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Summary

Background: COPD is associated with increased numbers of T cells in the lungs, particularly
CD8þ T cells. The mechanisms of increased T cells are unknown but may be related to
repeated virus infections in COPD patients. We analysed lymphocyte subsets in blood and
bronchoalveolar lavage in smokers and COPD subjects during experimental rhinovirus infec-
tions.
Methods: Lymphocytes were isolated from blood and bronchoalveolar lavage from COPD sub-
jects and non-obstructed smokers prior to, and following experimental rhinovirus infection.
Lymphocyte surface markers and intracellular cytokines were analysed using flow cytometry.
Results: Following rhinovirus infection CD4þ and CD8þ T cell numbers in the COPD subjects
were significantly reduced in blood and CD3þ and CD8þ T cells increased in bronchoalveolar
lavage compared to baseline. T cells did not increase in BAL in the control subjects. CD3þ T
cells correlated with virus load.
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Conclusions: Following rhinovirus infection T cells move from the circulation to the lung.
Repeated virus infections may contribute to T cell accumulation in COPD patients.

ª 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
Introduction

Chronic obstructive pulmonary disease (COPD) is a growing
global epidemic and its prevalence is expected to increase
markedly in the future. COPD is an inflammatory condition
predominantly caused by exposure to tobacco smoke and a
number of inflammatory cells have been implicated in the
development of COPD including neutrophils, macrophages
and T lymphocytes. COPD is associated with increased
numbers of T cells and CD8þ T cells in lung parenchyma and
small airways correlate with disease severity [1e4], sug-
gesting these cells are involved in the development and
progression of COPD. CD4þ, B, NK and gamma delta (gd)
cells have also been identified in the airways of COPD pa-
tients, although their relationship with disease pathogen-
esis is less well established [5]. The mechanisms whereby T
cells are increased in the lungs in COPD remain undeter-
mined. T cells are an important component of the adaptive
immune response to virus infections and respiratory virus
infections are a common cause of acute exacerbations in
COPD patients [6]. It has been proposed that repeated virus
infections in COPD patients may contribute to T cell accu-
mulation [7] but this hypothesis remains unproven as some
studies report increased lymphocytes in COPD exacerba-
tions [8] whereas others do not [9]. We have previously
reported increased lymphocytes in bronchoalveolar lavage
in COPD subjects infected with rhinovirus [10]. In the pre-
sent study we characterised the phenotype of lymphocytes
in blood and bronchoalveolar lavage during experimental
rhinovirus infection in COPD subjects and non-obstructed
smokers. We hypothesized that virus infection is associ-
ated with recruitment of circulating T cells to the lung, and
that this is one potential mechanism of increased numbers
of T cells in COPD.
Methods

Study participants

COPD subjects (GOLD stage II) (N Z 11) and smokers
(N Z 12) with a similar smoking history but with normal
lung function were recruited. Ethical approval was ob-
tained from the Local Research Ethics Committee (study
number 00/BA/459E) and informed consent obtained from
all subjects. All subjects were free from respiratory tract
infection for the previous 8 weeks and none had received
treatment with oral, inhaled or nasal topical steroids, long-
acting b-agonists or tiotropium in the previous 3 months.
The clinical, inflammatory and virologic data from the
experimental rhinovirus infection study have been reported
in a previous publication [10]. Blood and BAL for lympho-
cyte analysis were collected at baseline prior to inoculation
with rhinovirus, and on days 7 and 42 post-inoculation.
Isolation of lymphocytes

Peripheral blood mononuclear cells (PBMC) were obtained
by centrifuging whole blood on a separation gradient
(Lymphoprep�, Axis Shield). BAL fluid was obtained by
instillation of 0.9% saline into a peripheral bronchus via a
bronchoscope as previously described [10]. PBMC and BAL
cells were washed and adjusted to 2 � 106/mL. Cells for
surface staining were kept at 4 �C and cells for measure-
ment of intracellular cytokines incubated with phorbol
myristate acetate, ionomycin and brefeldin at 37 �C in 5%
CO2 for 4 h. Cells were washed twice and 50 mL of cell
suspension added to antibody for surface markers and
incubated for 45 min. Cells for surface staining were fixed
and cells for intracellular staining were resuspended in
cytofix cytoperm (Becton Dickinson) for 20 min, washed
twice, antibody added for 45 min, washed and resus-
pended. Flow cytometry analysis of cells was carried out
immediately following completion of the staining protocol.

Flow cytometry

All cells were stained with conjugated antibodies (BD
Pharmingen) and analysed on a Fluorescence Activated Cell
Sorter (Becton Dickinson). Gain and amplitude settings
were consistent throughout the study for each subject.
PBMC and BAL cells were analysed for lymphocyte surface
marker expression by three- and four-colour flow cytometry
as described previously [11,12]. The lymphocyte subsets
measured were T cells (CD3þ), CD4 T cells (CD3þCD4þCD8-
), CD8 T cells (CD3þCD8þCD4�), NK cells (CD3-CD16þ
CD56þ), gd T cells (CD3-CD4-CD8-gdþ) and B cells (CD3-
CD19þ). Sufficient cells for measurement of intracellular
cytokines were obtained from blood only. Following cell
stimulation the frequency of CD4þ and CD8þ cells staining
positively for interferon-gamma (IFN-g) and interleukin-4
(IL-4) were measured [11]. Analysis was performed on at
least 10,000 lymphocyte events using Cellquest and Winlist
software.

Inflammatory mediators and virus load

Interleukin (IL)-6, IL-8 and tumour necrosis factor-alpha
(TNF)-a were measured in BAL supernatants using enzyme-
linked immunosorbent assays (ELISA) performed according
to the manufacturers’ instructions. Plates were read on a
Spectramax Plus 384 plate reader and the results read using
SoftMax Pro software. The sensitivities and sources of the
individual ELISAs were as follows: IL-6 (3.9 pg/mL), IL-8
(3.9 pg/mL) (R&D Systems, Abingdon, UK) and TNF-a (5 pg/
mL) (Biosource, USA). Serum CRP and peripheral blood cell
counts were measured in the Clinical Biochemistry and
Haematology laboratories of St Mary’s Hospital, Imperial
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Table 1 Clinical characteristics of study subjects successfully infected with rhinovirus.

COPD (N Z 11) Controls (N Z 12) P value

Age (years) 59.6 (47e70) 48.5 (40e58) P Z 0.0021
Sex (M/F) 6/5 6/6 P Z NS
Smoking history (pack-years) 48 (20e109) 34.8 (20e60) P Z NS
Current smokers (no.) 8 9 P Z NS
FEV1 (litres) 1.94 (1.23e2.7) 3.58 (2.8e4.76) P < 0.0001
FEV1 (% of predicted normal value) 69.73 (62e78) 109.5 (90e128) P < 0.0001
FEV1/FVC (%) 55.55 (39e69) 80.33 (73e86) P < 0.0001
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College Healthcare NHS Trust. qPCR was performed on 2 mL
of cDNA to detect picornavirus in nasal lavage, an unpro-
cessed plug of induced sputum, and unprocessed BAL, using
AmplitaqGold DNA polymerase (PE Biosystems ABI Prism
7700). A standard curve was produced by using serially
diluted cloned product and results expressed as copies/mL
The sensitivity of this assay was 104 copies/mL Virus load
was measured with a real-time quantitative RT-PCR assay
[10].
Statistical analysis

Data are presented as medians with changes from baseline
analysed with Friedman test. Correlations between data
sets were examined using Spearman’s correlation. Differ-
ences were considered significant for all statistical tests at
P values of less than 0.05 and all reported P values were
two-sided. Analysis was performed using GraphPad Prism
version 4.00 for Windows (GraphPad Software, San Diego
USA).
Results

Clinical outcomes

The symptomatic, physiological and inflammatory changes
induced by rhinovirus infection have been described pre-
viously [10]. Briefly 11 COPD subjects (GOLD stage II using
short-acting bronchodilators only) and 12 smokers with
normal lung function were included in the study and their
clinical characteristics are shown in Table 1. Infection was
confirmed by detection of rhinovirus with PCR in nasal
lavage, sputum or BAL. 10 of the COPD subjects developed
Table 2 Lymphocyte subsets in blood at baseline in the COPD a
natural killer cells, gd cells e gamma-delta cells.

COPD (N Z 11)

CD3þ T cells (�109/L) 1.49 (1.41e1.75)
CD4þ T cells (�109/L) 1.08 (0.89e1.22)
CD8þ T cells (�109/L) 0.35 (0.24e0.45)
B cells (�109/L) 0.178 (0.097e0.441)
NK cells (�109/L) 0.118 (0.056e0.175)
gd cells (�109/L) 0.045 (0.015e0.1)
an exacerbation according to our predetermined symptom
criteria.

Blood lymphocytes

At baseline prior to infection there were no differences in
any of the lymphocyte subsets in blood between the
groups, although there was a trend towards higher numbers
of NK cells in the COPD group (Table 2). Following rhinovirus
infection there was a trend towards reduced in blood CD3þ
T cells compared to baseline, but this was not statistically
significant. There was a significant increase in CD3þ T cells
at convalescence compared to the infection time point
(Fig. 1A and B). Blood CD4þ T cells were significantly
reduced at infection compared to baseline in the COPD
group but not in the smokers (Fig. 1C and D). CD8þ T cell
numbers were reduced at infection compared to baseline
and convalescence in both groups (Fig. 1E and F). There
were no significant changes in blood B cells, NK cells, gd
cells or CD4þ/CD8þ ratio following infection in either of
the groups (data not shown).

BAL lymphocytes

Sufficient BAL for analysis of lymphocytes was obtained
from 9 COPD subjects and 10 smokers. There were no dif-
ferences in any of the lymphocyte subsets at baseline be-
tween the groups (data not shown). Following rhinovirus
infection there were significant increases in both percent-
ages and numbers of CD3þ and CD8þ T cells in BAL in the
COPD group, but no significant changes in the smokers
(Fig. 2). CD4þ T cell numbers were significantly higher at
infection compared to convalescence in the COPD group but
there were no significant differences in the smokers.
nd the control subjects. All values median and IQR. NK cells e

Controls (N Z 12) P value

1.41 (1.31e1.80) NS
0.85 (0.52e1.14) NS
0.30 (0.23e0.51) NS

0.178 (0.113e0.238) NS
0.047 (0.024e0.103) P Z 0.07

0.0275 (0.011e0.057) NS



Figure 1 Lymphocyte subsets (medians) in blood at baseline, infection and convalescence in COPD subjects and non-obstructed
smokers. Panel A e CD3þ T cell percentages, Panel B e CD3þ T cell numbers, Panel C e CD4þ T cell percentages, Panel D e CD4þ T
cell numbers, Panel E � CD8þ T cell percentages, Panel F e CD8þ T cell numbers. *P < 0.05, **P < 0.01.
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T cell intracellular cytokine expression

At baseline there were no differences between groups in
CD4þ IFN-gþ, CD4þ IL-4þ, CD8þ IFN-gþ or CD8þ IL-4þ T
cells in blood (data not shown). There were no significant
changes in any of these lymphocyte subsets after infection
in either the COPD or the control groups. We also analysed
CD4þ IFN-gþ/CD4þ IL-4þ and CD8þ IFN-g/CD8þ IL-4þ
ratios and found no differences between groups or between
the baseline and infection time points (data not shown).



Figure 2 Lymphocyte subsets in BAL at baseline, infection and convalescence in COPD subjects and non-obstructed smokers.
Panel A e CD3þ T cell percentages, Panel B e CD3þ T cell numbers, Panel C e CD4þ T cell percentages, Panel D e CD4þ T cell
numbers, Panel E � CD8þ T cell percentages, Panel F e CD8þ T cell numbers. *P < 0.05, **P < 0.01.
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Figure 3 Correlations between CD3þ T cells in bronchoalveolar lavage and virus load in nasal lavage (Panel A), induced sputum
(Panel B) and bronchoalveolar lavage (Panel C). Panel D shows the relationship between CD3þ T cells and levels of TNF-a in
bronchoalveolar lavage.
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Relationships between BAL and blood lymphocytes
and clinical parameters

In the study population as a whole blood CD3þ T cells at
infection correlated inversely with peak serum C-reactive
protein (CRP) (P Z 0.045, r Z �0.42), peak blood total
leukocytes (P Z 0.047, r Z �0.42). The relationship be-
tween CD3þ T cells and virus load is shown in Fig. 3. The
change from baseline in BAL CD3þ T cells at infection
correlated with virus load in nasal lavage (Panel A), induced
sputum (Panel B) and BAL (Panel C) (Fig. 3). There was a
trend towards a correlation between CD3þ T cells in BAL
and levels of TNF-a in BAL at infection (Panel D).

Discussion

This is the first study to prospectively study lymphocyte
subsets in treatment-naive virus-induced COPD exacerba-
tions. We report that CD8þ T cells are reduced in blood and
increased in BAL in COPD subjects following rhinovirus
infection, and that CD3þ T cells in BAL correlate with virus
load.

T lymphocytes are increased in stable COPD but the
molecular mechanisms by which they accumulate in the
airways are not established. There are a number of po-
tential mechanisms including increased recruitment of
circulating lymphocytes [13], local proliferation [14] and
decreased removal through impaired clearance by macro-
phages or reduced apoptosis [15]. However both increased
[16] and reduced [17] apoptosis of airway lymphocytes in
COPD has been reported. T lymphocytes are an essential
part of the adaptive immune response to viral infections
and therefore their recruitment into the airways will be
promoted by respiratory virus infections in COPD patients.
However although some studies have reported increased
lymphocytes in COPD exacerbations [8,18e20], others have
not [6,21e23], so the role of respiratory infections in
lymphocyte recruitment has not been established.
Increased CD8þ lymphocytes and reduced CD4þ/CD8þ ra-
tios in sputum in COPD exacerbations have been reported
[9,24]. However in these studies lymphocyte populations at
exacerbation were compared with samples collected after
treatment with corticosteroids and as corticosteroids are
known to increase lymphocyte apoptosis this is likely to
have had a major influence on the results [25]. The con-
flicting results from these studies are likely due to a number
of factors including differences in exacerbation aetiology
and the effects of treatment, and are difficult to resolve in
studies of naturally-occurring exacerbations. We have
developed a model of COPD exacerbation using experi-
mental rhinovirus infection that avoids many of the sources
of variability inherent in studies of naturally-occurring ex-
acerbations. Using this model we have previously reported
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increased lymphocytes in BAL following rhinovirus infection
[10], and following on from this observation we analysed
lymphocyte subsets in blood and BAL in experimental
rhinovirus infection.

Following rhinovirus infection in COPD subjects CD4þ
and CD8þ T cells were reduced in blood compared to
baseline. In BAL CD3þ T cells were increased following
infection and this appeared to consist predominantly of
CD8þ T cells, as CD4þ T cells in BAL were not significantly
increased. Although there were some changes in circulating
T cells in the controls, there were no significant increases in
BAL following infection in the non-COPD subjects. There-
fore this is the first direct evidence that circulating T cells
are recruited to the lung in response to virus infection in
COPD. Whether this represents an appropriate response
required for effective viral clearance, or whether the T cell
influx is exaggerated in COPD and results in immune
mediated tissue injury remains to be determined. We
demonstrated a clear relationship between CD3þ T cells in
BAL and virus load in the airways and this was strongest for
virus load in BAL. This supports the hypothesis T cells are
recruited in response to viral replication in the airways. In
our previous study we demonstrated higher virus loads and
impaired interferon responses in the COPD subjects [10].
Therefore impaired antiviral innate immunity in COPD may
result in higher virus load in the airways and this in turn may
drive greater recruitment of T cells. At 6 weeks post-
infection T cell numbers had returned to baseline levels
and therefore there was no evidence for a persistence of T
cells in the airways following virus infection, suggesting
that T cell clearance is not impaired in COPD. However in
patients with more severe COPD in whom exacerbations are
more frequent, repeated viral infections in combination
with other mechanisms such as impaired macrophage
phagocyotsis [26] and autoimmunity [5] may lead to T cell
accumulation in the airways. Further carefully designed
studies in patients with more severe COPD will be required
to investigate these hypotheses.

NK cells, B cells and gd cells did not change significantly
in blood following rhinovirus infection, however there was
insufficient BAL to examine these lymphocytes therefore
we cannot conclusively exclude that they are recruited to
the airways following virus infection. Regarding the role of
Th1/Th2 T cells we did not find any changes in the ratio of
IFN-g/IL-4 CD4þ or CD8þ T cells. Tsoumakidou [9] and
Makris [24] reported evidence of a Tc2 profile in COPD ex-
acerbations but their studies differed from ours in that they
used sputum rather than BAL, the exacerbations were se-
vere and patients received corticosteroids.

Our study has a number of limitations as it was carried
out in a relatively small number of subjects and experi-
mental rhinovirus infection is limited to patients with mild-
moderate COPD. Experimental rhinovirus infections in
COPD will always be limited by these factors but such
studies can provide novel data that is difficult to obtain
with naturally-occurring exacerbations and should stimu-
late further studies in patients with more severe COPD
investigating the role of viral infections in T cell
recruitment.

In conclusion our study provides evidence that rhinovirus
infection is associated with recruitment of circulating T
lymphocytes to the lungs in COPD patients and T cell
numbers in BAL correlate with virus load. Therefore respi-
ratory virus infections are likely to contribute to T cell
recruitment in COPD but clearance of T cells was not
impaired. Further studies that include patients with more
severe COPD are needed to identify the factors that lead to
T cell persistence in the airways in COPD. Defining these
mechanisms has the potential to lead to new therapies that
inhibit T cell recruitment and may prevent disease pro-
gression in COPD.
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