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Abstract: This article is focused on the automatic classification of passing vehicles through an
experimental platform using optical sensor arrays. The amount of data generated from various sensor
systems is growing proportionally every year. Therefore, it is necessary to look for more progressive
solutions to these problems. Methods of implementing artificial intelligence are becoming a new
trend in this area. At first, an experimental platform with two separate groups of fiber Bragg grating
sensor arrays (horizontally and vertically oriented) installed into the top pavement layers was created.
Interrogators were connected to sensor arrays to measure pavement deformation caused by vehicles
passing over the pavement. Next, neural networks for visual classification with a closed-circuit
television camera to separate vehicles into different classes were used. This classification was used
for the verification of measured and analyzed data from sensor arrays. The newly proposed neural
network for vehicle classification from the sensor array dataset was created. From the obtained
experimental results, it is evident that our proposed neural network was capable of separating trucks
from other vehicles, with an accuracy of 94.9%, and classifying vehicles into three different classes,
with an accuracy of 70.8%. Based on the experimental results, extending sensor arrays as described in
the last part of the paper is recommended.

Keywords: vehicle classification; FBG; artificial intelligence; smart sensors

1. Introduction

The issue of traffic monitoring and management has arisen due to a growing number of personal
vehicles, trucks, and other types of vehicles. Due to existing road capacities being based on historic
designs, the condition of these road communications deteriorates with a lack of growing financial
investment to maintain and expand the road network. With these requirements, vehicle visual
identification is not sufficient for traffic management and the prediction of the future state of traffic
and road conditions. For this purpose, existing monitoring areas are being innovated with new sensor
platforms, not only for the statistical purpose of monitoring areas. Additional information such as
traffic density, vehicle weight distribution, overweight vehicles, and trucks could be included in
automatic warning systems for the prediction of possible critical traffic situations. There are several
technological approaches based on different principles. Each of them has various advantages and
disadvantages, such as operating duration, traffic density, meteorological condition limits, resistance
to chemical and mechanical damage from maintenance vehicles, etc.

All motor vehicles are classified into 11 base classes by current legislation in the states of the
central European Union. Meanwhile, according to the Federal Highway Administration under the
United States Department of Transportation, there are even 13 classes. These classes consist of personal
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vehicles, trucks, technical vehicles, public transport vehicles, and their subclasses. For decades,
the only sufficient method to classify vehicles was by visual recognition. This method was strongly
limited by meteorological conditions. In the last two decades, several different technical designs for
classifying vehicles without a visual part of classifications have been proposed. At first, based on
metallic vehicle chassis and axle parts, there were designs to measure magnetic field parameters of
crossing vehicles. This included inductive loops or anisotropic magneto-resistive sensors built into
the road pavement [1–4]. These technological designs achieved accurate results for specific vehicle
classes with magnetic signatures. A different approach was by vehicle weight signature. Technological
solutions based on piezoelectric sensors [5] and bending plate sensors are widely used in road traffic
monitoring and vehicle measurements [6]. There were also experimental solutions such as the usage of
hydro-electric sensors [7] with a bending metal plate at the top of the vessel filled with a specific liquid.
Weigh-in-motion technologies measuring specific parameters such as the weight signature could be
used, as well as other technologies including fiber optic sensors [8], wireless vibration sensors [9],
or using embedded strain gauge sensors [10]. As an additional capability, this could be measured by
smart pavements based on conductive cementitious materials [11]. Optic sensors based on Fiber Bragg
Grating (FBG) were also successfully tested on different types of transport, such as railways. It was
in Naples in Italy where this type of sensor was used for speed and weight measurements with the
detection of train wheel abrasions as additional information for transport safety [12].

Vehicle classification and the measurement of vehicle parameters, such as weigh-in-motion, were
the aim of several international research projects. The weighing-in-motion of road vehicles was
a research aim in the European research project COST323 over two decades ago [13]. In the last
decade, research ideas relating to infrastructure monitoring including road traffic have been studied,
e.g., by COST projects TU1402 for structural health monitoring and TU1406 for roadway bridges [14–16].

Optical fiber sensors are becoming a very important part of smart Internet of Things (IoT)
infrastructures, also on roads and highways. They can additionally perform different functions
in critical infrastructure protection and monitoring. There is a broad spectrum of technological
solutions of fiber optic sensors and optical sensors systems. For our investigation, we used the FBG
sensor network built into the entry road into the campus of our university. Fiber Bragg Grating (FBG)
sensors are classified as passive optical fiber components that are compatible with existing types
of telecommunication fiber systems and can operate directly with incident light (most commonly
in the 1550 nm range). Thus, they can be directly incorporated into the optical transmission chain.
The fundamental principle on which the FBG work is based is Fresnel diffraction and interference.
The propagating optical field may be refracted or reflected at the interface in the transmission medium
with different refractive indices. The FBG operates as a light reflector for a specific (desired) spectrum
of wavelengths, to ensure that the phase-matching condition is met. Other (undesirable) wavelengths
are only slightly influenced by the Bragg grating [17–19].

In recent years, the different Convolutional Neural Network (CNN) architectures [20–22] applied
to image processing constitute the current dominant computer vision theory, especially in tasks such
as image classification (vehicle classification). The main goal of these networks is to transform the
input image layer-by-layer from the input image to the final class scores. The input image is processed
by a series of convolution layers with filters (kernels), max pooling layers, and Fully Connected
(FC) layers. Finally, the activation function, such as softmax or sigmoid to classify the outputs
(small cars, sedans, crossovers, family vans, or trucks), is used. In our case, the AlexNet [20] and
GoogLeNet [23] convolutional neural networks were chosen. The basic architecture of the AlexNet
consists of some convolutional layers (five layers), followed by max pooling layers, FC layers (three
layers), and a softmax layer [20,24,25]. On the other hand, the architecture of GoogLeNet consists
of 22 layers (nine inception modules). The main motivation for the inception modules’ (layers’)
creation is to make a deeper CNN network so that highly accurate results could be achieved [23,26,27].
For vehicle classification, several works using deep learning and convolutional neural networks were
described in [20].
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The aim of this article is vehicle classification with FBG sensor arrays using artificial intelligence
from partial records. The proposed neural network was trained using a dataset with a lack of
information on the vehicle’s speed, which we created by visual recognition of the vehicle passing
through our testing platform. The majority of recorded vehicles were detected only through their left
wheels, which reduces records from a 3D vehicle surface to one line of deformation. These records
simulated situations where the vehicle’s driver tried to avoid detection with a changed trajectory
through the roadside or an emergency line without visual recognition.

2. Materials and Methods

The main goal of the research is the use of optical sensor networks for the classification of
passing vehicles through a test platform based on neural networks for car recognition using an
industrial camera. For this purpose, a test platform was built, which is described in Section 2.1.

2.1. Experimental Platform

The test platform for the measurement of additional vehicle characteristics is located at the
University of Zilina campus on the entry road to the main parking lot. This monitoring area consists of
several sensor arrays based on two technological applications of FBG sensors. All these sensors are
built in the 2nd asphalt pavement layer covered with a top asphalt layer with a height of 6 cm above
the sensors. Two electric loops were installed for the initialization of measurements, but the main goal
was to use only optic-based sensors as FBGs. Those were realized in two different placements and
numbers, as shown in Figure 1.
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Figure 1. Real test platform scheme with multiple Fiber Bragg Grating (FBG) sensors. Some are
connected as an FBG sensor array. The red cross indicates a dysfunctional FBG sensor (destroyed when
the test platform was created). This test platform was built on the road into the university campus.

2.1.1. Vertically Oriented FBG Sensors

The 1st type of FBG was attached vertically on a perforated aluminum chassis with approximately
a 10 cm distance between these Vertically Oriented (VO) sensors (orange sensors in Figure 1) positioned
orthogonally to the direction of the vehicle, as shown in Figure 2. Based on the configuration of these
sensors and their placement, there are several limitations. One of them is the distance between vertical
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FBG sensors. Each vehicle’s wheel is captured in a range from 3 to 4 vertical FBG sensors. Due to the
construction of the aluminum chassis with these sensors in a partially liquid material such as asphalt,
it is problematic to determine wheel width. This is a necessary parameter for calculating the weight
distribution area through measuring the wheel and accurately determining the vehicle class.

road
wheel

a)

λ

changes of reflected
spectrum from different FBG's
b)

Figure 2. (a) Wheel pressure is applied to vertically oriented FGB sensors; (b) reflected optical spectrum
shift is given by pressure change (every FBG reflects light on the other’scentral wavelength in idle
status—the FBG’s position is also known).

2.1.2. Horizontally Oriented FBG Sensors

The second type of FBG sensor was horizontally placed orthogonally (blue sensors in Figure 1) at
different distances from vertical FBG sensors in the direction of the vehicle. Horizontally Oriented (HO)
FBG sensors were installed with two different active lengths of sensors (measured on the whole fiber
length using one FBG sensor). The first sensor had a length of 3460 mm, and the second had a length
of 1760 mm. One of the optical fibers with shorter sensors contained another FBG for temperature
compensation. Both horizontal sensor lengths had a passive length of 300 mm and an operative
temperature range from −40 to +80 ◦C. All horizontal sensors were attached to the bottom asphalt
layer by asphalt glue. This allowed for the measurement of exact flexibility and strength changes of
the top asphalt layers during the measurements of overpassing vehicles. Due to the vehicle wheel
trajectory over those sensors and their type, we observed both compression and tension, as shown in
Figure 3.

a)

b)

road
wheels

wheels
road

reflected spectrum shift

λ

to red
λ

to blue

c)

Figure 3. Illustration of some scenarios of wheel pressure to horizontally oriented FGB sensors (a) when
the wheel’s pressure in the horizontal line is negative (compressive stress) or (b) positive (tensile stress),
(c) and the appropriate reflected light spectrum change in wavelength.

2.1.3. Measurement Units

Each set of measurement data was from the FBG sensor arrays consisting of 2 lines of 36 vertical
sensors orthogonal to the vehicle direction and 2 sensors for the temperature compensation of the
vertical sensors. From the horizontal FBG sensors, there were 3 horizontal sensors at a different level.
Two of those sensors had an active length of 1760 mm, and one had a length of 3460 mm. One fiber
with a shorter length contained an FBG sensor for temperature compensation created for different
wavelengths. The sampling rate of the two interrogators connected to the FBG sensor arrays was
500 samples/s.

Output matrix data of each measurement had 2000 time samples (4 s) of the 34 vertically oriented
FBG sensors used. This output matrix was extended by measurements from 4 horizontally oriented
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FBG sensors with a dimension of 2000 time samples (4 s). We used only 34 of 36 vertical FBG sensors
because the last 2 peaks of reflected intensity on specific wavelengths were too low for processing in
the interrogator, and this caused problems with measured data consistency, as shown in Figure 4.

Figure 4. Time sample of the reflected optical spectrum from the FBG array received by the interrogator.

The 1st peak value of the FBG sensor, set at 1517 nm, was dedicated to temperature compensation.
The last 2 unused vertical FBG sensors were preset at wavelengths of 1583.74 and 1587.68 nm.
Both matrices for 2000 measurements were synchronized into the same time range. This format
and size of data were applicable only in one direction of the vehicles due to the position of each
sensor array.

2.2. Proposed Methodology

The block diagram of the proposed methodology is shown in Figure 5. Firstly, datasets based on FBG
sensor data and Closed-Circuit Television (CCTV) were created. Next, the modified neural networks for
visual classification using a CCTV camera system for FBG dataset annotation were used. This classification
was used for the verification of measured and analyzed data from the sensor arrays. Finally, the newly
proposed neural network for vehicle classification from the sensor array dataset was created.

Dataset based on
FBG sensor data

Dataset based on
CCTV

Synchronized records
datasets 1:1

Anotated dataset
based on FBG sensor

data (5 classes)

Proposed CNN for
vehicle classification

Proposed CNN for
binary vehicle

classification (3 classes)

Proposed image 
classification for 
automatic FBG 

dataset annotation

Retrained
GoogleLeNet

to 5 classes

Retrained
AlexNet

to 5 classes

Image records of
vehicles by CCTV

Combinated 
classification by

GoogLeNet + AlexNet

Manulally anotated
vehicle image dataset

into 5 classes

Figure 5. Block diagram of the proposed methodology.
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Two separate datasets were created. Firstly, an image dataset based on CCTV was created for
the acceleration of the automatized learning process for vehicle classification based on FBG sensor
data. Secondly, a dataset based on FBG sensor data was created for final vehicle classification by the
proposed CNN.

2.2.1. Dataset Based on FBG Sensor Data

Each vehicle’s record from the test platform was created with a matrix from vertical FBG sensors
with a size of 2000 measurements by 34 sensors. With a sampling rate of 500 samples/s, this represents
a period of 4 s per each vehicle. The record detail of the full pressure map of the vehicle with a
wheelbase of 2570 mm is presented in Figure 6.

Figure 6. Record detail of the pressure map for a vehicle with an optimal line. The colormap represents
the values of the wavelength change of the reflected optical spectrum by FBG in nm.

The shift in samples for each axle between the wheels in Figure 6 is caused by the installation shift
of aluminum strips for vertical FBG sensors, shown in Figure 2 with orange color. The partial pressure
map (only left wheels) of the vehicle with a wheelbase of 2511 mm is in Figure 7. Both vehicle’s details
show the detection of the 1st axle at time position 2 s. This was based on two way detection.

Figure 7. Record detail of the pressure map for the overpassing vehicle with left wheels. The colormap
represents the values of the wavelength change of the reflected optical spectrum by FBG in nm.

For speed determination without information on the specific wheelbase of the vehicle from
visual recognition, there were built-in horizontal FBG sensors of 2 lengths. Those sensors were
placed asymmetrically towards the left side of the road. Record details from the overpassing vehicle
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recognized by both lines are shown below in Figure 8 and the overpassing vehicle recognized by one
line in Figure 9.

Figure 8 is a record detail of the same vehicle’s record as shown in Figure 6. A vehicle with the
optimal line was captured with vertical and horizontal sensors; thus, we were able to determine vehicle
speed and wheelbase distances. In Figures 7 and 9 is shown the same overpassing vehicle recognized
by only one line of wheels by vertically oriented FBG sensors.
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Figure 8. Record detail of axle detection from horizontal FBG sensors from the overpassing vehicle with
an optimal traffic line as reflected in the optical spectrum wavelength change detected by the FBGs.

Records with only one line (footprint) of wheels of the vehicle recognized by vertically oriented
FBG sensors, and those vehicles that were not recognized by horizontally oriented FBG sensors and
measured data seem to be akin to a Nothing-on-Road state (NoR).
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Figure 9. Record detail of axle detection from horizontal FBG sensors from the overpassing vehicle
with a non-optimal traffic line as reflected in the optical spectrum wavelength change detected by
the FBGs.

For the simplification of vehicle detection, we summed all wavelength shifts of all vertical FBG
sensors per each timestamp. The summed wavelength shift for all k sensors in specific time tn was
compared with the summed wavelength shift for all k sensors in previous time tn−i. Reference value
∆λR was added to this value, which corresponds to the minimum recorded pressure on the sensors
from one vehicle’s wheel detection. The reference value of ∆λR for the 1st axle detection was 0.015 nm
with an air temperature over the test platform in the range from 15 to 30 ◦C. The equation for the 1st
axle’s detection is:

∑
k

∣∣∣∆λk,tn−i

∣∣∣+ ∆λR ≤ ∑
k

∣∣∆λk,tn

∣∣. (1)



Sensors 2020, 20, 4472 8 of 17

The record details of the summed values per 2 strips with vertical FBG sensors shifted by NoR
values are shown below in Figure 10. The right wheels of vehicles shown by the blue curve for summed
sensors with Positions 1 to 18 were detected. The left vehicle wheels are shown by the orange curve for
summed sensors with Positions 19 to 34 by the left strip with vertical FBG sensors. The record detail
shown is for the same vehicle as in Figures 6 and 8.

On the graph of the overpassing vehicle recognized only by one line of vehicle wheels in Figure 11,
there was a partial record with no detection of the vehicle’s right wheels. Only left wheels were detected
by the sensors in Positions 1 to 18 with a blue curve.
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Figure 10. Record detail of the summary values of the wavelength changes (of the reflected optical
spectrum by FBG) shifted by Nothing-on-Road (NoR) values.

Figures 7, 9 and 11 depict the same partially recognized vehicle, where it was not possible to
determine the vehicle’s speed and wheelbase distances from the minimal two lines of the FBG sensors.
This information could only be used in combination with visual identification of the vehicle’s model
with technical parameters.
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Figure 11. Record details of the summed wavelength shifts (of the reflected optical spectrum) from the
vertical FBG sensors of the overpassing vehicle recognized only by the left wheels.

2.2.2. Dataset Based on CCTV

Our test platform is incapable of accurately determining wheel width and other additional
parameters based on it. For this reason, we decided to define each vehicle class by wheelbase and
weight ranges in combination with visual recognition. For this, we used security CCTV monitoring the
entry ramp used to access the road with the testing platform. This entry ramp serves as a measurement
separator in the direction of monitored vehicles, as shown in Figure 12.

The input images from CCTV were at a resolution of 1920 × 1080 px. The area of interest, with an
image size of 800 × 800 px (red rectangle), is shown in Figure 12.
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Figure 12. Entry ramp view from CCTV with the area of interest (red rectangle with a resolution of
800 × 800 px) with a timestamp.

2.2.3. Synchronized Records’ Datasets

All vehicles were monitored with CCTV and measured using FBG sensor arrays for 1 month.
Per each overpassing vehicle’s record, there was 1 synchronized vehicle image. These images were
classified by 2 CNNs for image classification, validated as shown in Figure 5, and integrated with
records from FBG sensor arrays. Those records were impossible to classify only from vertically oriented
FBG sensor arrays without image classification. For the next vehicle’s classification using FBG sensors,
there were only relevant data from the chassis of vertical FBG sensors from Positions 1 to 18.

2.2.4. Proposed Image Classification for Automatic FBG Dataset Annotation

For the visual verification of the 5 determined classes, we tested the dataset on 3 different CNNs
in the MATLAB R© workspace in Version 2019b. We decided to use AlexNet [12], GoogLeNet [13],
and ResNet-50 [28,29]. Each pre-trained network was modified in the final layers for specific class
number outputs.

The architecture modification of the pretrained CNN AlexNet from 1000 classes to 5 classes is
shown in Figure 13. The modification of pretrained Directed Acyclic Graph (DAG) CNN GoogLeNet
with the same number of pretrained classes as AlexNet to 5 classes is shown in Figure 14.

2×

Input

Conv2D + ReLU + Norm.

FC*1 + Softmax

Classification output

FC*2 + Softmax

Classification output

Conv2D + ReLU

Max pooling 2D

Max pooling 2D

FC + ReLU + Dropout

3×

2×

*1Originally designed for 1000 output classes
*2Redesigned to 5 output classes

Figure 13. Architecture modification of the pretrained AlexNet.
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Figure 14. Architecture modification of the pretrained GoogLeNet.

The training phase consisted of 650 vehicle images for each class. The test phase consisted of a
minimum of 100 vehicle images for each class. Those images were next resized to the necessary input
size to each CNN [20,23].

For this reason, we decided to create 5 vehicle classes. The 1st class was small cars with hatchback
bodyworks with a weight up to 1.5 t and up to a 2650 mm axle spacing. The 2nd class was vehicles
such as sedans and their long versions or combo bodyworks. The 3rd class was vehicles with crossover
bodyworks and Sports Utility Vehicles (SUV). The 4th class was utility vehicles and family vans
weighing up to approximately 2.5 t. The last class was vans, trucks, and vehicles with more than
2 axles. Motorcycles were excluded from the classification. These 5 classes were also determined
based on the composition of the vehicles (see Table 1) and their count crossing the campus area with a
test platform.

Table 1. Image dataset.

Vehicle Type Class Train Test

Hatchback 1 650 428
Sedan/Combo 2 650 384
SUV 3 650 304
MPV/Minivan 4 650 227
Van/Truck 5 650 376

Each CNN was retrained 5 times for the 6 epochs achieved, in equal conditions, with an accuracy
of over 90% in the tested dataset. One epoch represents the processing of all training samples. After that,
training samples were shuffled for the next epoch. Those CNNs were supervised and retrained by using
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a Graphic Processor Unit (GPU) with only 2 GB GDDR5 memory in previous research. The accuracy
of the created dataset was enough for our purpose of classifying data from FBG sensor arrays [30].

Thus, the retrained CNNs for image classification were prepared to classify vehicle records from
FBG arrays using the visual part of the records. Each record from the arrays was synchronized with
1 image from the industrial camera taking into consideration the distance between the entry ramp and
the measured sensory area. The synchronized image dataset was divided into 2 identical datasets with
resolutions of 224 × 224 px for GoogLeNet and 227 × 227 px for AlexNet classification. In 77.26% of
the images, both CNNs were consistent. The accuracy of the CNNs used for visual classification is
shown in Table 2. Other images were manually verified and included in the correct classes.

Table 2. Outputs from CNNs for image classification.

AlexNet GoogLeNet ResNet-50

Achieved train validation 99.79% 90.67% 91.30%
Achieved test validation 90.2% 90.8% 89.2%

2.2.5. Annotated Dataset Based on FBG Sensor Data

The prepared dataset consisted of 5965 vehicle records recognized with only one line using
vertically oriented FBG sensors divided into 5 classes. This dataset did not contain vehicle speed,
wheelbase, or wheel size information. For simple classification, a neural network was created in the
Integrated Development Environment (IDE) MATLAB R© 2020a for image input in the Tagged Image
File Format (TIFF) with a resolution of 600 × 5 px (600 time samples × 5 vertically oriented FBG
sensors). These data were normalized into a range from 0 to 1 with eight decimal precision and were
saved in TIFF format per each partial record without data compression.

2.2.6. Proposed CNN for Vehicle Classification

The structure of the CNN created is in Table 3 below. The CNN was tested for various dataset
interclass combinations. Due to wheelbases and the speed of overpassing vehicles, up to 600 samples
per record (1.2 s, see Figure 6) were recorded for all vehicles, trucks included. Most of the small
vehicles’ last wheel was on average recorded up to a time sample of 200 records (0.4 s) for speeds
under 50 km/h and the last wheel up to a time sample of 500 records (1 s) per all vertical sensors with
speeds under 10 km/h.

Table 3. Design of CNN for vehicle classification.

Layers Parameters Number of CFs ?

Input 600 × 5 × 1
Conv2D + ReLU 300 × 4 128
Conv2D + ReLU 100 × 4 64
Conv2D + ReLU 100 × 4 32
MaxPool2D 2 × 1
Conv2D + ReLU 50 × 2 24
FC + Softmax 2, 3 or 5
ClassOutput 2, 3 or 5

? Convolution Filter (CF).

For that reason, the 1st 2D convolution layer was set to filter sizes from 300 to 4, covering at least a
wheel per record in the 1st layer. Enlarging the filter size on the 1st layer during training did not show
any improvements. After a 2D max pooling layer, a last 2D convolution layer was added with a filter
size of 50 to 2. This design showed the best-achieved results for binary classification on our prepared
dataset. After the last convolution laser, there was a fully connected layer with the softmax function to
assign the result to only one of all output classes based on an overall number of trained classes.
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For training purposes, there were 800 vehicle samples separated from the first 4 classes and
400 samples from the last truck class. Those samples were divided by a ratio of 9:1 for the input
training set and validation set during training.

3. Experimental Results

For all CNNs, the training had the same option setup as training for 200 epochs with the batch
size set to twenty. On the main diagonal in the confusion matrix, correctly classified vehicles of
all tested vehicles are shown in Table 4. For the first class (hatchback class), forty-nine-point-six
percent of vehicles were correctly classified (valid column), as shown in Table 5. For the second class
(combo/sedan class), twelve-point-point-eight percent of vehicles were correctly classified. For the
third class (SUV class), fifty-six-point-three percent of vehicles were correctly classified. For the fourth
class (MPV/minivan class), twenty-six-point-eight percent of vehicles were correctly classified. For the
last class (van/truck class), sixty-two percent of vehicles were correctly classified. An overall accuracy
of 28.9% for all tested vehicles using the proposed CNN was achieved. Due to the classification into
five classes and their similarities, a validation accuracy of only 28.9% was achieved.

Table 4. Results from the test part of the dataset from the CNN for vehicle classification. Final results
for each class on the main diagonal in confusion matrix (highlighted as bold) are shown.

Class 1 2 3 4 5 Valid

1 9.8% 1.7% 4.7% 3.3% 0.3% 49.6%
2 17.8% 25.8% 19.5% 9.8% 1.8% 12.8%
3 2.5% 0.8% 8.5% 3.0% 0.4% 56.3%
4 1.4% 0.4% 2.3% 1.7% 0.5% 26.8%
5 0.1% 0.1% 0.3% 0.6% 1.8% 62%

Overall 28.9%

The proposed CNN was modified to three classes for better spatial separation of classes.
On the main diagonal in the confusion matrix, correctly classified vehicles of all tested vehicles
are shown in Table 5. For the first class (hatchback class), seventy-four-point-three percent of vehicles
were correctly classified (valid column), as shown in Table 5. For the second class (SUV class),
thirty-seven-point-eight percent of vehicles were correctly classified. For the third class (van/truck
class), seventy-eight-point-nine percent of vehicles were correctly classified. An overall accuracy of
60.0% of all tested vehicles using the proposed CNN was achieved.

The proposed CNN was modified for classification between two classes (hatchback class to
van/truck class). An overall accuracy of 92.7% for both tested vehicle classes, as shown in Table 6,
using the proposed CNN was achieved.

Table 5. Results from the test part of the dataset from the CNN for vehicle classification reduced to
3 classes. Final results for each class on the main diagonal in confusion matrix (highlighted as bold)
are shown.

Class 1 2 3 Valid

1 38.9% 10.9% 2.5% 74.3%
2 18.8% 15.2% 6.2% 37.8%
3 1.1% 0.5% 5.9% 78.9%

Overall 60%
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Table 6. Results from the test part of the dataset from the CNN for vehicle classification reduced to
2 classes. Final results for each class on the main diagonal in confusion matrix (highlighted as bold)
are shown.

Class 1 3 Valid

1 83.2% 4.2% 95.1%
3 3.0% 9.6% 76.1%

Overall 92.7%

Proposed CNN for Binary Vehicle Classification

For the improvement of the achieved validation for three classes in the combination of binary
classification, we used the designed CNN for classification of three variations of the prepared dataset.
Three classes were compared as binary, with one to the rest. Continuing, data from the first class were
classified in opposition to the combined data of the other two and the second class in opposition to the
first and third class. Finally, data from the third class were classified into the combined data from the
first and second classes, as shown in Figure 15.

Input classes 1 vs. 2, 3 2 vs. 1, 3 3 vs. 1, 2

CNN 2

CNN CNN CNN

Predict 1, 2, 3

Output classes 3

Input

FC+Softmax

Class output

3 × 1 × 1

3

3

Figure 15. Process of the vehicle classification of overpassing vehicles.

In the first part, the proposed CNN for binary vehicle classification (small vehicles to the rest of
the vehicles) using the training dataset was trained. This training dataset was modified to a ratio of 1:1
(800 records for each class). The results from the test dataset are shown in Table 7.

Table 7. Results from the test part of the dataset from the CNN for vehicle binary classification. Final
results for each class on the main diagonal in confusion matrix (highlighted as bold) are shown.

Class 1 2,3 Valid

1 42.7% 9.7% 81.6%
2,3 16.9% 30.8% 64.6%

Overall 73.5%

In the second part, the proposed CNN for binary vehicle classification (SUV vehicles to the rest of
the vehicles) using the training dataset was trained. This training dataset was modified to a ratio of 1:1
(800 records for each class). The results from the test dataset are shown in Table 8.

Table 8. Results from the test part of the dataset from the CNN for vehicle binary classification. Final
results for each class on the main diagonal in confusion matrix (highlighted as bold) are shown.

Class 2 1,3 Valid

2 21.7% 18.3% 54.2%
1,3 10.9% 49% 81.8%

Overall 70.7%
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In the third part, the proposed CNN for binary vehicle classification (truck vehicles to the rest of
the vehicles) using the training dataset was trained. This training dataset was modified to a ratio of 1:2
(400 records for the van/truck class, 800 images for the rest of the vehicles). The results from the test
dataset are shown in Table 9.

An improved process by binary predicting three classes as one to the rest achieved valid
classification on the test dataset of 70.8%, as shown in Table 10. Each row in the confusion matrix
represents a test group for the class, and the columns represent the category. Highlighted values in the
diagonal show properly classified vehicles.

Table 9. Results from the test part of the dataset from the CNN for vehicle binary classification. Final
results for each class on the main diagonal in confusion matrix (highlighted as bold) are shown.

Class 3 1,2 Valid

3 4.5% 3.1% 59.2%
1,2 2% 90.5% 97.8%

Overall 94.9%

Table 10. Confusion matrix of classified vehicles. Final results for each class on the main diagonal in
confusion matrix (highlighted as bold) are shown.

Class 1 2 3 Valid

1 40.9% 10.9% 0.5% 78.1%
2 13.8% 25.8% 0.5% 64.3%
3 1.3% 2.1% 4.1% 54.9%

Overall 70.8%

Due to there being no information about vehicle speed, the wheelbase with axle configurations,
and wheel sizes, the valid classification of 70.8% achieved is acceptable. These results are from one
line of vertical FBG sensors with partially overpassing vehicles by one line of wheels. The speed and
wheelbase similarities between the first and second classes created significant incorrect classifications,
which can be reduced with a larger part of the dataset for the training of the designed CNN.

4. Discussion

The obtained results from the experimental platform, which consists of vertically oriented FBG
sensor arrays, are presented. Due to the location of the testing platform on the two way access road
into the university campus, because the sensor arrays are installed in the middle of this road, there was
some limitation. More than 80% of recorded vehicles passed over the inbuilt sensors. Those vehicles
were recorded only with one line of wheels without measurement by the horizontally oriented FBG
sensors. A minimum of two lines of sensors is necessary for wheelbase distance determination and
vehicle speed measuring. We focused on the classification of passing vehicles only from one line
of vertical FBG sensors. The proposed neural network was capable of separating trucks from other
vehicles with an accuracy of 94.9%. To classify three different classes, an accuracy of 70.8% was
achieved. Based on experimental results, extending the sensor arrays is recommended.

The approach that solved the width of the vehicle’s wheels is based on horizontal fiber optic
sensors with a 45◦ orientation in the vehicle’s direction over the test platform for the left and right side
of the vehicle, separated as shown in Figure 16. This solution is limited by vehicle speed due to the
double bridge construction over the road. Another technological approach, which is already widely
used, is based on bending plates installed in a concrete block of the road. These sensors could be
separated for the left and right side of the vehicle or be combined for weighing the whole vehicle’s axle.
With these realizations, there is no need to know the wheel width, because there is a whole contact
area of the wheel with road sensors.
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Figure 16. Proposed experimental platform with Fiber Optic Sensors (FOS) with 45◦ orientations
(orange color).

In order to gain significant improvements of these results, it would be necessary to extend the
sensor arrays to the full width of the road. An alternative solution will be a change from two way road
management to one way.
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Abbreviations

The following abbreviations are used in this manuscript:

2D Two-Dimensional
3D Three-Dimensional
Avg Average
CCN Convolutional Neural Network
CCTV Closed-Circuit Television
CF Convolution Filter
Conv2D Two-Dimensional Convolution layer
Conv2D R Conv2D Reduce
COST European Cooperation in Science and Technology
DAG Directed Acyclic Graph
FBG Fiber Bragg Grating
FC Fully Connected
FOS Fiber Optic Sensor
GPU Graphic Processor Unit
HO Horizontally Oriented
IDE Integrated Development Environment
IoT Internet of Things
MPV Multi-Purpose Vehicle
NoR Nothing-on-Road
px pixel(s)
ReLU Rectified Linear Unit
SUV Sports Utility Vehicles
TIFF Tagged Image File Format
VO Vertically Oriented
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