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Abstract

Introduction Laminins are the major components of vascular
and parenchymal basement membranes. We previously
documented a switch in the expression of vascular laminins
containing the α4 chain from predominantly laminin-9 (α4β2γ1)
to predominantly laminin-8 (α4β1γ1) during progression of
human brain gliomas to high-grade glioblastoma multiforme.
Here, differential expression of laminins was studied in blood
vessels and ductal epithelium of the breast.

Method In the present study the expressions of laminin isoforms
α1–α5, β1–β3, γ1, and γ2 were examined during progression of
breast cancer. Forty-five clinical samples of breast tissues
including normal breast, ductal carcinomas in situ, invasive
ductal carcinomas, and their metastases to the brain were
compared using Western blot analysis and
immunohistochemistry for various chains of laminin, in particular
laminin-8 and laminin-9.

Results Laminin α4 chain was observed in vascular basement
membranes of most studied tissues, with the highest expression
in metastases. At the same time, the expression of laminin β2
chain (a constituent of laminin-9) was mostly seen in normal

breast and carcinomas in situ but not in invasive carcinomas or
metastases. In contrast, laminin β1 chain (a constituent of
laminin-8) was typically found in vessel walls of carcinomas and
their metastases but not in those of normal breast. The
expression of laminin-8 increased in a progression-dependent
manner. A similar change was observed from laminin-11
(α5β2γ1) to laminin-10 (α5β1γ1) during breast tumor
progression. Additionally, laminin-2 (α2β1γ1) appeared in
vascular basement membranes of invasive carcinomas and
metastases. Chains of laminin-5 (α3β3γ2) were expressed in
the ductal epithelium basement membranes of the breast and
diminished with tumor progression.

Conclusion These results suggest that laminin-2, laminin-8, and
laminin-10 are important components of tumor microvessels and
may associate with breast tumor progression. Angiogenic
switch from laminin-9 and laminin-11 to laminin-8 and laminin-10
first occurs in carcinomas in situ and becomes more
pronounced with progression of carcinomas to the invasive
stage. Similar to high-grade brain gliomas, the expression of
laminin-8 (and laminin-10) in breast cancer tissue may be a
predictive factor for tumor neovascularization and invasion.

Introduction
Identification of new markers for human breast cancer devel-
opment, progression and metastases is important for success-
ful breast tumor therapy and management. Ductal carcinoma
in situ (DCIS)/ductal intraepithelial neoplasia is a proliferation

of malignant epithelial cells within the mammary ductal system
without evidence of infiltration. However, incomplete under-
standing of the natural history of DCIS and inability to identify
predictive factors for the development of invasive carcinoma
have resulted in a confusing variety of treatments for the
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disease [1,2]. How often DCIS transforms to invasive carci-
noma and what are the factors that predispose to this transfor-
mation are unresolved questions. Invasive ductal carcinoma
(IDC) is the most common type of breast cancer, accounting
for 80% of all cases.

Angiogenesis (the formation of new blood vessels) is a funda-
mental process associated with normal development but also
with tumor growth, invasion, and metastasis. Primary and met-
astatic breast tumors are dependent on angiogenesis, and
they exhibit the greatest angiogenic activity at the beginning of
tumor development [3,4]. Therefore, antiangiogenic therapy is
currently regarded as a promising and relatively new approach
to cancer treatment; a number of antiangiogenic drugs were
recently developed, and a new antiangiogenic basis for emerg-
ing metronomic therapy is also being established [5]. Unlike
dose-dense chemotherapy, which mostly targets proliferating
tumor cells, frequent or continuous metronomic chemotherapy
mainly targets endothelial cells [6]. It is important to identify
novel targets for this therapy, which will probably be combined
with classic chemotherapeutic drugs.

Angiogenesis is critical to solid tumor growth and invasion.
Newly formed blood vessels participate in tumor formation and
provide nutrients and oxygen to the tumor. Angiogenesis, a
response to tumor growth, is a dynamic process that is highly
regulated by signals from surrounding environment, including
growth factors/cytokines and extracellular matrix (ECM). Their
cooperative regulation is essential for angiogenesis accompa-
nying the growth of solid tumors [7-9].

The ECM and its specialized structures, basement mem-
branes (BMs), play important roles in tumor progression as
barriers to invasion, migration substrata for tumor cells, and as
components of tumor blood vessels. Penetration of vascular
BMs occurs during tumor dissemination and metastasis. Lam-
inins are major BM components and are important for cell
adhesion, migration, and angiogenesis. Dysregulated cell–
laminin interactions are major traits of various cancers. In many
solid tumors, including breast cancer, BMs are often discon-
tinuous or absent, which correlates with invasive properties
[10-14]. The distributions of laminin chains α1, α3, α5, β1–β3,
γ1, and γ2, as well as of type IV collagen chains, have been
studied in various types of carcinomas and in normal tissues.
Corroborating their widespread distribution in normal epithe-
lial tissues, laminin-5 and laminin-10 are the most abundant
laminins in the corresponding carcinomas [15]. Recent stud-
ies suggest that the expression of laminin-5 receptor, α6β4
integrin, may be a poor prognostic factor for invasive breast
carcinoma [16]. Furthermore, the utilization of siRNA to
reduce the expression of α6β4 integrin may be a useful
approach to prevent carcinoma progression [17]. Cleavage of
laminin-5 by matrix metalloproteinases (MMPs) produces a
fragment (DIII) that binds to epidermal growth factor receptor
and stimulates downstream signaling through mitogen-acti-

vated protein kinase, MMP-2 expression, and cell migration.
These findings indicate that ECM cues may operate via direct
stimulation of receptor tyrosine kinases (e.g. epidermal growth
factor receptor) in tissue remodeling and, possibly, cancer
invasion [18].

Laminin-8 (α4β1γ1) plays important roles in angiogenesis and
migration of endothelial cells [19-21]. Laminin α4-chain-defi-
cient mice exhibit impaired newborn capillary maturation [22].
These reports support the hypothesis on the pivotal role of
laminin-8 in the process of neovascularization. In addition, our
previous work has shown that laminin-8, a vascular BM com-
ponent, was overexpressed in high-grade gliomas and their
adjacent tissues as compared with normal brain, which corre-
lated with shorter time to glioblastoma recurrence and patient
survival [23,24]. Blocking laminin-8 expression resulted in the
inhibition of glioma invasion in vitro [25].

Here, we studied the expression of laminins, in particular lam-
inin-8 and laminin-9, in human breast tumors, such as DCIS,
invasive ductal carcinoma, and metastases of IDC, in compar-
ison with corresponding normal breast tissues.

Materials and methods
Tissue samples
Samples of breast cancers, breast cancer metastases to the
brain, and samples of normal breast were obtained from the
Department of Pathology and Laboratory Medicine, Cedars–
Sinai Medical Center. The study protocol was approved by the
institutional review board and conformed with the guidelines of
the 1975 Declaration of Helsinki. Immediately after surgery,
each sample was frozen in liquid nitrogen and stored at -80°C
until protein extraction or embedding in OCT (optimal cutting
temperature) compound for cryosectioning. Before protein
extraction, each frozen sample was morphologically evaluated,
in accordance with the World Health Organization classifica-
tion of breast tumors.

A total of 45 samples were analyzed by Western blot analysis
and immunohistochemistry, including normal breast tissues (n
= 14), DCIS (n = 5), primary IDC, not otherwise specified (n
= 23), and carcinomas metastatic to the brain (n = 3). Twenty-
seven samples were analyzed using both methods to confirm
laminin-8 and laminin-9 chain expression.

Immunohistochemistry
Sections of 38 specimens (14 normal breast, five DCIS, 16
IDC, and three brain metastases of cancer) were analyzed. Tis-
sue samples were snap-frozen in liquid nitrogen by a patholo-
gist immediately after surgery, embedded in OCT compound,
and 8 µm sections were cut on a cryostat. Indirect immunoflu-
orescence, photography, and routine negative controls were
as described previously [23,24]. Briefly, we used well charac-
terized polyclonal and mAbs to laminin chains α1–α5, β-β3,
γ1, and γ2 (Table 1) [26-31]. Secondary cross-species
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absorbed fluorescein- and rhodamine-conjugated goat anti-
mouse, anti-rat, and anti-rabbit antibodies were obtained from
Chemicon International (Temecula, CA, USA). Polyclonal anti-
bodies to human von Willebrand factor (Sigma-Aldrich Corp.,
St. Louis, MO, USA) were used for endothelial cell detection.
Mouse mAbs to cytokeratin-8 and cytokeratin-18 (Biomeda,
Foster City, CA, USA) were used for epithelial cell detection.
The overwhelming majority of carcinomas also expressed
these cytoskeletal proteins. mAbs were used as straight hybri-
doma supernatants or at 10–20 µg/ml when purified, and pol-
yclonal antibodies were used at 20–30 µg/ml. Sections were
viewed and photographed using an Olympus BH-40 fluores-
cence microscope equipped with 6 megapixel Magnafire dig-
ital camera. Routine specificity controls (without primary or
secondary antibodies) were negative. At least two independ-
ent experiments were performed for each marker, with identi-
cal results.

Quantitation of tissue staining intensity
Staining intensity was graded as follows: -, no staining; +,
weak staining; ++, distinct staining; +++, bright staining;
++++, very strong staining; and /, when vessels in the same
specimen exhibited two different categories of staining. The
immunofluorescent staining was independently analyzed by
three researchers in each case.

Western blot analysis
Twenty-eight tissue samples were analyzed (10 normal breast
tissues, four DCIS, 11 IDC, and three brain metastases of
breast cancer). Tissue samples were snap-frozen in liquid
nitrogen by a pathologist immediately after surgery. Proteins
were separated using 10% Tris-glycine SDS-PAGE (Invitro-
gen, Carlsbad, CA, USA) under reducing conditions. Lysates
of human glioma T98G, known to express laminin-8 but not
laminin-9 [25,30], were used as positive control. The gels
were blotted onto nitrocellulose membrane (Invitrogen). The
membranes were probed with primary mAbs followed by
chemiluminescent detection using the Immun-Star™ AP kit
with alkaline phosphatase-conjugated secondary antibodies
(Bio-Rad, Hercules, CA, USA). Antibodies (Table 1) were
used to laminin α4 chain (mAb 8B12), β1 chain (mAb LT3),
and b2 chain (mAb C4). Antibody to β-actin (Table 1) was
used to control for equal loading of gel lanes.

Statistical analysis
Results of the immunostaining data were analyzed by the two-
sided Fisher's exact test using the InStat software program
(GraphPad Software, San Diego, CA, USA). To this end [23],
the number of cases with a certain staining pattern in one
experimental group (e.g. normal) was compared with the
number of cases with the same staining pattern in another

Table 1

Antibodies used in the study

Antigen Antibody Reference/source

Laminin α1 chain Rabbit pAb 1057 (VI/V) [26]

Laminin α2 chain Mouse mAb 1F9 [27]

Laminin α3 chain Mouse mAb D2-1 [28]

Mouse mAb C2-5

Laminin α4 chain Rabbit pAb 1129 (IIIa) [29]

Mouse mAb 8B12 [30]

Laminin α5 chain Mouse mAb 4C7 Chemicon International

Laminin β1 chain Rat mAb LT3 Upstate

Mouse mAb LN26-7 Axxora/Alexis

Laminin β2 chain Mouse mAb C4 Developmental Studies Hybridoma Bank

Laminin β3 chain Mouse mAb A2'-2 [28]

Laminin γ1 chain Rat mAb A5 [31]

Laminin γ2 chain Mouse mAb D4B5 Chemicon International

Cytokeratin-8 and -18 Mouse mAbs B22.1 & B23.1 Biomeda

β-actin Mouse mAb AC15 Sigma-Aldrich

von Willebrand factor Rabbit pAb Sigma-Aldrich

mAb, monoclonal antibody; pAb, polyclonal antibody.
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Figure 1

Immunohistochemistry of human breast tissues including normal, DCIS, primary IDC and metastasesImmunohistochemistry of human breast tissues including normal, DCIS, primary IDC and metastases. (a) Panels A–D: hematoxylin and eosin stain-
ing of normal breast, DCIS, IDC and metastatic tissues, respectively. Panels E–H: double immunostaining with laminin α4 (red) and an endothelial 
marker, von Willebrand factor/factor-8 (F8; green). Panels I–L: double immunostaining with laminin β1 (red) and an endothelial marker von Wille-
brand factor (F8, green). Panels M–P: double immunostaining for laminin β2 (red) and F8 (green). For each representative case, serial sections are 
shown. (b) Panels A–D: hematoxylin and eosin staining (same as in Fig. 1a, panels A–D). Panels Q–T: double immunostaining for laminin α4 chain 
(red) and lining epithelium markers cytokeratins (CK)-8/18 (green). Panels U–X: double immunostaining for laminin β1 (red) and CK-8/18 (green). 
For each case, serial sections to Fig. 1a are shown. Because of lack of appropriate antibodies, no double staining could be performed for laminin β2 
chain and CK-8/18. In normal breast tissues, laminin-9 chains α4 and β2 are expressed in BMs of mammary gland ducts (arrows in Fig. 1a, panels E 
and M, and Fig. 1b, panel Q) and blood vessels. In DCIS laminin α4 chain starts disappearing from ductal BMs (Fig. 1a, panel F, and Fig. 1b, panel 
R) but β2 chain is present (Fig. 1a, panel N [arrows]). Laminin-8 chains α4 and β1 and laminin-9 chains α4 and β2 colocalize in some microvessels. 
In all invasive ductal carcinomas, laminin-8 α4 and β1 chains are both found in BMs of F8-positive microvessels (Fig. 1a, panels G and K). Laminin-9 
is absent (no β2 chain; Fig. 1a, panel O). In metastases of breast carcinoma, laminin-8 chains are seen in microvascular BMs (Fig. 1a, panels H and 
L; Fig. 1b, panels T and X) but laminin-9 is absent again (no β2 chain; Fig. 1a, panel P). BM, basement membrane; DCIS, ductal carcinoma in situ; 
IDC, invasive ductal carcinoma.
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Table 2

Expression of laminin-8 and laminin-9 chains in breast tissue blood vessel basement membranes

Sample Diagnosis Ln-α4 Ln-β1 Ln-β2 Ln-γ1 Ln typea

7 Normal + - +++ +++ 9

9 Normal ++ + +++ +++ 9

11 Normal + ++ ++++ +++ 9

17 Normal ++ - +++ ++ 9

21 Normal - - +++ +++ 9

25 Normal + - +++ +++ 9

32 Normal ++ +/- +++ +++ 9

75 Normal + +/- + ++ 9

77 Normal +++ - +++ +++ 9

79 Normal ++ - + ++ 9

64 Normal + ++ + +++ 8/9

65 Normal + +/- - ++ 9

66 Normal ++ + - +++ 8

67 Normal + + + ++ 9

8 DCIS ++ ++ +++ +++ 8/9

22 DCIS +++ +++ - +++ 8

32 DCIS ++ +/- +++ +++ 9

38 DCIS ++ + ++ ++ 9

41 DCIS ++ + +++ +++ 9

1 IDC +++ ++++ - +++ 8

2 IDC +++ +++ - +++ 8

3 IDC +++ +++ - +++ 8

5 IDC ++ ++ - ++ 8

6 IDC ++++ +++ - +++ 8

12 IDC + - + +++ 9

14 IDC ++ + ++ +++ 9

20 IDC ++++ ++++ - +++ 8

22 IDC +++ ++ - +++ 8

24 IDC ++++ +++ ++ +++ 8/9

28 IDC +++ +++ - +++ 8
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experimental group (e.g. breast cancer or brain metastasis). P
< 0.05 was considered statistically significant.

Results
Laminin β1 chain is overexpressed in capillary basement 
membranes during tumor progression
To study laminin chain expression, serial sections of human
breast tumor and normal tissues were stained either with
hematoxylin and eosin for morphological observation (Fig. 1a,
panels A–D; duplicated in Fig. 1b, panels A–D) or by indirect
immunofluorescence with antibodies to different laminin
chains. Some sections were double stained using antibodies
to an endothelial marker, von Willebrand factor/factor-8 (F8;
Fig. 1a, panels E–P), or epithelial cytokeratin-8 and cytokera-
tin-18 (CK; Fig. 1b, panels Q–X). We first concentrated on
chains of laminin-8 (α4β1γ1) and laminin-9 (α4β2γ1) that
underwent distinct changes during brain tumor progression
[23,24] but that have not previously been studied in breast
cancer.

The expression of laminin α4 chain in normal breast and DCIS
was detected in the BMs of cytokeratin-8/18-positive epithe-
lial cells of ductal and lobular structures (weak to negative in
DCIS), as well as in BMs of factor-8-positive blood vessels
(Table 2; Fig. 1a, panels E and F; Fig. 1b, panels Q and R). In
invasive tumors, weak epithelial BM staining was only seen in
the remnants of pre-existing ducts (not shown) and not around
invading groups of epithelial cells (Fig. 1b, panel S). Vascular
BMs were positive for α4 chain in all IDCs and metastatic
tumors with distinct colocalization of α4 chain and factor-8
(Table 2; Fig. 1a, panels G and H). The staining intensity of α4
chain in vascular BMs of many primary and metastatic carcino-
mas was stronger than in normal tissue.

In normal breast, the epithelial or vascular expression of lam-
inin β1 chain was nearly absent (Table 2; Fig. 1a, panel I; Fig.
1b, panel U). In DCIS, IDC and metastases, β1 chain

appeared in the BMs of tumor vessels (Table 2; Fig. 1a, panels
J–L; Fig. 1b, panels V–X).

Laminin β2 chain expression is decreased during tumor 
progression
In contrast to β1 chain, the expression of β2 chain was readily
detected mainly around epithelial structures of normal breast
tissue, with some vascular BM staining (Fig. 1a, panel M). This
pattern was preserved in all DCIS cases (Fig. 1a, panel N)
except one in which β2 chain was not detected. Additionally,
β2 chain expression was not observed around invasive carci-
noma cells or in vascular BMs of most IDCs and of all metas-
tases (Table 2; Fig. 1a, panels O and P). In these cases, β2
chain could only be detected around remnant ducts within
carcinomas.

The data summarized in Table 3 show that laminin-9 (α4β2γ1)
is predominant in the vascular BMs of normal breast and
DCIS. However, a switch from β2 to β1 chain leads to pre-
dominant expression of laminin-8 (α4β1γ1) in IDCs and espe-
cially in their metastases.

The expression of laminin-2 and laminin-10 increases in 
capillary basement membranes during tumor 
progression, similar to laminin-8
The expression of other laminin chains α1, α2, α3, α5, β3, γ1,
and γ2 was also studied in normal and malignant breast tis-
sues (Table 4). The α1 chain was only seen in three cases alto-
gether, either in epithelial (one case; not shown) or in vascular
(two cases; Table 4) BMs. The α2 chain, in accordance with
previous data obtained in other tumors, was upregulated in
vascular BMs of DCIS, invasive breast carcinomas, and metas-
tases compared with normal breast (Table 4). Taking into
account the expression of β1 chain, this finding indicates the
appearance of laminin-2 (α2β1γ1) in tumor vascular BMs.
Chains of laminin-5 (α3β3γ2) were mainly seen in ductal struc-
tures but not in blood vessel BMs (Table 4). The ubiquitous
laminin α5 chain was seen in both epithelial and vascular BMs

30 IDC +++ ++ ++ +++ 8/9

34 IDC +++ ++ +++ +++ 8/9

36 IDC ++++ ++++ - +++ 8

76 IDC +++ ++ - +++ 8

78 IDC ++ ++ - +++ 8

121 Metastasis ++++ +++ +/- +++ 8

146 Metastasis ++++ ++++ - +++ 8

157 Metastasis +++ +++ +/- +++ 8

aPredominant laminin type is shown for each case; when some vessels had one isoform and the others had another, both are shown (see also 
Table 3). Staining intensity was graded as follows: -, no staining; +, weak staining; ++ distinct staining; +++, bright staining; ++++, very strong 
staining, /, some vessels in the same sample are in one category and some are in another category. Ln, laminin; DCIS, ductal carcinoma in situ; 
IDC, invasive ductal carcinoma.

Table 2 (Continued)

Expression of laminin-8 and laminin-9 chains in breast tissue blood vessel basement membranes
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of all tissues. This chain is present in laminin-10 (α5β1γ1) and
laminin-11 (α5β2γ1). Given the distribution of β1 and β2
chains presented above, there is also a shift from laminin-11 to
laminin-10 in vascular BMs of most invasive tumors compared
with normal breast (Tables 2 and 4).

Laminin γ1 chain, which is part of more than 10 laminin iso-
forms, was uniformly and strongly expressed in BMs of epithe-
lial cells and blood vessels of all tissues studied (Table 2).

Western blotting reveals a shift from β2-containing to β1-
containing laminins during breast cancer progression
To confirm the expression of select laminin chains, we com-
pared laminin α4, β1, and β2 chains in normal and cancerous
breast tissues using semiquantitative Western blot analysis
with gel loading normalization by β-actin (Fig. 2). The expres-
sion of laminin α4 chain was variable and present in all tumor
tissues and in 50% of corresponding normal tissues (two out
of 10 normals shown in Fig. 2). The expression of β2 chain was
high in all normal tissues, and the signal declined in DCIS, up
to complete absence in IDCs and metastases. In contrast,
expression of β1 chain was detected in 50% of DCIS (two out
of four DCIS shown in Fig. 2) and in all invasive carcinomas
and metastases, but only weakly in some normal breast sam-
ples. The data suggest that the expression of α4 chain in nor-
mal tissues corresponds mostly to laminin-9. In contrast to
normal breast, a marked shift from β2 to β1 chain in invasive
breast carcinomas and metastases suggests predominant
expression of laminin-8 in a tumor grade-dependent manner.
The results from Western blot analysis are in agreement with
data obtained by immunohistochemistry.

Discussion
Laminins are heterotrimeric glycoproteins composed of α, β,
and γ chains, and are commonly found as structural elements
of all BMs. To date, five α, three β, and three γ chains have
been identified and are known to give rise to at least 15 laminin
isoforms [32,33]. Although the functions of laminins may vary
by isoform, they serve not only as structural elements and as a
scaffold for cell attachment, but also as signaling molecules
through their interactions with cell surface receptors [32-34].
Specific transitions of laminin isoforms occur in various tissues
at specific stages of development [35-39]. In invasive cancers,

laminins usually become discontinuous or absent around
tumor foci, which is attributed to either increased degradation
or reduced synthesis. At the same time, previously docu-
mented changes in the expression of laminin isoforms con-
cerned only α2-chain-containing laminins in basal cell
carcinomas, medullary thyroid carcinomas, Schwannomas,
and hepatocellular carcinomas [38,40-42]. We have now con-
firmed these data in breast tumors and their metastases (Table
4).

In this report we document for the first time a shift in α4 and
α5 chain-containing laminin isoforms (from laminin-9 to lam-
inin-8, and from laminin-11 to laminin-10, respectively) in inva-
sive breast cancers. Chains of laminin-9 (α4β2γ1) and laminin-
11 (α5β2γ1) were detected in vessel BMs of normal breast tis-
sue. In DCIS, both laminin-8 and laminin-9 (plus laminin-10
and laminin-11) chains were expressed in blood vessel BMs.
In invasive ductal breast carcinomas and their metastases to
the brain, mostly laminin-8 and laminin-10 were expressed in
vascular BMs, similar to the situation with brain gliomas, during
the appearance of grade IV glioblastoma multiforme. In breast
cancer the switch between laminin-9 and laminin-8 occurred
in nearly all tumors, and therefore it was even more pro-
nounced than in glioblastoma multiforme, with laminin-8
expression in 75% of cases [23,24]. The same was true for
laminin-11 and laminin-10. The only difference between brain
and breast tumors appears to be in the relative quantity of lam-
inin α4 chain. It was distinctly upregulated in brain glioblasto-
mas but not as much in invasive breast carcinomas. Laminin
isoform switch in invasive breast cancers due to a shift from β2
to β1 chain may be useful for tumor prognosis in terms of fur-
ther tumor progression and invasion potency.

Angiogenesis is essential for tumor growth and metastasis
[43]. Tumor capillaries develop in a dynamic process, starting
at the sites of local degradation of the vascular endothelial
BMs. Afterward, endothelial cells migrate, proliferate, and dif-
ferentiate to form a capillary sprout, while interacting with
newly secreted ECM proteins from cancer cells and/or
endothelial cells [34,43]. This remodeling of the vascular BMs
by host endothelial cell is essential for tumor angiogenesis.

Table 3

Summary of laminin-8 and laminin-9 expression in breast tissues as determined by immunohistochemistry

Histological diagnosis Number of cases Laminin-8 (n [%]) Laminin-8/9 (n [%]) Laminin-9 (n [%])

Normal breast tissue 14 1 (7) 1 (7) 12 (86)

Ductal carcinoma in situ 5 1 (20) 1 (20) 3 (60)

Invasive ductal carcinoma 16 11 (69) 3 (19) 2 (12)

Metastasis to the brain 3 3 (100) 0 0

The percentage of cases with a given predominant laminin isoform was determined using data in Table 1. For both laminin-8 and laminin-9 
expression, the difference between normal tissues and carcinomas or metastases is statistically significant (P < 0.015).
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It is generally accepted that tumor cells secrete various ang-
iogenic factors that enable endothelial cells to migrate into the
tumor tissue and form new capillaries [34]. These factors may
provide a mechanism for the observed switch of laminin-9 and
laminin-11 in normal vascular BMs to laminin-8 and laminin-10
(plus appearance of laminin-2) in the microvascular BMs of
invasive ductal breast carcinomas and of their metastases. In
molecular terms, this switch relates to the change in expres-
sion of β2 to β1 laminin chain during breast cancer
progression. This change may reflect the remodeling process
of vessel BMs during progression from normal and DCIS to
invasive carcinoma or metastasis. It has been shown that
cleavage of laminin-5 γ2 chain by MMP-2 facilitates cell migra-
tion [44]. It may be suggested that, in breast carcinoma ves-
sels, laminin β2 chain may also be degraded by some tumor-
derived proteinases, which may trigger a compensatory upreg-
ulation of laminin-8 and laminin-10 to replace the 'normal' lam-
inin-9 and laminin-11 in tumor tissue, which in turn would
promote angiogenesis [9].

Another possible mechanism of laminin β2 to β1 chain switch
in breast carcinomas may be related to different regulation of
their expression. The TESS database analysis of laminin β1
and β2 chain gene promoter sequences [45] shows that β2

but not β1 promoter has a putative binding site for the early
growth response protein Egr-2. This zinc finger DNA-binding
transcription factor is a tumor suppressor and is decreased in
various cancers [46,47]. Interestingly, Egr-2 expression is
upregulated by tumor suppressor PTEN, which may play an
important role in cell growth suppression [48,49]. Further-
more, the chromosomal loci of these two respective genes are
very close to each other (Egr-2, 10q21-q22; PTEN,
10q23.31). Loss of heterozygosity of this chromosome 10
region and reduced PTEN expression are associated with
poor outcome of invasive ductal breast carcinoma [50-52]. It
may be suggested that the sequential downregulation of lam-
inin β2 chain after the inactivation of PTEN and its downstream
transcription factor Egr-2 in invasive breast cancer may bring
about a compensatory increase in β1 chain expression, with
the appearance of new laminin isoforms laminin-2, laminin-8,
and laminin-10. Further experimentation is needed to support
this mechanism.

A change from β2-containing to β1-containing laminins may
present a special advantage for breast cancer cells. Laminin-8
and laminin-10 can promote endothelial cell attachment,
migration, and tube formation on a BM matrix. Antisense inhi-
bition of laminin-8 expression reduced glioma cell invasion

Table 4

Expression of different laminin chains in breast tissue blood vessel basement membranes

Sample Diagnosis Ln-α1 Ln-α2 Ln-α3 Ln-α5 Ln-β3 Ln-γ1 Ln-γ2

16 Normal + - - +++ - +++ -

17 Normal - - - +++ - ++ -

75 Normal - + - +++ - +++ +

77 Normal - - - ++ - +++ ++

67 Normal - - - +++ - +++ -

22 DCIS - - - +++ - +++ -

38 DCIS ++ ++ - +++ - ++ -

41 DCIS - + - +++ - +++ -

50 DCIS - ++ - +++ - +++ -

20 IDC - ++/+++ - +++ - +++ -

30 IDC - - - + - +++ -

28 IDC - ++ - +++ - +++ -

52 IDC - - - +++ - +++ -

54 IDC - ++ - +++ - +++ -

121 Metastasis - +++ - +++ - +++ -

146 Metastasis - +++ - +++ - +++ -

157 Metastasis - ++ - +++ - +++ -

membranes Ln, laminin; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma. Staining intensity was graded as follows: -, no staining; 
+, weak staining; ++ distinct staining; +++, bright staining; ++++, very strong staining, /, some vessels in the same sample are in one category 
and some are in another category.
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through a BM matrix in vitro [25]. Therefore, accumulation of
laminin-2, laminin-8, and laminin-10 in tumor vascular BMs
might facilitate invasion of tumor cells through these BMs and
subsequent metastasis. Indirect evidence in favor of laminin-
10 as another modulator of glioma invasion was obtained in
our experiments. Antisense oligonucleotides to β1 chain were
more effective than those to laminin α4 chain in inhibiting gli-
oma invasion in vitro [25]. Whereas the α4 antisense would
downregulate only laminin-8, the β1 antisense would reduce
both laminin-8 and laminin-10, thus supporting the role for lam-
inin-10 in tumor invasion. Additional studies are needed to
determine whether laminin-10 indeed has invasion-promoting
activity. It would be interesting to determine whether other
malignant tumors also have increased expression of laminin-2,
laminin-8, and laminin-10. For the purposes of pathological
diagnosis and prognosis, only the relative expression of β1 ver-
sus β2 chain may need to be determined. Antibodies, anti-
sense oligonucleotides, or siRNA to laminin β1 chain might be
useful for future treatment of solid tumors of various sites. In
the case of breast cancers, such reagents may complement
the existing and clinically useful herceptin antibody to HER-2/
neu [53-55].

Conclusion
It may be concluded that laminin-2, laminin-8, and laminin-10
are important components of breast cancer microvessels, and
that lack of laminin-9 and laminin-11 may play a role in remod-
eling of new vessels in breast cancer. The expression of lam-

inin-2, laminin-8, and laminin-10 in cancer microvasculature
may be related to the development of breast cancer-induced
neovascularization and tumor progression. Similar to high-
grade brain gliomas, a switch from vascular laminin-9 and lam-
inin-11 to laminin-8 and laminin-10 in breast cancer tissue
(from β2 to β1 chain) may be a predictive factor for tumor
neovascularization and a possible target for antiangiogenic
therapy. Because expressions of laminin-8 and laminin-10
have now been observed during progression of both gliomas
and ductal breast carcinomas, they may have general predic-
tive value in solid human tumors.
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Figure 2

Western blot analysisWestern blot analysis. Shown are eight out of 28 samples (two normal breast samples, two DCIS, two IDC and two breast cancer metastases to 
brain) subjected to Western blot analysis for laminin α4, β1 and β2 chains. Gel loading was normalized by β-actin (lower row). The expression of 
laminin α4 chain, a constituent of laminin-8 and laminin-9, varies in normal and tumor tissues, with the highest expression detected in metastases. 
Laminin β2 chain, a constituent of laminin-9, is highly expressed in normal tissues, but its expression is very low in breast cancer tissues. In contrast, 
expression of laminin β1 chain, a constituent of laminin-8, is high in brain metastases and IDC but low in DCIS and absent in normal tissues. Laminin 
α4 chain migrates at 200 kDa, β1 chain at 230 kDa, β2 chain at 190 kDa, and β-actin at 47 kDa. The T98G glioblastoma cell line, which is known to 
express α4 and β1 chains of laminin-8 but no β2 chain, is used as a positive control.
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