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Lactacystin is a specific proteasome inhibitor that blocks the hydrolysis of

intracellular proteins by ubiquitin/proteasome system inhibition. The

administration of lactacystin to rats induced hypertension and remodeling of

the left ventricle and aorta. This study tested whether lactacystin induces

structural and fibrotic rebuilding of the kidneys and whether melatonin and

captopril can prevent these potential changes. Six weeks of lactacystin

administration to rats increased their average systolic blood pressure (SBP).

In the kidneys, lactacystin reduced glomerular density, increased the glomerular

tuft area, and enhanced hydroxyproline concentrations. It also elevated the

intraglomerular proportion including the amounts of collagen (Col) I and Col III.

Lactacystin also raised the tubulointerstitial amounts of Col I and the sum of Col

I and Col III with no effect on vascular/perivascular collagen. Six weeks of

captopril treatment reduced SBP, while melatonin had no effect. Both

melatonin and captopril increased glomerular density, reduced the

glomerular tuft area, and lowered the hydroxyproline concentration in the

kidneys. Both drugs reduced the proportion and total amounts of

intraglomerular and tubulointerstitial Col I and Col III. We conclude that

chronic lactacystin treatment stimulated structural and fibrotic remodeling

of the kidneys, and melatonin and captopril partly prevented these

alterations. Considering the effect of lactacystin on both the heart and

kidneys, chronic treatment with this drug may be a prospective model of

cardiorenal damage suitable for testing pharmacological drugs as protective

agents.
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Introduction

Hypertension and diabetes are the leading causes of chronic

kidney disease (CKD) (Hamrahian and Falkner, 2017). The

pathogenesis of CKD in hypertension is multifactorial,

involving genetic alterations, oxidative stress, endothelial

dysfunction, and renin-angiotensin-aldosterone system

(RAAS) disturbances (Mennuni et al., 2014). These factors

promote inflammation, fibrosis, and both a reduced nephron

count and a lower glomerular filtration rate (GFR) (Schlondorff,

2008). CKD is associated with a worsening cardiovascular

prognosis and constitutes a serious health and social

condition. Thus, there is a continuous search for new ways of

protection in experimental models of hypertension.

Cardiovascular homeostasis is tightly bound to proper

protein turnover, which is controlled by the ubiquitin-

proteasome system (UPS). Proteasomes are multisubunit

protease complexes that degrade damaged proteins in all

parts of the cells (Pagan et al., 2013). The proteasomes

specific to the heart involve a number of proteins with

various biological impacts, such as atrogin (known as

muscle atrophy F-box) participating in myocardial

remodeling (Li et al., 2004); murine double minute 2

(MDM2), a ubiquitin ligase that mediates p53 participating

on myocardial hypertrophy modulation (Chatterjee et al.,

2011); the calcineurin-nuclear factor of the activated T cells

(NFAT) pathway that mediates cardiac remodeling (Tang

et al., 2010); sarcomere-associated protein

MuRF1 associated with heart failure (Willis et al., 2009); or

Nedd4 containing E3 ligase controlling the biological impact

of multifunctional vascular endothelial growth factor (VEGF)

(Murdaca et al., 2004). In the kidney, Nedd4L/Nedd4-2 seems

to participate in distal nephron salt sensitivity (Ishigami et al.,

2020), and ubiquitin-conjugating enzyme E2 contributes to

HUWE1-mediated degradation of tubulointerstitial fibrosis

(Wang et al., 2022). Pharmacological interference with

proteasomes is emerging as a potential approach to

influence various pathological processes.

Lactacystin is a proteasome inhibitor that blocks the

hydrolysis and degradation of intracellular proteins by the

UPS (Craiu et al., 1997). Chronic lactacystin administration

induces a mild but significant rise in systolic blood pressure

(BP) along with fibrotic remodeling of the left ventricle (LV) in

Wistar rats (Simko et al., 2017), and hypertrophy of the aorta in

L-NAME (L-NG-nitro arginine methyl ester)-induced

hypertension (Vrankova et al., 2010). Several hypothetical

mechanisms for hemodynamic alterations and heart and

vessel damage by lactacystin have been proposed, such as

enhanced oxidative stress (Vrankova et al., 2010; Huseby

et al., 2016; Parajuli, 2019), decreased NO bioavailability

(Simko et al., 2017; Sharma et al., 2020), sympathetic nervous

system activation (Congo Carbajosa et al., 2015) and

modification of various cytosolic, nuclear, and myofibrillar

protein turnovers (Mearini et al., 2008). However, data on

lactacystin’s renal effects are not available.

The aim of this study was to test whether lactacystin induces

structural and fibrotic rebuilding of the kidneys. Furthermore, we

sought to determine whether melatonin prevents these potential

alterations. Melatonin (N-acetyl-5-methoxytryptamine), the

main product of the pineal gland, not only regulates biological

circadian rhythms (Reiter et al., 2020), but exerts various

pleiotropic protective effects on the heart, vasculature (Reiter

et al., 2010; Simko et al., 2019, 2020; Domínguez-Rodríguez et al.,

2021; Tobeiha et al., 2022) and kidneys (Russcher et al., 2012;

Hrenák et al., 2013; Hrenak et al., 2015; Shi et al., 2019). The

effects of melatonin were compared with captopril, a classical

angiotensin-converting enzyme (ACE) inhibitor, which exerts a

well-established antiremodeling action in several organs and

various pathologies (Pfeffer et al., 1992; Pechánová et al.,

1997; Simko et al., 2010, 2014; Repová-Bednárová et al., 2013)

including lactacystin-induced LV remodeling (Simko et al.,

2017).

Materials and methods

Animals and treatment

The experiments were conducted in conformance with the

Guide for the Care and Use of Laboratory Animals published by

the US National Institutes of Health (NIH Publication No. 85-23,

revised 1996). The study protocol was approved by the ethics

committee of the Institute of Pathological Physiology, Faculty of

Medicine, at Comenius University in Bratislava, Slovakia.

Thirty-two adult (12-week-old) weight-matched maleWistar

rats (obtained from the Department of Toxicology and

Laboratory Animals Breeding, Slovak Academy of Sciences,

Dobra Voda, Slovakia) were randomly divided into four

groups (n = 8 per group) and treated for 6 weeks as follows:

control (C; untreated), lactacystin (Lac; 5 μg/kg/day), lactacystin

plus captopril (Lac + Cap; 5 μg/kg/day lactacystin + 100 mg/kg/

day captopril), and lactacystin plus melatonin (Lac + Mel;

5 μg/kg/day lactacystin + 10 mg/kg/day melatonin).

Lactacystin, captopril, and melatonin were dissolved in

drinking water and their concentrations were adjusted to daily

water consumption to ensure the correct dosage. The melatonin

solutions were offered in non-transparent bottles to protect them

from light.

Lactacystin and melatonin were purchased from Sigma-

Aldrich Chemie, Munich, Germany, and captopril from Egis

Pharmaceuticals, Budapest, Hungary.

The rats were housed in individual cages, maintained under

standard laboratory conditions (12:12-h light-dark cycle at

22–24°C temperature and 45%–65% humidity), and fed a

regular pelleted diet ad libitum. Systolic blood pressure (SBP)

was measured once a week in each animal by non-invasive tail-
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cuff plethysmography (Hugo-Sachs Elektronik, Freiburg,

Germany). After 6 weeks of treatment, the rats were

euthanized by isoflurane inhalation. Two halves of the left

kidney were harvested for subsequent analyses: one half was

fixed in 4% formaldehyde for histopathological analysis. The

other was snap-frozen at −80°C for determination of

hydroxyproline concentration.

Kidney histopathology

The kidney samples fixed in 4% formaldehyde were embedded

in paraffin and cut into 5 μm-thick sections. Then, two sets of

sections per sample were deparaffinized, rehydrated, and stained,

one with hematoxylin-eosin (H-E) for glomerular morphometry,

and the other with picrosirius red (PSR) for quantitative analysis of

kidney fibrosis. Photomicrographs were taken using a NIKON

Eclipse Ti C2+ microscope (NIKON, Tokyo, Japan) with

transmitted or polarized light and subsequently analyzed with

NIKON NIS-Elements Analysis software (NIKON, Tokyo, Japan)

and ImageJ version 1.52p for Windows (National Institutes of

Health, Bethesda, MD, United States).

The H-E-stained sections were analyzed using transmitted

light microscopy at ×10 magnification and NIKON NIS-

Elements Analysis software to assess glomerular

morphometry, as previously described (Pechanova et al., 2006;

Hrenák et al., 2013; Stanko et al., 2020). Glomerular density was

determined by counting preserved glomeruli in a 1 mm2 digital

frame put over the kidney cortex at 10 microscopic fields per

section; i.e., 80 digital frames were investigated per group. The

glomerular tuft area was determined by measuring perpendicular

maximum and minimum diameters (dmax and dmin, respectively)

of 10 random glomerular tufts per section used for subsequent

tuft area calculation as follows: glomerular tuft area = π(dmax/2)

(dmin/2); i.e., 80 glomerular tuft areas were calculated per group.

The PSR-stained sections were analyzed with polarized

light microscopy, set at ×100 magnification, and ImageJ to

allow for a quantitative assessment of kidney fibrosis, as

previously described (Seccia et al., 2008; Stanko et al.,

2020). Due to the birefringence shift by PSR, the thick type

I collagen (Col I) was shown in red-orange shades, and the

thin type III collagen (Col III) was visualized in green-yellow

shades. Thus, the Col I and Col III volumes were determined

as the percentage of red-orange and green-yellow shaded areas

in a particular region of interest (ROI) by setting the

FIGURE 1
Effect of captopril (Lac + Cap) and melatonin (Lac + Mel) on
average systolic blood pressure (SBP) (A), renal hydroxyproline
concentration (B), and kidney morphology: glomerular numerical
density per 1 mm2 (C) and glomerular tuft area (D) of lactacystin-
treated (Lac) rats; glomerular numerical density (E) anddetailed images

(Continued )

FIGURE 1
of the glomerular content (F) in lactacystin-treated rats:
H-E-stained sections at ×10 (E) and ×100 (F) magnification using
transmitted light microscopy; mesangial cell proliferation with
extracellular matrix expansion (arrow). C, controls; *p <
0.05 vs. C; #p < 0.05 vs. Lac.
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appropriate “hue” thresholds of the color spectrum in

ImageJ. To assess glomerular fibrosis, 40 ROIs per section

of 50 × 50 μm were placed in intraglomerular space;

i.e., 320 intraglomerular ROIs were investigated per

group. To assess tubulointerstitial fibrosis, 40 ROIs per

section of 192 × 72 μm were placed at the interstitial cortex

without glomeruli or vessels; i.e., 320 tubulointerstitial ROIs

were investigated per group. To evaluate the amount of

vascular/perivascular fibrosis, five ROIs per section were

examined, tight-cropping a cross-section captured artery

with a diameter between 50 and 100 μm; i.e., 40 vascular/

perivascular ROIs were investigated per group.

The histopathological analysis was performed by an

experienced investigator blinded to the group identity.

Determination of kidney hydroxyproline
concentration

The kidney samples, snap-frozen and stored at −80°C, were

dried at 100°C for 24 h and then hydrolyzed using a solution of

6 mol/L HCl. The hydroxyproline concentration was determined

spectrophotometrically at 550 nm (Reddy and Enwemeka, 1996;

Hrenák et al., 2013).

Statistical analysis

The results are presented as the mean ± SEM. The one-way,

two-tailed analysis of variance (ANOVA), followed by a Holm-

Sidak multiple comparisons test, was used for statistical

analysis. p values below 0.05 were considered statistically

significant. The statistical analysis was conducted using

GraphPad Prism 8 for Windows (GraphPad Software, La

Jolla, CA, United States).

Results

Systolic blood pressure

The SBP averaged over 6 weeks of treatment was 120.07 ±

0.58 mmHg in controls, and lactacystin raised the value by 6%

(p < 0.05). In the lactacystin group, captopril lowered the average

SBP by 18% (p < 0.05), while melatonin had no effect on average

SBP (Figure 1A).

Glomerular morphometry

The glomerular numerical density was 7.06 ± 0.28 per mm2

in controls; lactacystin decreased this value by 37% (p < 0.05). In

the lactacystin group, both captopril and melatonin augmented

the glomerular numerical density by 53% and 44% (p < 0.05 for

both measures), respectively (Figures 1C,E).

The glomerular tuft area was 5.173 ± 198 μm2 in controls,

and lactacystin increased this value by 65% (p < 0.05). In the

lactacystin group, both captopril and melatonin reduced the

glomerular tuft area by 33% and 41% (p < 0.05 for both

measures), respectively (Figures 1D,F).

Kidney hydroxyproline concentration

The kidney hydroxyproline concentration was 0.15 ±

0.05 mg/g in controls, and lactacystin raised (p < 0.05) it by

139%. In the lactacystin group, both captopril and melatonin

lowered (p < 0.05) the kidney hydroxyproline concentration by

23% (Figure 1B).

Quantitative analysis of kidney fibrosis

For intraglomerular ROIs, the volume of Col I and Col III in

controls was 0.90 ± 0.23 and 1.16 ± 0.30%, respectively. Lactacystin

increased the proportion of both Col I and Col III by 101% and

103% (p < 0.05 for both measures), respectively. In the lactacystin

group, captopril lowered the proportion of both Col I and Col III

by 93% (p < 0.05 for both measures). Similarly, melatonin reduced

the proportion of both Col I and Col III by 76% and 79% (p <
0.05 for both measures), respectively. The sum of Col I and Col III

volume in intraglomerular ROIs was 2.06 ± 0.53% in controls, and

lactacystin increased this value by 102% (p < 0.05). In the

lactacystin group, both captopril and melatonin decreased the

sum of Col I and Col III volume by 93% and 78% (p < 0.05 for both

measures), respectively. The ratio of Col I to Col III (Col I/Col III)

was 0.78 ± 0.09 in controls, and neither lactacystin, captopril, nor

melatonin had any effect on the ratio (Figure 2).

For tubulointerstitial ROIs, the volume of Col I and Col III in

controls were 2.57 ± 0.81 and 3.88 ± 1.34%, respectively. Lactacystin

increased the proportion of Col I by 139% (p < 0.05) and enhanced

the proportion of Col III by 131% (ns). In the lactacystin group,

captopril reduced the proportion of both Col I and Col III by 94%

and 96% (p < 0.05 for both measures), respectively. Similarly,

melatonin decreased the proportion of both Col I and Col III by

83% and 84% (p < 0.05 for bothmeasures), respectively. The sum of

Col I and Col III volume in tubulointerstitial ROIswas 6.45 ± 2.13%

in controls, and lactacystin increased this value by 134% (p < 0.05).

In the lactacystin group, both captopril and melatonin reduced the

sum of Col I and Col III volume by 95% and 84% (p < 0.05 for both

measures), respectively. Col I/Col III was 0.78 ± 0.11 in controls,

and lactacystin, captopril, or melatonin had no effect on the ratio

(Figure 3).

In vascular/perivascular ROIs, Col I and Col III’s volume in

controls was 0.80 ± 0.12 and 0.64 ± 0.13%, respectively. Lactacystin

had no significant effect on the volume of Col I and Col III. In the
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lactacystin group, captopril reduced the proportion of both Col I and

Col III by 76% and 90% (p < 0.05 for both measures), respectively,

whilemelatonin had no effect. The sumofCol I andCol III volume in

vascular/perivascular ROIs was 1.44 ± 0.24% in controls, and

lactacystin did not significantly change this parameter. In the

lactacystin group, captopril decreased the sum of Col I and Col

III volume by 82% (p < 0.05), and melatonin had no effect. Col I/Col

III was 1.45 ± 0.18 in controls, and lactacystin had no significant effect

on the ratio. In the lactacystin group, captopril increased Col I/Col III

ratio by 226% (p < 0.05), and melatonin had no effect (Figure 4).

FIGURE 2
Effect of captopril (Lac + Cap) and melatonin (Lac + Mel) on glomerular fibrosis of lactacystin-treated (Lac) rats. PSR-stained section
at ×100 magnification using polarized light microscopy (A), the volume of collagen I (Col I) (B), collagen III (Col III) (C), the sum of collagen I + III (D),
the Col I/Col III ratio (E) and PSR-stained sections at ×200 magnification using polarized microscopy showing collagen I in red and collagen III in
yellow (F). C, controls; ROI, region of interest depicted as the shaded rectangle. Intraglomerular ROI dimensions: 50 μm × 50 μm. Scale bar:
50 μm. *p < 0.05 vs. C; #p < 0.05 vs. Lac.
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Discussion

Six weeks of lactacystin administration raised the average SBP. In

kidneys, lactacystin reduced glomerular density, increased the

glomerular tuft area, and enhanced the hydroxyproline

concentration. Lactacystin likewise elevated the intraglomerular

proportion and the sum of Col I and Col III, the tubulointerstitial

proportion of Col I and the sum of Col I and Col III without an effect

on vascular/perivascular collagen. Six weeks of captopril treatment

reduced SBP, while melatonin had no effect. Both melatonin and

FIGURE 3
Effect of captopril (Lac + Cap) and melatonin (Lac + Mel) on tubulointerstitial fibrosis of lactacystin-treated (Lac) rats. PSR-stained section
at ×100 magnification using polarized light microscopy (A), the volume of collagen I (Col I) (B), collagen III (Col III) (C), the sum of collagen I + III (D),
the Col I/Col III ratio (E) and PSR-stained sections at ×100 magnification using polarized microscopy showing collagen I in red and collagen III in
yellow (F). C, controls; ROI, region of interest depicted as the shaded rectangle. Tubulointerstitial ROI dimensions: 72 μm × 192 μm. Scale bar:
50 μm. *p < 0.05 vs. C; #p < 0.05 vs. Lac.
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captopril raised glomerular density, reduced the glomerular tuft area,

and decreased hydroxyproline concentration in the kidneys. Both

drugs reduced the proportion and sum of intraglomerular and

tubulointerstitial Col I and Col III.

Since the UPS controls the protein turnover of both regulatory

and structural proteins, it becomes an attractive target for

pharmacological interventions. Lactacystin represents the classical,

first discovered proteasome inhibitor, reported in 1991 (Ōmura and

FIGURE 4
Effect of captopril (Lac + Cap) and melatonin (Lac + Mel) on vascular/perivascular fibrosis of lactacystin-treated (Lac) rats. PSR-stained section
at ×100 magnification using polarized light microscopy (A), the volume of collagen I (Col I) (B), collagen III (Col III) (C), the sum of collagen I + III (D),
the Col I/Col III ratio (E) and PSR-stained sections at ×100 magnification using polarized microscopy showing collagen I in red and collagen III in
yellow (F). C, controls; ROI, region of interest depicted as the shaded rectangle. Vascular/perivascular ROI dimensions: from 50 × 100 μm to
200 × 300 μm. Scale bar: 50 μm. *p < 0.05 vs. C; #p < 0.05 vs. Lac.
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Crump, 2019). Among other effects, lactacystin is considered to be

an inhibitor of nuclear factor kappa B (NF-κB) transcription factor.

Since NF-κB is assumed to be a checkpoint for hypertrophic growth

mediated by humoral factors, inhibitors of NF-κB, such as

lactacystin, are considered a possible way of protection. The net

effect of lactacystin is challenging to estimate for two reasons: first,

NF-κB is not only an essential factor for proliferation (Bellas et al.,

1995); it may also interfere with nitric oxide synthesis, having the

opposite effect (Vrankova et al., 2010; Simko et al., 2017). Moreover,

lactacystin not only specifically blocks the degradation of the NF-κB
inhibitor IκBα but can also modify other proteins involved in

signaling processes (Vrankova et al., 2010).

In line with this, surprisingly, lactacystin did not reduce but

increased blood pressure and fibrotic rebuilding in the left

ventricle (Simko et al., 2017). Thus, lactacystin

administration-induced BP elevation was recently

characterized as a novel model of experimental hypertension

(Vrankova et al., 2010; Simko et al., 2017; Sharma et al., 2020).

Proteasome inhibition may cause hypertension either because of

an increased endogenous protein inhibitor of neuronal nitric

oxide synthase, leading to decreased NO bioavailability in the

paraventricular nucleus (Sharma et al., 2020), or from tyrosine

hydroxylase upregulation and activation in the hypothalamus

and brainstem (Congo Carbajosa et al., 2015), both resulting in

increased sympathetic outflow. Bearing in mind the remodeling

of the heart (Simko et al., 2017) and aorta (Vrankova et al., 2010)

in this model, it seems to be of importance to disclose whether

lactacystin could act in a similar pro-proliferative way in

hypertensive kidneys.

In this experiment, chronic lactacystin treatment was

associated with the loss of glomeruli, indicated by decreased

glomerular density and simultaneous glomerular hypertrophy,

reflected in increased glomerular tuft area. Some authors

consider the reduction of nephron density to be a risk factor

for hypertension and CKD progression (Kanzaki et al., 2020).

Furthermore, lactacystin treatment was associated with enhanced

hydroxyproline concentration and site-specific fibrotic

rebuilding of renal tissue. Published data suggest that chronic

hypertension leads to the accumulation and dysregulation of

extracellular matrix in the kidneys, resulting in renal fibrosis

(Schlondorff, 2008). The fibrotic changes in the kidneys are

common 1) in the glomerulus—glomerulosclerosis; 2) in the

tubulointerstitium—interstitial fibrosis; and 3) in the

vessels—arteriosclerosis and perivascular fibrosis (Bülow and

Boor, 2019). The most abundant collagens expressed in the

kidneys are types I and III. Col I forms long, thick, and stiff

fibrils, decreasing tissue compliance (Sopakayang et al., 2012). In

the early stages of renal fibrosis, Col I deposits in the glomerulus,

tubulointerstitial space, and arterial wall (Alexakis et al., 2006).

Col III is mainly found in softer tissues and is more distensible

than Col I (Silver et al., 2001). In renal fibrosis, the expression of

Col III increases in both interstitium and glomeruli (Alexakis

et al., 2006). In the present study, an excessive deposition of Col I

and Col III was observed in the glomerulus and tubulointerstitial

space in lactacystin-treated hypertensive rats.

ACE inhibitor captopril reduces fibrosis associated with target

organ damage. Indeed, captopril decreased the concentration of

soluble collagen in the LV of rats with combined continuous light

and L-NAME-induced hypertension (Simko et al., 2010), attenuated

LV collagen deposition in SHR (Zhao et al., 2015), and reduced LV

fibrosis in mice with transverse aortic constriction (Zhang et al.,

2019) and Sprague-Dawley rats with L-NAME-induced

hypertension (Sonoda et al., 2017). Similarly, in kidneys captopril

reduced interstitial renal fibrosis in neonatal dogs with partial

urethral obstruction (PUO) (Shirazi et al., 2007), ameliorated

fibrosis in rats with PUO (Shirazi et al., 2014), and

downregulated interstitial fibrosis in rats with unilateral ureteral

obstruction (Hosseinian et al., 2019). In line with these data, our

results show reduced intraglomerular, tubulointerstitial, and

perivascular collagen accumulation and renal hydroxyproline

concentration after 6 weeks of captopril administration in

lactacystin-treated rats. In this experiment, captopril reduced the

proportion and sum of intraglomerular and tubulointerstitial Col I

and Col III, lowered the sum of vascular/perivascular Col I and Col

III and increased the vascular/perivascular ratio of Col I to Col III,

while reducing the kidney hydroxyproline concentration.

Melatonin exerts a vast number of pleiotropic protective

effects on various tissues, including fibrosis amelioration. The

antifibrotic effects of melatonin have been observed in the LV of

lactacystin-treated rats (Simko et al., 2017), of SHRs (Simko et al.,

2009), and in the LV and aorta of 24-h continuous light-exposed

rats (Repová-Bednárová et al., 2013; Simko et al., 2014). In the

kidneys, melatonin reduced renal fibrosis in mice with unilateral

ureteral obstruction (Li et al., 2020), adenine-induced CKD mice

(Yoon et al., 2020), diabetic mice (Li et al., 2019; Fan et al., 2020),

prenatally diclofenac sodium injected rats (Khoshvakhti et al.,

2015), and in human renal proximal tubule epithelial cells on a

high glucose diet (Han et al., 2020). Accordingly, in this study,

6 weeks of melatonin treatment prevented intraglomerular and

tubulointerstitial fibrosis development, alongside reduced renal

hydroxyproline concentration in rats administered lactacystin.

Although melatonin failed to reduce SBP in this experiment, its

antifibrotic effects were likely a result of melatonin’s direct, local

actions, such as obvious antioxidant and radical scavenging

actions (Simko et al., 2009; Reiter et al., 2018), modulation of

the sympathetic and renin-angiotensin system (Simko and

Paulis, 2013), and increasing NO bioavailability and

antiproliferative action (Paulis and Simko, 2007; Simko and

Paulis, 2007, 2013; Simko and Pechanova, 2009; Domínguez-

Rodríguez et al., 2021).

The lactacystin administration induced fibrotic rebuilding of

the kidneys. Both captopril and melatonin reduced the proportion

and sum of intraglomerular and tubulointerstitial Col I and Col III

and hydroxyproline concentration in the kidneys. Although

captopril more prominently reduced Col I and Col III

accumulation in the vascular/perivascular area compared to
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melatonin, the Col I/Col III ratio rose. Considering the stiffness of

Col I, the findings suggest that captopril might cause renal

capillaries to become more rigid, altering renal perfusion. On

the contrary, melatonin did not significantly change the renal

vascular/perivascular fibrosis while maintaining a normal Col I/

Col III ratio. Since it concurrently reduced glomerular fibrosis,

melatonin may play a role in maintaining adequate glomerular

perfusion and filtration. Thus, melatonin may be comparable or

superior to ACE inhibition because of its distinct effect on renal

collagen composition, potentially contributing to improved renal

perfusion and filtration rate.

Conclusion

In a model of lactacystin-induced hypertension and organ

damage, both melatonin and captopril raised glomerular density,

reduced the glomerular tuft area, and lowered the kidney

hydroxyproline concentration. Both drugs reduced the

proportion and sum of intraglomerular and tubulointerstitial

Col I and Col III. As melatonin failed to reduce SBP, its

antifibrotic effects were supposedly delivered by melatonin’s

direct, local pleiotropic effects.

Considering the fibrotic remodeling of the left ventricle

observed in previous works and the site-specific fibrotic

rebuilding of the kidneys observed in this study, it seems

reasonable to suggest that chronic treatment with lactacystin

may be a perspective model of cardiorenal damage. Furthermore,

we showed that melatonin, similar to captopril, is a promising

means of protection against hypertensive kidney damage.

Limitations

It would be of interest to correlate the renal histopathologic

findings with immunohistochemical analysis of growth factors,

angiogenic factors, and markers of collagen turnover in the

kidneys. Indeed, according to the literature, there is a correlation

between the histopathological evidence of renal fibrosis and

profibrotic renal tissue markers, such as transforming growth

factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and

vascular endothelial growth factor A (VEGF-A) (Lopes et al., 2019).

Moreover, the inhibition of matrix metalloproteinase (MMP)-9

(Wang et al., 2019) and decreased expression of MMP-1

(Nazneen et al., 2002) resulted in decreased histological evidence

of renal fibrosis. However, these analyses were beyond the scope and

possibilities of the present histopathological study.
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