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Predicting in-hospital mo
rtality in ICU patients
with sepsis using gradient boosting decision tree
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Abstract
Sepsis is a leading cause of mortality in the intensive care unit. Early prediction of sepsis can reduce the overall mortality rate and cost
of sepsis treatment. Some studies have predicted mortality and development of sepsis using machine learning models. However,
there is a gap between the creation of different machine learning algorithms and their implementation in clinical practice.
This study utilized data from the Medical Information Mart for Intensive Care III. We established and compared the gradient

boosting decision tree (GBDT), logistic regression (LR), k-nearest neighbor (KNN), random forest (RF), and support vector machine
(SVM).
A total of 3937 sepsis patients were included, with 34.3% mortality in the Medical Information Mart for Intensive Care III group. In

our comparison of 5 machine learning models (GBDT, LR, KNN, RF, and SVM), the GBDT model showed the best performance with
the highest area under the receiver operating characteristic curve (0.992), recall (94.8%), accuracy (95.4%), and F1 score (0.933). The
RF, SVM, and KNN models showed better performance (area under the receiver operating characteristic curve: 0.980, 0.898, and
0.877, respectively) than the LR (0.876).
The GBDT model showed better performance than other machine learning models (LR, KNN, RF, and SVM) in predicting the

mortality of patients with sepsis in the intensive care unit. This could be used to develop a clinical decision support system in the
future.

Abbreviations: AUROC= area under the receiver operating characteristic curve, GBDT= gradient boosting decision tree, ICD-9-
CM = International Classification of Diseases-9th Revision, Clinical Modification, ICU = intensive care unit, IRB = institutional review
board, KNN = k-nearest neighbor, LR = logistic regression, MIMIC-III =medical information mart for intensive care III, RF = random
forest, SOFA = sequential organ failure assessment, SVM = support vector machine.
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1. Introduction

Sepsis is a life-threatening organ dysfunction caused by a
dysregulated host response to infection.[1] Sepsis is not only
a common and potentially life-threatening condition, but is also a
major global health issue.[2] An estimated more than 30 million
people develop sepsis every year worldwide, potentially leading
to 6 million deaths.[3] Sepsis is one of the most burdensome
diseases worldwide because of high treatment costs and
excessively lengthy hospital stays.[4] However, early diagnosis
and accurate identification of the risk factors, as well as the
appropriate treatment, reduce the overall mortality rate, and
improve patient outcomes.[5] It is difficult to diagnose sepsis early
due to various sources of infection in patients with sepsis and the
difference in host response. Early and timely detection of sepsis
has always been the focus of research.[6]

Some studies have shown that machine learning can be used to
build prognostic models for both mortality and sepsis develop-
ment.[7–10] To predict septic mortality, previous studies have
employed big data andmachine learningmodels such as stochastic
gradient boosting, support vector machine (SVM), naive Bayes,
logistic regression (LR), and random forest (RF).[11–13] Machine
learning helps to analyze complex data automatically and
produces significant results. Machine learning-based approaches
have the potential for increased sensitivity and specificity by
training sepsis patient data.[14–16]However, the possibility of some
techniques, including ensemble algorithms, has not yet been
addressed in improving the prediction outcomes. It is also
necessary to find methods for generating accurate predictions.
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To address these issues, we conducted an exploratory study to
evaluate the efficiency of different classification algorithms in
predicting death in adult patients with sepsis. In this study, we
compared the gradient boosting decision tree (GBDT) model with
other machine learning approaches (LR, k-nearest neighbor, RF,
and SVM) using the prediction of sepsis in-hospital mortality as
the use case.
2. Methods

2.1. Dataset

This study used the Medical InformationMart for Intensive Care
III (MIMIC-III) V1.4. MIMIC-III is a large, freely available
database comprising anonymous health-related data associated
with over 53,423 adult patients admitted to critical care units at
the Beth Israel Deaconess Medical Center in Boston between
2001 and 2012.[17]
2.2. Ethics statement

Because our study used an open-access database, no further local
institutional review board approval was required. Data analysis
and model development procedures followed the MIMIC-III
guidelines and regulations.
2.3. Sepsis definition

Septic patients were identified using the International Classifica-
tion of Diseases-9th Revision, Clinical Modification (ICD-9-CM)
code for sepsis from records in the database. The codes included:
003.1 (salmonella septicemia); 022.3 (anthrax septicemia);
038.0 to 038.9 (subcodes of septicemia); 054.5 (herpetic
septicemia). In October 2002, new diagnostic codes came into
effect. They were included in the study: 995.91 (systemic
inflammatory response syndrome caused by the infectious
process without organ dysfunction) and 995.92 (systemic
inflammatory response syndrome caused by the infectious
process with organ dysfunction).[18]
2.4. Data extraction and imputation

We developed SQL scripts that contain a large number of SQL
statements to query the MIMIC-III database for all adult patients
(≥ 18years). We used the indicators when the patients entered the
ICU for the first time to predict the in-hospital mortality rate.
Researchers extracted all data of sepsis patients 48hours after
ICU admission. Data extracted included patient age, sex,
ethnicity, length of hospital stay, Glasgow coma scale,
percutaneous oxygen saturation, vital signs, and laboratory
values. Sepsis was defined as an ICD-9. Researchers restricted our
search to patients aged 18years or older, and we excluded
patients with data missing more than 30%.[19] For each variable
with less than 30%missing values, we replaced themissing values
by means in each group.

2.5. Prediction model

In this study, 5 prediction models of the GBDT, LR, K-nearest
neighbor (KNN), RF, and SVM models were established and
compared.
GBDT is a new algorithm that combines decision trees

and holistic learning techniques.[20] Its basic idea is to
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combine a series of weak base classifiers into a strong base
classifier.[21] In the learning process, a new regression tree is
constructed by fitting residuals to reduce the loss function until
the residuals are less than a certain threshold, or the number of
regression trees reaches a certain threshold. The advantages of
GBDT are good training effect, less overfitting, and flexible
handling of various data types, including continuous and
discrete values.[22]

LR is a statistical method for analyzing datasets, and it is also a
supervised machine-learning algorithm developed for learning
classification problems.[23] It is one of the most widely used
methods in health sciences research, especially in epidemiolo-
gy.[24] Some studies have shown that LR is effective in analyzing
mortality factors and predicting mortality.[25,26]

The KNN is an algorithm that stores all available instances and
classifies new instances based on a similarity measure (such as
distance functions).[27] It has been widely used in classification
and regression prediction problems owing to its simple
implementation and outstanding performance.[28]

SVMwas derived from the statistical learning theory proposed
by Cortes and Vapnik.[29] SVM maps the original datasets from
the input space to the high-dimensional feature space, thus
simplifying the classification problems in the feature space. Its
main advantage is that it uses kernel tricks to build expert
knowledge about the problem, minimizing both model complex-
ity and prediction error.[30]

RF is an ensemble supervised machine learning algorithm. It
uses a decision tree as the base classifier. RF produces many
classifiers and combines their results through majority voting.[31]

In this study, we used the Scikit-learn toolkit to train and test
the model. We conducted a 5-fold cross-validation using only the
encounters allocated to the training set. For the cross-validation
results, a paired t test was used to measure the significant
difference between the models.
3. Results

A total of 3937 patients were included, with 34.3% in-hospital
mortality in the MIMIC-III v1.4 database (Fig. 1). The main
characteristics of the patients with sepsis are shown in Table 1.
Comparedwith those who survived, patients who diedwere older
(68.9±14.9) versus 65.5±16.7years (P< .01).
The results of the 5 machine learning methods found in 5-fold

cross-validation are shown in Tables 2 and 3. It included the area
under the receiver operating characteristic curve (AUROC),
precision, recall, accuracy, and F1 score. In our study, accuracy
was defined by dividing the number of correctly predicted
observations by the total number of observations. Precision is
calculated by dividing the number of correctly predicted positive
observations by the number of predicted positive observations.
Recall is the proportion of correctly predicted positive observa-
tions to all observations in the actual class. The F1 score is a
weighted average of the accuracy and recall, representing the
balance between these 2 values.[32]

The AUROC ranged from 0.876 to 0.992 for the 5 predictive
models. GBDT showed the largest AUROC (0.992), highest
precision (94.8%), recall (91.7%), accuracy (95.4%), and F1
score (0.933). LR showed the lowest AUC (0.876), precision
(0.723), and recall (0.776). The receiver operating characteristic
curves of these predictive models are shown in Figure 2. GBDT
ranks the individual variables based on their relative influence,
and the top 10 variables are presented in Figure 3.



Figure 1  

Patients n=4130

Included n=3937

Exclude
The same admission number corresponds to 
multiple records n=106
The same patient was admitted several times

n=1036
Age less than 18 n=34

Exclude
over 30% missing data n=193

Patient records in MIMIC-
n=58976

Admission records for sepsis
n=6415

Sepsis patients who remained in 
the ICU for more than 48 hours

n=5306

Exclude
No sepsis n=52561

Exclude
Stay in ICU for less than 48 hours n=1109

Figure 1. The flowchart for including patients in the study.

Li et al. Medicine (2021) 100:19 www.md-journal.com
Figure 2 shows the comparison of AUROC for predicting
death in patients with sepsis according to the 5 predicted models.
The AUROC and F1 score of GBDTwere higher than those of the
other models. The AUROC of the RF, SVM, and KNN showed
better performance than LR but worse than GBDT. GBDT was
significantly different from the other models (P< .01).
4. Discussion

In this study, there was no significant difference between the sexes
of patients with sepsis who died and those who survived
(P= .344). There was a significant difference in age between the
Table 1

Patient demographic information.

Variable Death (n=1352) Survival (n=2585) P value

Gender
Female 578 (42.8%) 1147 (44.4%) .344
Male 774 (57.2%) 1438 (55.6%) .344

Age (y) (mean, SD) 68.9±14.9 65.5±16.7 <.01
Ethnicity
Caucasian 950 (70.3%) 1894 (73.3%) .047
Hispanic 37 (2.7%) 90 (3.5%) .218
African American 109 (8.1%) 246 (9.5%) .143
Other 256 (18.9%) 355 (13.7%) <.01

ICU days (mean, SD) 17.4±18.1 18.2±16.5 .176

Death = death of septic patients during hospitalization.
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death and survival groups (P< .01). There was no significant
difference in the number of days in the hospital between patients
with sepsis who died and those who survived (P= .176).
The results showed that GBDT had the largest AUROC (0.992)

and highest precision (0.948), recall (0.917), accuracy (0.954),
and F1 score (0.933) for predicting death in patients with sepsis.
The results were better than those of the other models. This is
because GBDT is based on the tree model and inherits the
advantages of the tree model: it is robust to outliers and has little
noise interference; its uncorrelated features have low interference
and can deal with missing values well. A tree model is a decision
support tool that uses a tree-like diagram or model to represent a
decision and its possible consequences, including chance event
outcomes, costs of resources, and utility.[33]

This study has some limitations. First, the study was performed
at a single institution; the performance of machine learning
techniques might be different when applied to a sample of
different institutions with a different distribution of covariates.
Table 2

Comparison of performance of the 5 models.

LR KNN SVM RF GBDT

AUC 0.876 0.877 0.898 0.980 0.992
Precision 0.723 0.806 0.828 0.931 0.948
Recall 0.776 0.624 0.749 0.885 0.917
Accuracy 0.821 0.819 0.860 0.938 0.954
F1 score 0.715 0.702 0.780 0.907 0.933
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Table 3

Comparison of AUROC and F1 among the different models.
AUROC F1 P(AUROC) P(F1)

GBDT 0.992 (0.989–0.994) 0.933 (0.929–0.938) <0.01 vs LR
<0.01 vs KNN
<0.01 vs RF
<0.01 vs SVM

<0.01 vs LR
<0.01 vs KNN
<0.01 vs RF
<0.01 vs SVM

LR 0.876 (0.864–0.885) 0.715 (0.704–0.723) 0.774 vs KNN
<0.01 vs RF
0.012 vs SVM

0.354 vs KNN
<0.01 vs RF
<0.01 vs SVM

KNN 0.877 (0.871–0.885) 0.702 (0.665–0.730) <0.01 vs RF
0.010 vs SVM

<0.01 vs RF
<0.01 vs SVM

RF 0.980 (0.978–0.984) 0.907 (0.896–0.930) <0.01 vs SVM <0.01 vs. SVM
SVM 0.898 (0.880–0.914) 0.780 (0.771–0.801)

Figure 2. Comparison of the ROC curve of the 5 models. ROC = receiver
operating characteristic curve.
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This study mainly involved Caucasians (72.2%), African
Americans (9.0%), and Hispanics (3.2%). The results of this
study need to be further verified in other ethnic groups due to
ethnic differences.
Although the Sequential Organ Failure Assessment (SOFA)

criterion is the latest definition of sepsis, the use of SOFA as a
criterion for sepsis may lead to some bias due to missing data in
the MIMIC III database. If the event death occurs during the
assessment period, data from some patients, many of whom have
high scores, will be missing, leading to survival bias.[34] SOFA
criteria may lead to delayed diagnosis and intervention in cases of
severe infection.[35] Some authors have reported that the use of
SOFA criteria requires further exploration.[1] The sepsis standard
(ICD-9) used in this study is an imperfect characterization of
sepsis. Nevertheless, we believe it is useful in developing sepsis
prediction tools, as evidenced by the improvements in sepsis-
related clinical outcomes using a sepsis prediction algorithm
trained on the same standard.[6]
Figure 3. Top-10 variable importance of GBDT. GBDT= gradient boosting decisio
admission, Mean1 = average of parameters within 24hours of admission, mean
minimum in 48hours of admission, PTT = partial thromboplastin time.

4

5. Conclusions

In this study, researchers established and evaluated a GBDT
prediction model for death in patients with sepsis in the ICU. The
GBDT model showed better performance than other machine
learning models in predicting death in patients with sepsis in the
ICU. Among these models, the GBDT model showed the best
performance with the highest AUROC and F1 scores. The
evaluation results demonstrated that GBDT is an effective
algorithm that offers the best predictive performance for
predicting death in patients with sepsis. In future studies, we
n tree, GCS=Glasgow coma scale, max2= parameter maximum in 48hours of
2 = average of parameters within 48hours of admission, min2 = parameter
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intend to verify the performance of the GBDT model in hospitals
with different demographic and clinical characteristics, as well as
in nonintensive care units. It can also be used to develop a clinical
decision support system.
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