthesized powders made with Vitis vinifera (Figure 1d)
exhibit peaks that can be easily indexed to the potassium manganese oxide KMnO2 phase (Joint
Committee on Powder Diffraction Standards-JCPDS, card no.: 044-1025) and MnO2 phase (JCPDS,
card no.: 053-0633), as shown in Figure S1a.

After thermal treatment, the crystalline structure of both samples progressively evolves towards
α-MnO2 (JCPDS, card no.: 44-0141). XRD patterns in Figure 1b,c synthesized using the Malus domestica
extract, exhibit a high intensity peak at 37.5◦, which can be indexed as the (211) plane followed in
intensity by the peaks for the planes (310) and (110). In contrast, for samples synthesized with the
Vitis vinifera extract, Figure 1e,f, shows that the most dominant peak occurs at a plane (110) and
a 2θ value of 12.5◦ followed by planes (211) and (310). It is important to note that regardless of the
natural extract used for the synthesis, the calcinated samples at 800 ◦C exhibit an increase in the peak
intensity and a decrease in peak broadening when compared to the same samples calcinated at 600 ◦C.
Careful comparison of the relative intensities of the dominant diffraction peaks shows that the intensity
of the peaks (110) and (220), are higher. Noting that (220) is only a short range of (110), thus, the relative
intensity of the (110) peak for sample V-8 (43.2%) and for sample A-8 (100.0%) is much stronger than
that shown in the standard JCPDS card (37.0%). Likewise, the relative intensity of the (220) peak for
sample V-8 (35.7%) and for sample A-8 (11.62%) are 7.14 and 2.3 times the value stated in the standard
JCPDS card. However, the relative intensities of the other diffraction peaks are comparable or smaller
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to those intensities reported in the standard JCPDS card. Thus, these results suggest a preferential
growth of α-MnO2 in both cases [53]. It is worth noting that the calculated ratio between the intensities
of the (211) and (310) diffraction peaks for samples V8 and A8 were slightly lower than that reported in
the JCPDS standard (1.1 and 1.04 versus 1.2, respectively). Figure S6 shows the square tunnel structure
of α-MnO2 with space group I 4/m, with the dominant planes highlighted by the grey shaded areas.
The α-MnO2 structures were plotted using visualization for electronic and structural analysis (VESTA)
software [54].

The crystallite size and the lattice parameters, calculated using the XRD patterns, are summarized
in Table 1. The basic building block for most of the Mn oxide structures is the MnO6 octahedron, and in
the α-MnO2 structure, these octahedra are assembled by sharing edges that form a tunnel structure
(as shown in the inset of Figure 1) [55–57].
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Figure 1. X-ray diffraction (XRD) patterns of the as-synthesized sample and alpha manganese dioxide
(α-MnO) nanoparticles under different calcination temperatures (600 ◦C, 800 ◦C). (a–c) corresponds to
experiments using the Malus domestica Cortland Apple Peels extract and (d–f) to experiments using the
Vitis vinifera Grape stems extract.

Table 1. Crystallite size and the lattice parameters of the α-MnO2 nanorods produced with the
Malus domestica apple peel extract (A6 and A8) and with the Vitis vinifera stems extract (V6 and V8).

Sample Name Extract Used in
the Synthesis

Calcination
Temperature (◦C)

Crystallite
Size (Å ) a (Å) b (Å)

A6 Malus domestica 600 D211: 314 9.892 2.873
A8 Malus domestica 800 D211: 352 9.814 2.861
V6 Vitis vinifera 600 D110: 243 9.922 2.854
V8 Vitis vinifera 800 D110: 356 9.874 2.861

Figure 2a–f shows scanning electron microscope (SEM) and TEM images of samples synthesized
with the Malus domestica extract. These images show the presence of short and long rods that are dense
and agglomerated with diameters ranging from 28 to 70 nm and lengths between 85 and 180 nm.
Conversely, in Figure 2g–l, when the Vitis vinifera extract was used, larger nanorods were obtained and
with a larger aspect ratio. The nanorods synthesized with Vitis vinifera do exhibit a wider particle size
distribution between 150 and 800 nm in length and from 40 to 80 nm in diameter.

Figure 3a–c shows the FTIR spectra corresponding to the samples prepared with the Malus
domestica extract, while the spectra displayed in Figure 3d–f correspond to the samples prepared
using the Vitis vinifera stems extract. The as-synthesized samples exhibited broad peaks around
3600–3000 cm−1, which could be assigned to the –OH stretching and H–O–H bending vibrations of
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bound water molecules adsorbed onto the crystalline domains [58]. The peak near 1600–1625 cm−1

reveals the involvement of C=O stretching vibration of acid derivatives [16]. In addition, peaks at
2900–2875 cm−1 and 1375–1310 cm−1 can be related to C–H in-plane bending and aliphatic C–O
stretching modes [58]. These peaks are indicative of the presence of organic molecules that originated
from the phytochemical components of the natural extracts, i.e., esters and alcohols. The spectra also
exhibit peaks at 1060, 875, 850, 630, and 560 cm−1, which can be related to M=O stretching vibration,
Mn–O–H bending, MnO4

− tetrahedral, Mn–O vibrations in octahedral environments, and Mn–O–Mn
bonds, which are characteristic bands for manganese oxide [29,30,58].
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Figure 2. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy
(TEM) images of manganese oxide (α-MnO2) nanorods at different magnifications. (a–c) Malus domestica
apple peel extract, calcinated at 600 ◦C; (d–f) Malus domestica apple peel extract, calcinated at 800 ◦C;
(g–i) Vitis vinifera stems extract, calcination at 600 ◦C; (j–l) Vitis vinifera stems extract, calcinated at
800 ◦C.
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Upon calcination to 800 ◦C, changes in the FTIR spectrum can be observed in Figure 3c,f.
For example, the absorption bands assigned to the vibrations of the O–H and O–H–O groups of
the absorbed water (3600–3000, 2000–1300 cm−1) disappear. In addition, the disappearance of
the absorption bands at 1375–1355 cm−1 and at 850–875 cm−1 could be ascribed to the complete
decomposition of the adsorbed phytochemicals after calcination which is confirmed by the thermal
analysis presented in Figure S4. As the calcination temperature increases, the intensity of the bands at
the frequencies below 750 cm−1 increases—these bands are ascribed to the metal-oxygen Mn–O–Mn
and Mn–O bending vibrations of the [MnO6] octahedral in α-MnO2. These results are consistent with
the XRD analysis reported above and are in quantitative agreement with the results reported in the
literature for other MnO2 nanoparticles [32,36,59].

The thermal analysis (TG-DTG) of the as-synthesized products are shown in Figure S4.
The thermogram curve and its derivative show two main stages of weight loss. The first stage
occurs at about 100 ◦C and can be attributed to water loss (endothermic peak in the derivative
curve). The second stage occurs between 300 and 375 ◦C and can be related to the burning of residual
adsorbed phytochemicals that act as capping agents and the formation of highly crystalline α-MnO2.
Above 600 ◦C, the weight loss is almost negligible.

X-ray photoelectron spectra of the six samples are shown in Figure 4. For all the samples,
the binding energy of the C1s level at 284.6 eV was used as an internal reference to calibrate every
spectrum to minimize charging effects. The binding energies (BE) of Mn(2p3/2) and Mn(2p1/2)
are summarized in Table 2, and these values are in good accordance with those of the tetravalent
manganese system MnO2 [60–63]. However, three samples, the as-synthesized sample with the
Malus domestica extract, the as-synthesized sample with the Vitis vinifera extract, and the sample
synthesized with the Malus domestica extract and calcinated at 600 ◦C (A6), all display a small
but distinct shoulder at about 3 eV from the main peak. These features are also present in the
calculated Mn+4 spectrum by Gupta and Sen [64] and Nesbitt and Barnejee [61]. This can be due to the
non-stoichiometry nature of MnO2 hence, the occurrence of mixed valence compounds is also likely
to be involved in the overall reaction [64,65]. As can be seen in Table 2, the presence of Mn+4 in the
Mn(2p) spectrum is appreciable in supporting the findings from the XRD experiments. The spectrum
O 1 s in Figure S5 reveals three types of the O atom in the as-synthesized samples. The first is assigned
as a lattice oxygen Mn–O–Mn (529−530 eV) and dominates in the O1s-line, and the second can be
describe as hydrated Mn–O–H manganese oxides (531–532 eV). The third corresponds to the oxygen
of the absorbed water H–O–H (533 eV). After calcination, the peak assigned to the presence of lattice
oxygen forming the strong Mn–O–Mn bonds in the crystalline network, progressively shifts to 529.9 eV.
The intensity of the hydrated Mn–O–H peak decreases as the calcination temperature increases. All of
the peak values and their evolution due to calcination are in quantitative agreement with the reported
data for α-MnO2 [55,61,63].

Table 2. Mn(2p3/2) and Mn(2p1/2) spectral fitting and peak binding energy (eV) maxima

Sample Extract Temp (◦C) Mn(2p3/2) (eV) Mn(2p3/2) (eV), pk 2 Mn(2p1/2) (eV)

As-synthesized Malus domestica – 641.19 643.99 653.26
A6 Malus domestica 600 641.75 644.55 653.33
A8 Malus domestica 800 640.99 – 652.22

As-synthesized Vitis vinifera – 642.7 647.1 654.33
V6 Vitis vinifera 600 641.92 – 653.28
V8 Vitis vinifera 800 641.97 – 653.43
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The magnetic properties of the α-MnO2 nanorods were measured using a vibrating sample
magnetometer (VSM). Figure 5a,b shows the M–H curves for the α-MnO2 samples at 300 K and 5 K.
The M–H curves at 300 K shows no sign of saturation even when the applied fields have a magnitude
of 7 kOe. This strong linear response reveals a superparamagnetic state for the α-MnO2 nanorods at
this temperature. However, the M–H curves at 5 K show a hysteresis loop and no sign of saturation
magnetization. At this temperature, all samples exhibit exchange bias behavior that can be calculated
using two fields: the exchange bias field, HEB, and the coercive field, HC. HC = abs(HC1 − HC2)/2 and
HEB = (HC1 + HC2)/2, where HC1 and HC2 are the left and right coercive fields, respectively. Samples
A6 and A8 exhibit the same coercive field and exchange bias field, 307.15 and −1.35 Oe, respectively,
indicating that there is no influence of the calcination temperature on the magnetic properties of these
specimens. In contrast, for samples V6 and V8 the coercive field and exchange bias field vary, 127.85 Oe
and −15.55 Oe for V6 and 210.25 Oe and −44.05 Oe for V8, respectively. This variation highlights the
fact that the calcination temperature, in the Vitis vinifera specimens, has an influence on the magnetic
properties of the nanorods.

This behavior may be explained on the basis of their different preferential crystalline orientations.
The exchange bias effect appears stronger in the samples synthesized with the Malus domestica apple
peels extract than in the samples obtained with the Vitis vinifera grape stem extract [66]. For all samples,
the magnetization of the specimens decreases with increasing calcination temperature. Figure 5c,d
shows the temperature-dependent magnetization curves measured under the zero-field-cooling (ZFC)
and field-cooling (FC) modes from 5 K to 300 K under 100 Oe. The observed Neel temperatures (TN)
of the samples are lower than the ones reported for MnO2 bulk crystals (92 K), which is expected
for the difference in the crystallite sizes [67]. In Figure 5d, a smaller peak is observed in the ZFC
curve at ca. 10 K. This peak can be ascribed to the magnetic blocking of a fraction of smaller rods
in the specimen [68,69]. Such magnetic behavior, including superparamagnetic responses, exchange
bias field response, and the presence of multimodal blocking temperatures, hint at several interesting
prospects for future studies and applications of these nanorods in magnetic nanodevices [70,71].Nanomaterials 2017, 7, 117 6 of 15 
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Figure 4. X-ray photoelectron spectroscopy (XPS) Spectra of the Manganese Oxide samples. (a–c)
samples synthesized with the Vitis vinifera stems extract; (d–f) samples synthesized with the Malus
domestica apple peels extract (BE values are corrected using the carbon peak at 284.6 eV as a reference).
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nanorods under an applied field of 100 Oe for samples; (c) A6, A8; (d) V6, V8.

2.2. Proposed Growth Mechanism

The nature of the natural extracts used in the experiments appear to have a significant
morphological effect on the growth of the nanorods. Since all experimental conditions were the
same, we believe that the variation of the phytochemical content in the solvent media influences the
size of the α-MnO2 nanorods, their crystallite sizes, and their preferential crystal growth direction.
A possible explanation for these results is that the phytochemicals act as reducing and stabilizer agents
that control the diffusion of growth during the nucleation process [12,23]. We believe that the initial
nucleation of the MnO2 nanorods follows the Ostwald ripening process and after nucleation, the nuclei
experience a temperature-induced oriented attachment (OA) growth. In this particle-mediated crystal
growth mechanism, the individual nanocrystals are integrated and fused into highly anisotropic
structures with preferential crystallographic orientations [7,9]. Figure 6 shows the proposed evolution
and phase transformation mechanism.

We speculate that the natural stabilizing agents capping the nuclei particles may modulate the
oriented attachment (OA) growth during the calcination processes [7,10]. The assembly appears to be
driven by the presence of the phytochemicals acting as ligands and selectively binding to specific crystal
faces, hence enabling the growth of the manganese oxide nanorods. The proposed mechanism appears
to be supported by the XRD, thermal gravimetric analysis (TGA), and FTIR results. However, the exact
role of these natural capping agents during the calcination process cannot be fully determined in this
study. Figure S1b shows the HRTEM of the as-synthesized sample with Vitis vinifera, demonstrating
that the nanorods indeed grow from the small nanoparticles. This behavior is similar to that reported
by Polleux et al. [72] in which anisotropic TiO2 nanocrystals were synthesized by ligand-directed
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assembly of the nanoparticles. Similarly, Tang et al. [73] reported that the removal of excess stabilizer
was the key step in the preparation of CdTe nanowires from nanoparticles. Previous studies also show
morphological differences in the manganese oxide nanoparticles obtained using different solvents.
For example, Yan et al. [28] synthesized Mn3O4 nanoparticles using Banana peel extract and obtained
agglomerated particles with diameters from 20 to 50 nm. In contrast, Sharma et al. [30] reported the
synthesis of Mn3O4 nanoparticles using the leaf extract of Azdirachta indica and obtained uniform
spherical particles with diameters between 20 and 30 nm.
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nanorods using natural extracts from Malus domestica and Vitis vinifera.

The analysis of the chemical constituents of Malus domestica and Vitis vinifera extracts was
performed via gas chromatography mass spectrometry (GC-MS). Figure S2a,b shows the mass spectra
of dominant compounds in each extract and the identified compounds are shown in Tables S1 and
S2. For simplicity, we have categorized the main compounds in Table S3 into seven groups: chelating
agents, alcohols, ketones, esters, carbohydrates, aldehydes, and others. The presence of chelating
agents with COOH groups play a critical role in capping the nanoparticles and may control the growth
during the calcination process [72,74]. Aldehydes and ketones have been reported to act as reducing
agents in nanoparticle formation processes [75–77]. Additionally, these groups can provide colloidal
stability by forming a thin layer on the surface of the nanoparticles [24,78]. Curiously, polyphenols
were not detected; this may be due the nature of the solvent used in the extraction method for the
GC-MS characterization. The phytochemical constituents in plants are affected by the extraction
solvents shown by Abdel-Aal et al., who performed the extraction of Spirogyra longata algea with
petroleum ether, methylene chloride, chloroform, acetone, and methanol, and found that the extraction
solvent influenced the nature of the extracted molecules, especially that of alkaloid phenolics and
sterols [79].

2.3. Assesing the Catalytic Activity of the Nanoparticles in Dye Degradation

Figure 7 shows the degradation behavior of a 20 ppm solution of indigo carmine (IC) dye
in the presence of the α-MnO2 nanorods. The degradation of the dye solution was monitored by
ultraviolet-visible (UV-Vis) spectrophotometry, using its characteristic absorption at 610 nm. For the
degradation studies, we used the optimized conditions reported elsewhere [38]: briefly, the pH of
the 20 ppm indigo carmine solution was adjusted to 2.5, by the addition of CH3COOH, and after pH
adjustment, the α-MnO2 nanorods were added at different concentrations (0.2%, 0.1%, 0.05%, 0.025%
w/v). The samples were vortexed for 30 s and centrifuged for 15 min at 10,000 rpm. The percentage of
degradation was calculated using the following formula: %Degradation = (A0 − Af) × 100/A0, where,
A0 is the initial absorbance and Af is the final absorbance at 610 nm. The UV-Vis curves in Figure 7
indicate that even at the lowest concentration α-MnO2-0.025% (w/v), there is at least 80% degradation.
This demonstrates that the catalytic efficiency of these α-MnO2 nanorods is comparable to that of
MnO2 nanoparticles synthesized using conventional procedures [32,33,36,41,47,80,81]. The reusability
of the α-MnO2 nanorods was also investigated by collecting and using the same powder sample for
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up to four cycles. As shown in Figure S3b, the catalytic activity is not significantly altered by up to
four cycles of degrading the IC dye.
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Figure 7. Ultraviolet-visible (UV-Vis) spectra of indigo carmine solutions after exposure to α-MnO2

nanorods at various concentrations. (a,b) samples synthesized with the Malus domestica apple peels
extract; (c,d) samples synthesized with the Vitis vinifera grape stems extract. The right hand side shows
digital photographs of the color change of the specimens.

3. Materials and Methods

3.1. Materials

Vitis vinifera grape stems and Malus domestica apple peels (Cortland type), were obtained
from a local market in Ithaca, NY, USA Potassium permanganate (KMnO4), was purchased from
Sigma-Aldrich (St. Louis, MO, USA) and used as received. Milli-Q water with a conductivity <18.2
MΩ·cm at 25 ◦C (Milli-Q Millipore filter system, Millipore Co., Bedford, MA, USA) was used.

3.2. Infusion Preparation

Vitis vinifera grape stems and Malus domestica apple peels (Cortland type), were thoroughly rinsed
with MilliQ water and dried in an oven at 70 ◦C. The dried biomass was ground into powder and
stored at room temperature. Ten grams of dry biomass powder was mixed in 100 mL of MilliQ water
(solid weight content of 0.1 g powder per mL) and refluxed for 1 h at 70 ◦C. The suspension was filtered
using a cotton fabric to remove the solid particles. The suspension was centrifuged at 10,000 rpm
for 10 min and filtered through a 0.2 µm filter (Millipore, Bedford, MA, USA). The pH value of the
infusions ranged between 3.7 and 4.0.
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3.3. Nanoparticle Synthesis

Ten mL of a 0.1 M aqueous solution of KMnO4 was added dropwise to 40 mL of the filtered
infusions at 25 ◦C under continuous stirring. After 2 h, a black precipitate was observed, indicating
the initial formation of manganese oxide nanoparticles. The precipitate was washed several times with
DI water and centrifuged at 10,000 rpm for 15 min. The resulting powders were dried in an air oven
at 80 ◦C for 24 h, calcinated using a 30 ◦C/min ramp up to the target temperature (600 ◦C, 800 ◦C),
and kept at this temperature for 4 h.

3.4. Dye Degradation Experiments

The catalytic activity of the synthesized α-MnO2 nanorods was assessed by dye degradation of
aqueous solutions of indigo carmine (IC). Indigo carmine (5,5-indigodisulfonic acid sodium salt)
is one of the oldest synthetic dyes known and is still one of the most used dyes in the textile
industry [82]. The primary color-producing structure of indigoid dyes is a cross-conjugated system
or H-chromophore, consisting of a single –C=C– double bond substituted by two NH donor groups
and two CO acceptor groups [83]. The dye stock solution was prepared by dissolving 0.020 g of
Indigo Carmine in 1000 mL of MilliQ water. Ten mL of the dye stock solution were placed in
20 mL vials, and the pH was adjusted to 2.5 using acetic acid. α-MnO2 powders were added at
different weight/volume percent concentrations (0.2%, 0.1%, 0.05%, 0.025%) to the pH adjusted
vials. The vials were vortexed for 30 s and centrifuged at 10,000 rpm for 15 min. The recovered
supernatant was analyzed, immediately after centrifugation, using a Perkin–Elmer Lambda 35 UV-Vis
spectrophotometer. The absorption peak was set at 610 nm. The control sample consisted of 20 ppm
of indigo carmine dye, at pH 2.5, without manganese oxide. The percentage of degradation was
calculated using the ratio between the characteristic UV-Vis absorption band of indigo carmine in
solution at λ = 610 nm before and after contact with the α-MnO2 powder.

3.5. Characterization

The morphology of the α-MnO2 powders was investigated using a field emission scanning
electron microscope (FESEM) (LEO 1550) (Carl Zeiss, Oberkoehen, Germany) with an accelerating
voltage of 5 kV. TEM images were collected on a FEI Tecnai T12 Spirit TEM (FEI, Hillsboro, OR, USA)
with an acceleration voltage of 120 keV. Samples for FESEM and TEM imaging were drop casted
onto carbon coated copper grids and left to dry at ambient conditions. The samples were further
characterized using a Scintag X-ray Diffractometer (Scintag Inc., Cupertino, CA, USA) with Cu–Kα

radiation (40 KV, 40 mA). The XRD patterns were recorded at room temperature with a step-size of 0.02◦

in the range of 10◦–80◦. Fourier transform infrared (FTIR) spectra of the samples were acquired using
a Bruker Hyperion FTIR Spectrometer (Bruker Optics, Billerica, MA, USA) in potassium bromide (KBr)
pellet transmission (KPT) mode. The KBr powders and the α-MnO2 powders were dried overnight in
a vacuum oven prior to pellet preparation. The ratio of the sample powders to KBr was 1 mg of sample
to 300 mg of KBr. X-ray photoelectron spectroscopy (XPS) measurements were performed in a surface
science instruments (SSI) model SSX0100 (Surface Science Instruments, Mountain View, CA, USA)
with monochromatic aluminum K-α X-rays (1486.6 eV). The analysis of peak binding energy (BE) and
deconvolution was performed using the CASAXPS software (Casa Software Ltd, Teignmouth, UK), in
which a Shirley background subtraction was used, as well as 50:50 Gaussian:Lorentzian line widths.
All XPS measurements were corrected for charging using the C 1 s peak position at 284.8 eV. A physical
properties measurement system (PPMS), equipped with a vibrating sample magnetometer (VSM), by
Quantum Design (San Diego, CA, USA), was used to collect zero-field-cooled (ZFC) and field-cooled
(FC) magnetization curves from 5 K to 300 K in an applied field of 100 Oe. In addition, isothermal
magnetizations and hysteresis loops were collected at 300 K and 5 K for the applied fields ranging
from −7 kOe to 7 kOe. UV spectrophotometry spectra were collected on a Perkin Elmer Lambda
35 spectrometer. The phytochemicals in the extracts were identified by gas chromatography-mass
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spectrometry (GC-MS). The GC-MS analysis was performed on an Agilent 6890 N gas chromatograph
(Agilent Technologies, Santa Clara, CA, USA) equipped with an Agilent 7683 automatic liquid sampler
coupled to an Agilent 5973 N mass selective detector. The extracts for phytochemical analysis were
prepared using 25 mg/mL of biomass powder with high performance liquid chromatography (HPLC)
grade alcohol. This mixture was stirred during 8 h, and the extracts were centrifuged and filtered
through a 25-mm syringe filter. The mobile phase (Helium) was injected at a flow rate of 1.2 mL min−1,
at a pressure of 10 psi, and with an injector temperature of 270 ◦C. The other parameters were adjusted
as follows: the temperature of the column was initiated at 50 ◦C and held for 5 min, then increased
to 210 ◦C at a rate of 15 ◦C min−1. Finally, the temperature was increased to 305 ◦C at a rate of 20 ◦C
min−1 and held for 40 min. The samples were injected in the splitless mode and each injection was
5.0 µL. The MS detector was operated in full scan mode (35–600 amu). The retention times of each
sample were compared to those reported in the national institute of standards and technology (NIST)
mass spectral database. Figure S2 shows the GC-MS spectra of the extracts and a list of the constituents
is provided in Tables S1 and S2.

4. Conclusions

We report a facile strategy to synthesize functional α-MnO2 nanorods using natural extracts
of apple peels and grape stems, follow by a sequential calcination process that induces an oriented
attachment growth. We found evidence that the phytochemicals in the extracts act as both reducing and
protecting agents, and during the calcination process enable the transformation of the stable nuclei into
chemically ordered nanorods with preferential orientations. This facile synthetic strategy may provide
a way to explore the formation of MnO2 nanostructures with different crystal phases and morphologies.
The reported synthesis method, based on the separation of nucleation and the subsequent growth
processes, may serve as a strategy for the further investigation of crystal growth in anisotropic
nanoparticles. The results also show that the nanorods, synthesized with natural extracts exhibit
interesting catalytic properties including the efficient degradation of dyes. These high-crystalline
α-MnO2 nanorods represent a new platform for further studies of nanoscale phenomena as well as for
applications such as water purification.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/5/117/s1.
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