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Abstract

Background and objectives—The description of production kinematics of dysphonic voices 

plays an important role in the clinical care of voice disorders. However, high-speed 

videolaryngoscopy is not routinely used in clinical practice, partly because there is a lack of 

diagnostic markers that may be obtained from high-speed videos automatically. Aim of the study 

is to propose and test a procedure that automatically detects extra pulses, which may occur in 

voiced source signals of pathological voices in addition to cyclic pulses.

Material and methods—Glottal area waveforms (GAW) are synthesized and used to test a 

detector for extra pulses. Regarding synthesis, for each GAW a cyclic pulse train is mixed with an 

extra pulse train, and additive noise. The cyclic pulse trains are varied across GAWs in terms of 

fundamental frequency, pulse shape, and modulation noise, i.e., jitter and shimmer. The extra pulse 

trains are varied across GAWs in terms of the height of the extra pulses, and their rates of 

occurrence. The energy level of the additive noise is also varied. Regarding detection, first, the 

fundamental frequency is estimated jointly with the cyclic pulse train waveform, second, the 

modulation noise is estimated, and finally the extra pulse train waveform is estimated. Two 

versions of the detector are compared, i.e., one that parameterizes the shapes of the cyclic pulses, 

and one that uses unparameterized pulse shape estimates. Two corpora are used for testing, i.e., 

one with 100 GAWs containing random extra pulses, and one with 25 GAWs containing extra 

pulses in the closed phases of each glottal phase representing subharmonic voices.

Results and discussion—With pulse shape parameterization (PSP) a maximum mean 

accuracy of 88.3% is achieved when detecting random extra pulses. Without PSP, the maximum 

mean accuracy reduces to 82.9%. Detection performance decreases if the energy level of additive 

noise is higher than −25 dB with respect to the energy of the cyclic pulse train, and if the 
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irregularity strength exceeds 0.1. For bicyclic, i.e., subharmonic voices, the approach fails without 

PSP, whereas with PSP, a mean sensitivity of 87.4% is achieved for subharmonic voices.

Conclusion—A synthesizer for GAWs containing extra pulses, and a detector for extra pulses 

are proposed. With PSP, favorable detector performance is observed for not too high levels of 

additive noise and irregularity strengths. In signals with high noise levels, the detector without PSP 

outperforms the other one. Detection of extra pulses fails if irregularity strength is large. For 

subharmonic voices PSP must be used.

Keywords

High-speed videolaryngoscopy; Glottal area waveforms; Extra pulses; Dysphonia; Modulation 
noise; Detection

1 Introduction

The description of voice production kinematics plays an important role in the clinical care of 

dysphonic voices, because it aids the indication, selection, evaluation, and optimization of 

clinical treatment techniques. In clinical routine, voice production kinematics are primarily 

assessed by means of stroboscopic imaging of the vocal fold vibration [1,2]. However, due 

to the limitation of the stroboscopic method, many abnormal phenomena in vocal fold 

vibration may be disguised. For example, one needs to assume in stroboscopy that inter-

cyclic variation of phonation pulses is small, because the behaviour of stroboscopy with 

large inter-cyclic variation depends on many unexplored factors and is thus hardly 

predictable. In other words, a sequence of phonation pulses with similar shapes is required 

to produce a smooth stroboscopic video. This limitation relates to the well-established 

Nyquist-Shannon sampling theorem that requires a sampling frequency higher than twice the 

highest frequency of the signal [3]. Currently, stroboscopy is often used beyond this 

limitation, although high-speed videolaryngoscopy and kymographic imaging are capable of 

imaging subsequent pulses with different shapes.

The pathophysiological process of extra pulsing is explained as follows. Extra pulsing may 

be caused by (slight) desynchronization of the anterior and posterior part of the vocal folds. 

This is a vibration mode that can be understood as an intermediate stage between modal 

phonation and biphonation / diplophonia. In extrapulsing, one cyclic oscillator is dominant 

in terms of amplitude, while the other one is kind of “shooting in between” pulses, without 

being “strong enough” (yet) to generate a distinct second vibration frequency. In the extreme 

case of extrapulsing that is known as double pulsing / alternating pulses, an extra pulse 

occurs in each and every quasi-closed phase of the cyclic pulses.

The occurrence of extra pulses in dysphonic voices is interesting from several viewpoints. 

First, the prevalence of such extra pulses in dysphonic voices is unknown, most likely 

because (1) stroboscopic imaging does not suffice to find extra pulses, and (2) it is labour 

intensive to manually search out extra pulses in high-speed videos or kymograms if lots of 

data needs to be analysed. Thus, extra pulses may often be overlooked in clinical practice.
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With regard to the representation of extra pulses in kymographic imaging, it appears to be 

necessary to distinguish between videokymography (VKG), and digital kymography (DKG) 

[4]. In VKG, kymographic images are created in real time during endoscopic examination. 

Kymographic images of a chosen length are shown and updated with a rate reciprocal to its 

length. Usually, a length of 40 ms is chosen which results in an update rate of 25 Hz. If 

random extra pulses occur, these are visible for 40 ms only, and are thus hardly detectable 

visually. If extra pulses occur in a structured way, e.g., as approximately equally shaped 

extra pulses in each and every cycle, they can be seen easily. In DKG, kymographic images 

are created after recording. Given a vocal frequency of, e.g., 100 or 200 Hz, a 2 s phonatory 

segment includes 200 or 400 cycles. One needs to visually search out for extra pulses that 

may occur randomly in each of these cycles. Such a search is a tedious endeavour.

Second, extra pulses disturb substantially the harmonic spectrum of the voice sound, thus a 

significant auditory impact is expected from adding extra pulses to the cyclic pulse train of 

normal phonation. However, not much is known regarding the auditory attributes that a 

listener may assign to a voice sample containing extra pulses. Thus, extra pulses may often 

be overheard in clinical practice. In a past case study, the concept of “tonal raspiness” was 

proposed, which accounts for the pitch / tonality that is provoked by the cyclic pulse train, 

and the raspy component that is provoked by the extra pulse train [5]. This perspective 

agrees with Bregman’s well-established theory of auditory stream segregation [6]. We 

hypothesize that auditory raspiness is provoked by frequently occurring extra pulses, while 

unfrequently occurring extra pulses provoke auditory crackling [7]. Once a synthesizer for 

voices with extra pulses is available, the auditory impact of extra pulses on the voice sound 

can be investigated.

Third, the occurrence of extra pulses is likely to be triggered by mechanic and aerodynamic 

properties of the vocal folds and the phonatory process. These properties may be subject to 

clinical treatment (logopedic or surgical), thus it appears to be plausible that treatment may 

be more target oriented in cases for which extra pulses were identified. Finally, from a signal 

processing perspective, the proposals that we make may also be applicable in the future to 

other types of signals in which a cyclic pulse train is mixed with a random extra pulse train.

To the best of our knowledge, we present the first attempt towards automatic detection of 

random extra glottal pulses that may occur during quasi-closed phases of the normally 

occurring cyclic pulse train. A limitation of laryngeal high-speed videoendoscopy and 

kymography is that a lot of manual post-processing is required before a diagnostic marker 

can be displayed to a medical doctor, which impedes clinical acceptability of the approach. 

Thus, we explore here an approach towards the automatic appraisal of glottal area 

waveforms (GAW), which is intended to decrease the amount of manual labour required to 

obtain an underexplored diagnostic marker, i.e., a marker indicating the presence of extra 

pulses. We propose and test a method for the detection of extra pulses that occur during 

quasi-closed phases of random glottal cycles. The aim of this study is to further test and 

improve the detector that was proposed in the past [5]. The remainder of this article is 

structured as followed. In Section 2 we present related work. In Sections 3.1 and 3.2, the 

synthesis of the GAWs is explained. In Section 3.3, the detector architecture is explained. A 

simple version of the detector is compared to an advanced version that uses PSP for the 
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estimation of the cyclic pulse train component. In Section 4, results regarding the detector 

performance are presented for different levels of additive noise and irregularity strengths, 

i.e., the detector is tested for robustness. Favorable performance is observed with PSP for 

low levels of additive noise and small irregularity. In signals with high noise levels, the 

detector without PSP outperforms the other one. For bicyclic signals / bigeminism / 

subharmonics PSP must be used. Detection of extra pulses fails for strongly irregular 

signals. In Section 5, conclusions are drawn and advices for the practical use of the detector 

are given.

2 Related work

In [8] several criteria to visually judge kymographic images of vocal fold vibration are 

presented. Examples for “cycle aberrations” are depicted in Fig. 7 of [8]. So-called “ripples” 

and “doubled medial peaks” are depicted in kymograms B and D. These descriptive 

attributes correspond to extra pulses that occur during the open phase of the phonatory cycle. 

In the depicted examples, ripples and double medial peaks occur regularly in each phonatory 

cycle. Also, a concept “large cycle-to-cycle variability” was used. Both “cycle aberrations” 

and “large cycle-to-cycle variability” are superordinate concepts to the extra pulses that we 

are investigating.

Fraj et al. [9] developed a synthesizer for pathological voices that uses a nonlinear wave-

shaping model of the glottal area. The Klatt concatenated-curve model is used as a glottal 

area template [10], and modulation noise is simulated via polynomial distortion. The 

instantaneous frequency and a harmonic driving function are control parameters of the 

synthesizer. These parameters enable control of the pitch, amplitude, harmonic richness, 

open quotient, and irregularity by means of modulation noise. Regarding cycle length 

modulation noise, jitter and tremor are distinguished. Jitter is simulated as a two-point 

stochastic process added to the instantaneous phase on a sample-by-sample basis. Tremor is 

simulated as a band-pass filtered white Gaussian noise further added to the instantaneous 

phase. Amplitude modulation noise, i.e., shimmer, is only contained in the speech signal and 

not in the GAW. It results from vocal tract filtering of the source signal that contains jitter 

and tremor. It was shown that this synthesizer is capable of producing naturally sounding 

samples of dysphonic voices. As a complement to the work by Fraj et al., we propose to 

control and estimate cycle length and amplitude modulation noise via the modulation of 

individual pulses’ timings and heights at cycle-synchronous supporting points. This enables 

control and estimation of the modulation noise on a cycle-by-cycle basis instead on a 

sample-by-sample basis. The advantages of our approach compared to Fraj et al. are the 

following. First, our jitter is not a two-point process. Instead, the pulses of the cyclic pulse 

train may be anticipated or delayed with our approach by an arbitrary amount, and pulse 

shapes are time-warped accordingly to retain a smooth instantaneous phase. Second, our 

approach enables the estimation of modulation noise time series from observed signals. 

Finally, the bandwidth of our jitter does not depend on the sampling frequency.

Chen et al. [11] proposed a voice source model that models pulses of GAWs observed in 

three male and three female healthy subjects with high-speed videolaryngoscopy. We use 

this pulse shape model in our work for the synthesis of GAWs, and also for PSP in the 
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estimation of the cyclic pulse train. The model has five parameters, i.e., the cycle length, the 

open quotient, the asymmetry coefficient, accounting for differences of the opening and 

closing phases’ durations, and two additional shape parameters for the opening and closing 

phases, i.e., one steepness parameter for each of the phases. The steepness parameters can be 

understood as the speed of the opening and closing phases.

Ikuma et al. [12,13], proposed a model for GAWs of pathological vocal fold vibration which 

is similar to ours. They model GAWs as a sum of a harmonic signal, a deterministic 

nonharmonic signal, and a random nonharmonic signal. Their harmonic signal is from a 

Fourier synthesizer, their deterministic nonharmonic signal is a sum of sinusoids the 

frequencies of which are not harmonically related, and their random nonharmonic signal is 

zero-mean white Gaussian noise. It would be inefficient to model extra pulses with Ikuma et 

al.’s model because the extra pulses are neither synthesizable with a reasonably small 

number of nonharmonic sinuses, nor are they zero-mean white Gaussian.

Randomly triggered extra pulses during quasi-closed phases of cyclic glottal pulses were 

observed in the past in a clinical case study of a dysphonic voice that sounded tonal and 

raspy [5]. A prototype for the detector was proposed, which identified correctly six observed 

extra pulses, and only one false alarm occurred. In this work, we further improve and test the 

detector that was proposed in the past.

3 Materials and methods

This section explains the synthesis of the GAWs, the detection of the extra pulses, as well as 

the performance measures and statistical analysis.

3.1 Synthesis of glottal area waveforms with random extra pulses

One-hundred GAWs are synthesized at a sampling frequency fs = 48 kHz with a length of 

0.3 s. The synthesis of the GAWs involves the synthesis of the cyclic pulse train d1(n), and 

the synthesis of the extra pulse train d2(n), where n is the discrete time index. The 

synthesized GAW d′(n) = d1(n) + d2(n) + η(n), where η(n) is zero-mean white Gaussian 

noise. This signal model is adapted from [5]. In particular, control parameters are made 

explicit here.

Fig. 1 shows the overview block diagram of the synthesizer. The fundamental frequency f0, 

the irregularity strength Irr, and the pulse shape parameters Ψ are input to the cyclic pulse 

train generator that puts out the cyclic pulse train d1(n), the instantaneous phase Θ(n), and 

the pulse shape r(l), where l is the cycle-relative discrete time index. The instantaneous 

phase Θ(n), the pulse shape r(l), the extra pulse rate ρ, and the extra pulse height h are input 

to the extra pulse train generator. The root mean square (RMS) energy level of the zero-

mean white Gaussian noise η(n) is H = 20 ⋅ log10 η(n)2/ d1(n)2 . It is relative to the RMS 

energylevel of the cyclic pulse train d1(n), and given in dB.

Fig. 2 shows the block diagram of the cyclic pulse train generator. The cyclic pulse train 

d1(n) is obtained as follows. First, the instantaneous phase Θ(n) is obtained. Therefore, the 

pulse times np(μ) = μ · No + j(μ), where μ ∈ ℤ is the pulse index, the cycle length in samples 
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No = fs/fo, and j(μ) is the time shift of the μth pulse. The cycle length modulation noise, i.e., 

jitter, is drawn from a Gaussian distribution, i.e., j(μ) 𝒩 (0, Irr ⋅ N0), where Irr is the 

irregularity strength, and 𝒩 μ, σ  denotes a Gaussian distribution with mean μ and standard 

deviation σ. The instantaneous phase at pulse locations Θ(n = np(μ)) = π · Σμ ∈ ℤ[2 · μ + 1], 

and is obtained between pulse locations via spline interpolation. Second, the amplitude 

modulation function A(n) is obtained at pulse locations A(n = np(μ)) = s(μ), where s(μ) is the 

amplitude modulation noise, i.e., shimmer, which is drawn from a Gaussian distribution 

s(μ) 𝒩 (1, Irr) . Between pulse locations, A(n) is obtained by shape preserving cubic 

interpolation. Third, a pulse shape r(l) is obtained with a Chen pulse generator [11]. Fig. 3 

shows an example of a pulse shape. The real part and imaginary part Fourier coefficients ap 

and bp are obtained by discrete Fourier transformation (DFT) of the pulse shape (l), where p 
is the partial index. Fourth, the cyclic pulse train d1(n) is obtained via Fourier synthesis 

taking ap, bp, and Θ(n) as inputs, i.e., 

d′1(n) = a0 + ∑p = 1
30 [ap ⋅ cos p ⋅ Θ(n) + bp ⋅ sin p ⋅ Θ(n) ], and amplitude modulation, i.e., 

d1(n) = A(n) · d′1(n). The number of partials is 30.

The extra pulse train d2(n) is obtained as follows. The trigger ξ(μ) of the extra pulses is 

drawn from a Bernoulli distribution, i.e., ξ(μ) ∈ {0, 1}, with the extra pulse rate ρ = p(ξ = 

1). The extra pulse train d2(n) = h · ∑μ ξ(μ) · rd(ld), where rd(ld) is the delayed version of r(l), 
with ld = l − np(μ) · fs − N0/2, and h is the extra pulse height. To enable delay times that are 

not necessarily integer multiples of the sampling interval 1/fs, fractional delays are made 

available via piecewise cubic interpolation of r(l).

The time-invariant parameters fo, Irr, H, ρ, h, and Ψ = {OQ, α, Sop, Scp} are random 

numbers drawn for each GAW from distributions defined in Table 1. Truncated normal 

distributions 𝒩 μ, σ2, x, y  and uniform distributions 𝒰 x, y  are used, where μ and σ are the 

means and standard deviations, and x and y are the lower and upper limits of the probability 

density functions (PDF). Further, the parameters Irr and H are balanced such that 25 GAWs 

are with parameters H ≤ −25 and Irr ≤ 0.1 (class I), 25 are with parameters H > −25 and Irr ≤ 

0.1 (class II), 25 are with parameters H ≤ −25 and Irr > 0.1 (class III), and 25 are with 

parameters H > −25 and Irr > 0.1 (class IV). Fig. 4 shows example synthesized GAWs for 

each of the four classes.

3.2 Synthesis of bicyclic glottal area waveforms

In an additional experiment, twenty-five bicyclic GAWs are synthesized. The synthesizer 

described in the previous section is used with a fixed extra pulse rate ρ = 1. Setting the extra 

pulse rate to one results in the triggering of one extra pulse during the closed phase of each 

glottal cycle, and thus alternating patterns in the time domain (bigeminism). This signal type 

relates to a frequently occurring type of voice, i.e., subharmonic voice, which is 

characterized by alternating magnitudes of partials in the frequency domain. Only signals of 

class I are synthesized, i.e., the irregularity strength Irr = 𝒰 0, 0.1 , and the energy level of 

the additive noise H = 𝒰 − 50, − 25 .

Aichinger et al. Page 6

Biomed Signal Process Control. Author manuscript; available in PMC 2019 April 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



3.3 Detection of extra pulses

A detector for extra pulses is proposed in the following. It is based on parameter estimation 

and resynthesis of the GAWs under test. It is a composition of joint estimation of the 

fundamental frequency and the cyclic pulse train, estimation of the modulation noise, and 

modelling of the extra pulse train. Parts of the detector were proposed in the past [5]. The 

method is here improved by (1) the use of a parametric pulse shape model, i.e., the Chen 

pulse model [11], (2) the use of a new candidate selection procedure in the fundamental 

frequency extraction, and (3) a peak-picking free extra pulse train estimator. The method is 

described as follows.

3.3.1 Joint estimation of the fundamental frequency and the cyclic pulse 
train waveform—First, the fundamental frequency fo and the cyclic pulse train d1(n) are 

jointly estimated as shown in Fig. 5. The method is adapted from the one described in [14]. 

A 32 ms Hann window with a 16 ms overlap is used for blocking signals. Candidate fo -

tracks f o
γ are obtained by picking peaks in the spectrum of the GAW d′(n), and applying the 

Viterbi algorithm six times, as in the “fast” setup described in [14]. The candidate index γ = 

1, 2, …, Γ, and Γ is the number of candidates. No high-pass filtering is used, as was for the 

analysis of audio signals in [14]. Candidate cyclic unit pulse trains u1
γ(n) are created for each 

f o
γ . Candidate cyclic pulse shapes rγ(l) are obtained by cross-correlating candidate u1

γ(n) with 

the observed GAW d′(n). The candidate fo -tracks f o
γ and the pulse shapes’ discrete Fourier 

coefficients aγ and bγ are used in a Fourier synthesizer, which determines candidate cyclic 

pulse trains d1
γ(n) . For further details the interested reader is referred to [14].

We propose “ultra fast” candidate selection that replaces the candidate selection approach 

described in [14]. The estimate of the cyclic pulse train d1(n) is given by 

d1(n) = ∑γ = 1
Γ sγ ⋅ d1

γ(n), where the binary candidate selection vector S = sγ ∈ {0, 1}, and Γ 

is the number of candidates. The optimal candidate selection vector Sopt is chosen so as to 

minimize the RMS error E1 = 20 ⋅ log10 e1(n)2/ d′(n)2  of the error waveform 

e1(n) = d′(n) − d1(n), i.e., Sopt = argmin[E1(S)].

The candidates are sorted such that d1
γ = 1(n) is the one with the largest signal energy and 

d1
γ = Γ(n) is the one with the smallest. The candidate selection vector S is initialized as a Γ -

dimensional zero vector. For all candidate indices γ individually, the state of the γth element 

of S is switched. If candidates overlap temporally or if E1 does not decrease, the switch is 

reverted. The loop is repeated until convergence, i.e., until no improvement of E1 is observed 

for any switch of sγ. The fundamental frequency estimate f o(t) = f o
γ(t)∀γ |sopt

γ = 1 , where t 

is the block index, and sopt
γ  are the elements of Sopt.

3.3.2 Modulation noise estimation—Second, the modulation noise is estimated as 

shown in Fig. 6. The method is adapted from [5]. In particular, we add here the option of 
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PSP. A quasi-unit pulse train u1(n) is cross-correlated with GAW d′(n) to obtain the pulse 

shape estimate r (l) . Via a pulse shape parameterization (PSP) switch, either r (l) or a 

parameterized version r (l) is used. The parameterized pulse shape r (l) is obtained from a 

Chen pulse generator, the control parameters Ψ  of which are obtained via minimization of 

the parameterization error er(l) = r ′(l) − r (l), where r ′(l) is a normalized version of r (l) . The 

modulated cyclic pulse train d1(n) is obtained with a Fourier synthesizer, taking the pulse 

shape’s Fourier coefficients ap and b p, as well as the instantaneous phase estimate Θ(n) as 

inputs. Its output is multiplied by the amplitude modulation function estimate A(n) . The 

modulation noise vector estimates j (μ) and s (μ) perturb the quasi-unit pulse train u1(n), and 

are obtained by minimizing the error e1(n) = d ′(n) − d1(n) .

In more detail, the fundamental frequency estimate f o drives a quasi-unit pulse oscillator 

providing u1(n) = ∑μs (μ) ⋅ δ n − μ ⋅ N0 − j μ − Δϕ , where s μ  is the shimmer estimate, j μ

is the jitter estimate, N0 = f s/ f 0 + 1 /2 ⋅ 2 is the cycle length estimate in samples rounded 

to the nearest even integer, and Δϕ = argmax r (l)  is a phase shift that aligns pulses of u1 n

with the maxima of pulses of cyclic pulse train d1(n), and this centres r l  such that argmax 
r(l) = 0 . u1(n) is cross-correlated with GAW d′(n) and normalized to obtain the pulse shape 

estimate r (l) = 1
∑nu1(n)

⋅ ∑nu1(n) ⋅ d′(n − l), where l goes from −N0/2 + 1 to N0/2 − 1 . Thus, 

û1(n) is obtained recursively. The pulse shape estimate r (l) is parameterized with a Chen 

pulse model with parameters Ψ = OQ̂, α, Sop, Scp  as follows. The parameters are initialized 

as Ψ0 = 0.5, 0.5, 0.5, 0.5 ⋅ r ′(l) is obtained by subtracting r (l) from a normalized r ′(l)

Subequently, r ′(l) is further normalized such that min r ′(l) = 0 and max r ′(l) = 1. r (l) is 

shifted in time such that its maximum coincides with the maximum of r ′(l) . The mean 

square model error is obtained as Er = er
2(l) . The parameters OQ̂, α, Sop, and Scp are 

iteratively optimized one by one by golden section search and parabolic interpolation to 

minimize Er [15,16]. Each parameter is constraint to the interval [0.1, 0.9]. Each step of 

iteration includes optimization of each parameter in the order OQ̂, α, Sop, and Scp . Estimation 

is stopped as soon as the improvement of Er decreases in the last iteration step below 10−5. 

Optionally, PSP is switched on and off. Accordingly, either the cross-correlation vector r (l)
or its parameterized version r (l) is used.

The instantaneous phase estimate Θ (n) and the amplitude modulation function estimate A(n)
are obtained from the pulse train estimate u1(n) . In particular, Θ(n) = π ⋅ ∑μ ∈ ℤ [2 · μ + 1] at 

pulse locations of u1(n), i.e., at n = μ ⋅ N0 + j (μ) + Δϕ, and spline interpolated in between, and 

A(n) = s (μ) at pulse locations of u1(n), and obtained by shape preserving cubic interpolation 

in between.
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The cyclic pulse train estimate d1(n) is obtained via Fourier synthesis taking the pulse 

shape’s Fourier coefficients ap, b p, and Θ n  as inputs, and subsequent amplitude 

modulation, i.e., 

d1′ n = a0 + ∑p = 1
10 ap ⋅ cos p ⋅ Θ n + b p ⋅ sin p ⋅ Θ n , and d1 n = A n ⋅ d1′ n . The 

number of partials is 10.

The jitter and shimmer vector estimates j μ  and s μ  are obtained via minimizing the RMS 

error E1 = 20 ⋅ log10 e1
2(n)/ d1

2(n) , i.e., j μ , s μ = argmin j μ , s μ E1 j μ , s μ . The 

interior-point algorithm is used for each pulse individually [17,18]. After the last pulse, the 

procedure iteratively refines the estimate until convergence, i.e., until the model error 

improvement cumulated from the first to the last pulse decreases below 0.01 dB.

3.3.3 Extra pulse train waveform estimation—Finally, the extra pulse train estimate 

d2(n) is obtained as shown in Fig. 7. An M -dimensional binary candidate selection vector 

Ξ = ξ (μ) ∈ 0, 1 , where M is the number of pulses in the cyclic pulse train estimate d1(n) .

The optimal candidate selection vector Ξopt = ξopt(μ) is chosen by minimizing the RMS 

error E2 = 20 ⋅ log10 e2(n)2/ d′(n)2  of the error waveform e2(n) = d′(n) − d (n), i.e., 

Ξopt = argmin[E2(Ξ)], where d (n) = d1(n) + d2(n) . The extra pulse train estimate d2(n) is 

obtained by convoluting an extra pulse unit train estimate u2(n) with the extra pulse shape 

estimate r2(l), i.e., d2(n) = ∑lu2(n) ⋅ r2(n − l), where 

u2(n) = ∑μξopt(μ) ⋅ δ[n − (μ + 0 . 5) ⋅ N0 − j (μ) − Δϕ], and r2(l) is obtained via normalized 

cross-correlation of u2(n) with the error waveform e1(n), i.e., 

r2(l) = 1
∑nu2(n)

⋅ ∑nu2(n) ⋅ e1(n − l), where l goes from −N0/4 + 1 to N0/4 − 1 .

The optimal candidate selection vector Ξopt is obtained as follows. Ξ is first initialized as a 

zero vector. Starting with the first pulse, ξ μ  is switched to 1 if its current state is 0, and vice 

versa.The switch is reverted if the error level E2 does not decreases. After the last pulse is 

processed, the procedure is restarted. This is repeated until no single new switch yields a 

decrease of E2. In a second turn, Ξ is initialized as a vector of ones. Ξopt is the Ξ that 

minimizes E2. As a result, ξ μ  is 1 at cycle indices μ for which extra pulses are detected, 

and 0 elsewhere.

The proposed approach for estimating the extra pulse train d2(n) has the advantage over our 

past peak-picking based approach that no thresholds regarding minimal peak height and 

minimal peak prominence are necessary. Another advantage of estimating the extra pulse 

shape via cross-correlation instead of using the shape of the cyclic pulse train is that the 

height h of the extra pulses is estimated implicitly, because r2(l) is automatically scaled 

accordingly.
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3.4 Performance measures and statistical analysis

For each GAW, the detector’s accuracy, and the sum of sensitivity and specificity are 

determined. The accuracy Acc = (TP + TN)/(TP + TN + FP + FN), where TP is the number 

of true positive cycles, i.e., cycles with extra pulses that are detected correctly, TN is the 

number of true negative cycles, i.e., cycles without extra pulses and without detector alarm, 

FP is the number of false positive cycles, i.e., cycles without extra pulses and with false 

alarm, FN is the number of false negative cycles, i.e., cycles with extra pulses that are not 

detected. The denominator is equal to the number of cycles, i.e., TP + TN + FP + FN = M. 

Acc can be interpreted as the proportion of cycles that are correctly labelled (with/without 

extra pulse). For perfect detection, i.e., if no detection errors occur, Acc = 1. If the detector 

behaves randomly, Acc converges to an unknown number ≤ max (ρ, 1 – ρ). Thus, Acc is 

prone to the extra pulse rate. In particular, Acc may be very high if extra pulses occur very 

rarely or very often, even if the detector behaves randomly. In this case, inacceptable 

sensitivities and specificities may occur that remain unrevealed. This behaviour of the Acc 
limits the interpretation because the parameter ρ varies across the GAWs.

The sum of sensitivity and specificity Se + Sp is obtained as an alternative accuracy measure 

that is not prone to the parameter ρ. The sensitivity Se = TP/(TP + FN), and the specificity 

Sp = TN/(TN + FP). For perfect detection, Se + Sp = 2, while for guessing, Se + Sp 
converges to 1.

For analysis of the detector’s robustness, two multiple linear regression models are fit to Se 
+ Sp with predictors Irr, H, ρ, h in the form Se + Sp = B1 + Irr · B2 + H · B3 + ρ · B4 + h · B5 

[19]. One model is fit for the detector with PSP, and one without. In addition, means and 

standard deviations of Acc and Se + Sp are obtained, and compared for high and low levels 

of additive noise as well as high and low irregularity strengths.

For the experiment involving twenty-five bicyclic GAWs, the mean and the standard 

deviation of only Se are reported, because Sp is not available due to the inexistence of cycles 

without extra pulses.

4 Results and discussion

Table 2 shows the results of the robustness analysis in terms of linear modelling of the 

detector performance Se + Sp. The two detection options, i.e., with and without PSP, are 

compared. Regarding detection without PSP, negative coefficient estimates reflect that 

detector performance is adversely affected by increases of the irregularity strength Irr, the 

noise level H, and the extra pulse rate ρ. This appears to be plausible because irregularity 

and additive noise limits the detection due to decreases of the signal-to-noise ratio, and the 

more frequent extra pulses occur, the larger the cross-talk of d2(n) towards d1(n) is. In 

contrast, increases of the extra pulse height h affect detector performance advantageously, 

which is reflected by a positive sign of the coefficient estimate. This appears to be plausible 

because larger extra pulses are associated with larger signal-to-noise ratios. The same trends 

are observed when PSP is used, except for the ρ parameter (-0.099 versus 0.106). The 
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advantageous effect of ρ on the performance of the detector using PSP may be interpreted as 

a sign that PSP suppresses cross-talk of d2(n) towards d1(n) .

The robustness of the detector using the PSP option is favourable in two parameters, i.e., the 

irregularity strength r, and the extra pulse height h. In particular, effects of Irr and h on the 

performance when using PSP are half the effects that are observed when no PSP is used. The 

effect of h is non-significant when PSP is used, whereas it is significant without PSP. In 

other words, small extra pulses are detected equally well as large extra pulses only when 

PSP is used. However, the detector with PSP is less robust against additive noise than the 

detector without PSP, which is reflected by an increased coefficient estimate respective H 
(−0.0147 versus −0.00433).

Table 3 summarizes for both detector options the performance measures Se + Sp, and Acc. 

Means and standard deviations of the four signal classes are shown, i.e., GAWs with small 

and large energy levels of additive noise (−25 dB cutoff), and GAWs with small and large 

irregularity strengths (0.1 cutoff). The best performance is observed when PSP is used and H 
≤ − 25 dB & Irr ≤ 0.1 (class I, first row of numbers, right side). A mean Se + Sp of 1.722 

and a mean Acc of 0.883 are observed. This result appears to be promising, particularly 

because this signal class includes GAWs that represent voices with normal to moderately 

disturbed quality. The other three classes mainly contain GAWs that may be associated with 

severely disturbed voice quality. When larger energy levels of additive noise are used (class 

II), the detector without PSP outperforms the one with PSP and achieves a Se + Sp of 1.445 

and an Acc of 0.766. At high irregularity strengths and low additive noise levels (class III), 

the detector with SPS achieves Se + Sp of 1.287 and an Acc of 0.726, which may be 

acceptable only marginally. For GAWs with high energy levels of noise and large 

irregularity strengths (last row, class IV), detection appears to be impossible with either of 

the two detecting options.

Mean sensitivities for detecting extra pulses in subharmonic voices, i.e., with extra pulse rate 

set to 1, are 29.7% without PSP, and 87.4% with PSP. This observation is plausible because 

without PSP pulse shapes of the cyclic train may be estimated which are bicyclic, and extra 

pulses are cancelled out when subtracting the estimate of the cyclic pulse train from the 

GAW. This adverse effect is successfully tackled when PSP is used, because this strategy 

ensures that estimated pulse shapes of the cyclic train are single pulsed only.

Assumptions that are needed to be made, limitations of our approach, and differences of the 

currently presented detector to its previous version are discussed as follows. First, obviously, 

the used signal model needs to be valid for the signal under test. It is likely that our detector 

is able to distinguish between phonation with extra pulses and normal voice, but it is not 

clear how the detector would behave if applied to voice samples with other types of 

abnormalities, e.g., diplophonic voice, or chaotic phonation. Further testing (and probably 

training) of the detector will be needed to establish detection that is specific to extra pulses 

even if other abnormalities occur in the signal. Second, it is assumed that the extra pulses are 

unjittered and unshimmered, i.e., they occur at fixed times respective the cyclic pulse train’s 

instantaneous phase, and with fixed heights. These assumptions were relaxed in the past by 

using a peak-picking based approach [5] to estimate times of extra pulses. However, the 
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current approach has fewer degrees of freedom and appears to be more elegant. Also, we 

expect that our approach may handle small amounts of extra pulse jitter and shimmer. If 

large amounts of extra pulse jitter and shimmer occur, it will perhaps become necessary to 

adapt the detection approach. Third, cross-correlation based segregation of the cyclic pulse 

train and the extra pulse train relies on the assumption that these trains are uncorrelated. 

However, we saw in the cyclic pulse train waveform estimate a cross-talk. This cross-talk 

manifests in the cyclic pulse train as extra pulses, the heights of which depend on the heights 

of the actual extra pulses and their rate of occurrence. The higher the extra pulses and the 

higher their rate of occurrence, the larger is the cross-talk. This limitation is tackled 

successfully in the current approach by introducing PSP to the estimation of the cyclic pulse 

train, which supresses extra pulses in the cyclic pulse train estimate.

5 Conclusion

We propose a synthesizer for GAWs that is capable of adding extra pulses to the cyclic pulse 

train, and a detector for extra pulses. The detector is tested on 100 synthesized GAWs with 

random extra pulses, and 25 GAWs with extra pulses in occuring in each quasi-closed phase 

of the cyclic pulse train known as, bicyclicity, bigeminism, subharmonics, double pulsing, or 

alternate pulsing. Using signals containing random extra pulses, tests were conducted with 

different energy levels of additive noise, different strengths of modulation noise, i.e., jitter 

and shimmer, as well as different extra pulse rates and heights. Two variants of the detector 

are tested. One detector parameterizes the estimated pulse shapes of the cyclic pulse train 

using a Chen pulse model, whereas the simpler does not.

Significant steps towards the improvement of our detection approach were made. (i) Our 

past experience has shown that extra pulses disturb the estimation of the cyclic pulse train, 

which we successfully tackle with PSP. In particular, a cross-talk had been observed that 

biased the estimation of the cyclic pulse shape in such a way that it appeared to be double 

pulsed. We hypothesized that it is possible to suppress cross-talk and thus increase detection 

performance by using a single-pulse parametric model for the pulses of the cyclic pulse 

train. Indeed, it is shown experimentally that the detector that uses PSP outperforms the 

simpler approach if the signals are not corrupted with high energy levels of additive noise. 

The PSP for cross-talk suppression appears to be particularly relevant for subharmonic 

voices, because frequent extra pulses result in strong cross-talk without PSP. (ii) Faster 

candidate selection is proposed for fundamental frequency extraction. (iii) A peak-picking 

free extra pulse estimator is proposed.

We conclude from our results of robustness analysis that a user of the detector may be given 

the advice to measure the energy level of the additive noise and irregularity strength before 

using the proposed detector for extra pulses. Normally, the PSP option should be used, 

especially if extra pulses occur frequently, as, e.g., in subharmonic voices. If high energy 

levels of additive noise are observed, the detector should be used without PSP. In cases of 

high irregularity strengths, the user may be advised not to use the detector with either of the 

two options.
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DFT discrete Fourier transform

GAW glottal area waveform

PDF probability density function

PSP pulse shape parameterization

RMS root mean square

SPP spectral peak picking
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Fig. 1. 
Overview block diagram of the GAW synthesizer. The GAW d’(n) is synthesized as a 

summation of a cyclic pulse train d1(n), an extra pulse train d2(n), and additive noise (n). 

The control parameters regarding the cyclic pulse train are the fundamental frequency fo, the 

irregularity strength Irr, and the pulse shape parameters Ψ. The control parameters regarding 

the extra pulse train are the extra pulse rate ρ, and the extra pulse height h. The control 

parameter regarding additive noise is the noise energy level H.
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Fig. 2. 
Block diagram of the cyclic pulse train generator. A pulse times vector np(μ) is obtained 

owing to a fundamental frequency f0, and a cycle length modulation noise vector j(μ), 

controlled by irregularity strength Irr. An amplitude modulation noise vector s(μ) is also 

obtained. The instantaneous phase Θ(n) and the amplitude modulation function A(n) are 

obtained by interpolation. The pulse shape r(l) is a Chen pulse [11], controlled by 

parameters Ψ. The Fourier coefficients ap and bp of (l), and Θ(n) are input to a Fourier 

synthesizer (FS). Its output d′1 (n) is multiplied by A(n) to obtain the cyclic pulse train 

d1(n).
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Fig. 3. 
Example of a pulse shape, generate with the Chen model [11]. The parameters used in this 

example are the fundamental frequency fo = 115 Hz, the open quotient OQ = 0.64, the 

asymmetry parameter α = 0.55, the opening speed Sop = 0.6, and the closing speed Scp = 

0.4. The cycle length in samples is rounded to the nearest even integer, i.e., 

N0
even = ( f s/ f 0 + 1)/2 ⋅ 2, the sampling frequency fs = 48 kHz, the length of the opening 

phase no = α ⋅ OQ ⋅ N0
even, and the length of the closing phase nc = OQ ⋅ N0

even − no . The 

crossings r(l) = Scp and r(l) = Sop temporally halve the opening phase and the closing phase. 

Sop and Scp are shape parameters of the opening and closing. The pulse is centred such that 

argmax(r(l)) = 0.
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Fig. 4. 
Examples of synthesized GAWs. The top subplot shows a GAW with a small level H of 

additive noise, and a small irregularity strength Irr (class I). Here, the extra pulses are clearly 

visible. The second subplot shows a GAW with an increased level H of additive noise, and a 

small irregularity strength Irr (class II). Here, extra pulses are less clearly visible. The third 

subplot shows a GAW with a small level H of additive noise, and a larger irregularity 

strength Irr (class III). The extra pulses are visible. The bottom subplot shows a GAW with a 

large level H of additive noise, and a large irregularity strength Irr (class IV). Extra pulses 

are not identifiable visually.
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Fig. 5. 
Block diagram of the fundamental frequency extractor. Fundamental frequency candidates 

f 0
γ are obtained from the GAW d′(n) by spectral peak picking (SPP) and repetitive execution 

of the Viterbi algorithm (six times). For each fundamental frequency candidate f 0
γ a cyclic 

pulse train candidate d1
γ(n) is obtained by cross-correlating a unit-pulse train u1

γ(n) with the 

GAW ′(n), Fourier transformation of the cross-correlation vector, i.e., the pulse shape rγ(l), 
and Fourier synthesis (FS). Cyclic pulse train candidates d1

γ(n) are added together owing to 

a candidate selection vector S = sγ ∈ {0, 1}. The cyclic pulse train estimate d1(n) is 

subtracted from d′(n) to obtain e1(n), which is minimized with respect to S.
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Fig. 6. 
Block diagram regarding the estimation of the modulation noise. A quasi-unit pulse train 

u1 n  is cross-correlated with GAW d′(n) to obtain the pulse shape estimate r l . Via a pulse 

shape parameterization (PSP) switch, either r l  or a parameterized version r l  is used. The 

parameterized pulse shape r l  is obtained from a Chen pulse generator, the control 

parameters Ψ  of which are obtained via minimization of the parameterization error 

er l = r ′ l − r l . The modulated cyclic pulse train d1 n  is obtained with a Fourier 

synthesizer, taking the pulse shape’s Fourier coefficients ap and b p, as well as the 

instantaneous phase estimate Θ n  as inputs. Its output is multiplied by the amplitude 

modulation function estimate A n . The modulation noise vector estimates j μ  and s μ
perturb the quasi-unit pulse train u1(n), and are obtained by minimizing the error 

e1 n = d′ n − d1 n .
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Fig. 7. 
Block diagram regarding the estimation of the extra pulse train. The constant phase shift π is 

added to the instantaneous phase estimate Θ(n), to obtain an extra unit pulse train estimate 

u2(n) . u2(n) is cross-correlated with the error e1(n) of the cyclic model to obtain the extra 

pulse shape r2(l) . The extra pulse train estimate d2(n) is obtained by convolving u2(n) with 

r2(l) . The extra pulse trigger estimate ξ (μ) ∈ 0, 1  is obtained via minimizing the model 

error e2(n) = e1(n) − d2(n) .

Aichinger et al. Page 21

Biomed Signal Process Control. Author manuscript; available in PMC 2019 April 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Aichinger et al. Page 22

Table 1

Time-invariant synthesis parameters are drawn from the provided distributions. Truncated normal distributions 

N(μ, σ2, x, y) and uniform distributions U(x, y) are used, where μ and σ are the means and standard deviations, 

and x and y are the lower and upper limits.

Parameter name and symbol PDF of the distribution

Fundamental frequency fo

𝒩 175, 502, 50, 600

Irregularity strength Irr 𝒰 0, 0.2
Open quotient OQ

𝒩 0.6, 0.152, 0.1, 1

Asymmetry α
𝒩 0.5, 0.22, 0.1, 0.9

Opening speed Sop

𝒩 0.5, 0.22, 0.1, 0.9

Closing speed Scp

𝒩 0.5, 0.22, 0.1, 0.9

Extra pulse rate ρ 𝒰 0.1, 0.5
Extra pulse height h 𝒰 0.1, 0.5
Energy level of the additive noise H 𝒰 – 50, 0
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Table 2

Coefficient estimates and p-values of the linear models of the detector performance Se + Sp. Results are 

shown for the detector with and without pulse shape parameterization (PSP). The influence of the irregularity 

strength (Irr) on the detection performance decreases by approximately factor 2 (-4.05 versus -2.01) when the 

PSP option is used. The same is true for the extra pulse height h (0.95 versus 0.475). However, the influence of 

the energy level of the additive noise H increases by approximately factor 3 (-0.00433 versus -0.0147) when 

the PSP option is used. The extra pulse rate ρ has no significant effect on the detector performance in either of 

the options (with or without PSP). n.s.: non-significant.

Without PSP With PSP

Predictor Coefficient Coefficient estimate p-Value Coefficient estimate p-Value

Intercept B1 1.35 < 0.001 0.96 < 0.001

Irr B2 −4.05 < 0.001 −2.01 < 0.001

H (dB) B3 −0.00433 0.0235 −0.0147 < 0.001

ρ B4 −0.099 n.s. 0.106 n.s.

h B5 0.95 <0.001 0.475 n.s.
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Table 3

Summary of the means and standard deviations of the performance measures Se + Sp, i.e., the sum of the 

sensitivity and specificity, and Acc, i.e., the accuracy. The measures are shown for GAWs with a small level H 
of additive noise, and a small irregularity strength Irr (class I signals), GAW with an increased level H of 

additive noise, and a small irregularity strength Irr (class II signals), GAWs with a small level H of additive 

noise, and a larger irregularity strength Irr (class III signals), and finally GAWs with a large level H of additive 

noise, and a large irregularity strength Irr (class IV signals). The best performance achieved the detector using 

PSP with class I signals (Se + Sp = 1.722 and Acc = 0.883).

Without PSP With PSP

Se + Sp (mean, std) Acc (mean, std) Se + Sp (mean, std) Acc (mean, std)

Signal class

Class I H ≤ - 25 dB & Irr ≤ 0.1 1.546, 0.387 0.829, 0.161 1.722, 0.336 0.883,0.153

Class II H > - 25 dB & Irr ≤ 0.1 1.445, 0.346 0.766, 0.168 1.061, 0.237 0.403,0.185

Class III H ≤ - 25 dB & Irr > 0.1 1.136, 0.257 0.716, 0.123 1.287, 0.292 0.726,0.136

Class IV H > - 25 dB & Irr > 0.1 1.067, 0.23 0.652, 0.111 1.067, 0.218 0.432,0.153
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