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Cortical population activity within a preserved
neural manifold underlies multiple motor behaviors
Juan A. Gallego 1,2, Matthew G. Perich 3, Stephanie N. Naufel3, Christian Ethier 4,

Sara A. Solla1,5 & Lee E. Miller 1,3,6

Populations of cortical neurons flexibly perform different functions; for the primary motor

cortex (M1) this means a rich repertoire of motor behaviors. We investigate the flexibility of

M1 movement control by analyzing neural population activity during a variety of skilled wrist

and reach-to-grasp tasks. We compare across tasks the neural modes that capture dominant

neural covariance patterns during each task. While each task requires different patterns of

muscle and single unit activity, we find unexpected similarities at the neural population level:

the structure and activity of the neural modes is largely preserved across tasks. Furthermore,

we find two sets of neural modes with task-independent activity that capture, respectively,

generic temporal features of the set of tasks and a task-independent mapping onto muscle

activity. This system of flexibly combined, well-preserved neural modes may underlie the

ability of M1 to learn and generate a wide-ranging behavioral repertoire.
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The generation of movement is crucial for survival. Whether
seeking food, escaping a predator, or using tools to con-
struct a shelter, motor behavior is arguably the ultimate

purpose of the nervous system1. Primates, especially humans,
have evolved an advanced cerebral cortex that allows for a rich
repertoire of arm and hand movements. The activity patterns of
neurons in the primary motor cortex (M1) during such move-
ments are highly complex, and the mechanisms by which a given
population of neurons controls varied behaviors remain unclear.

Historically, researchers have ascribed independent encoding
functions to the activity of single neurons2–4 or groups of neu-
rons5–8, and looked for correlations between neural activity and
specific movement parameters. The hope was that neural activity
would encode particular parameters in a largely invariant man-
ner. However, considerable variability in the activity patterns
across neurons9,10 and instability of movement parameter
encoding by single neurons across different conditions4,11–18 have
obscured the identification of simple underlying principles. An
intriguing alternative is that the computations involved in gen-
erating movement are not based on the independent modulation
of single neurons, but rather performed at the population level by
networks of interconnected neurons10,19–21 whose coordinated
activity commands the muscles that cause the behavior19,21–24. In
this view, correlates between single neuron activity and behavior
are epiphenomenal10,25–27 and yield only a limited and distorted
view of the causal relation between M1 activity and behavior.

To study neural function at the population level, we describe
neural activity in a high-dimensional neural space in which each
axis represents the activity of one recorded neuron21,28–30. The
dimensionality of this neural space is determined by the number
of neurons that can be recorded simultaneously, until recently in
the order of hundreds. This number is increasing rapidly31,
reaching 105 and beyond32. This high dimensionality imposes
practical and theoretical challenges, thus many recent studies
have applied dimensionality reduction methods28 to neural
spaces for numerous brain areas. During typical laboratory tasks,
neural activity has been found to explore only a limited, low-
dimensional portion of the full neural space21,33. This sub-
dimensional region, the neural manifold21,29,30,34, reflects cov-
ariance patterns across the neural population activity (Fig. 1b).
The neural manifold is spanned by a set of basis vectors, the
neural modes21 (Fig. 1b), patterns of neural covariance thought to
arise from the network connectivity35 (Fig. 1a, c). Evidence for
the relation of the neural manifold to the underlying connectivity
also arises from recent results on the difficulty of altering the
orientation of the manifold voluntarily on a short learning
timescale of only hours29.

In the manifold view, the population activity captured by
neural modes is the fundamental computational unit, while the
activity of each single neuron is simply a one-dimensional (1-D)
projection of this population activity21,36,37 (Fig. 1c). Neurons
thus likely provide only randomly oriented, low-dimensional
glimpses36 of the overall neural picture, the neural analog of blind
men examining an elephant. Recent experimental and theoretical
evidence is consistent with the view that neural function may be
built upon the coordinated activation of these neural modes19–
21,38. Almost all of these experiments have focused on a single
task or behavior19,24,34,38–41, which makes it difficult to deter-
mine the extent to which the identified manifold truly captures
fundamental building blocks of neural activity (an exception is
ref. 42, a comparison of rodent reaching and walking). The open
question is that of potential similarities among manifolds iden-
tified in the same neural population during a variety of skilled
motor tasks.

Here, we hypothesize that the motor cortex generates varied
skilled behaviors through the flexible activation of different

combinations of neural modes that are not fully task-specific. To
examine this hypothesis, we recorded neural population activity
from M1 during several skilled arm and hand tasks—defined
here as those that require independent control of individual
joints43—and identified the corresponding neural modes. Despite
widespread differences in both neural activity and motor output,
the orientation of the corresponding manifolds within the neural
space was unexpectedly well-preserved across tasks. We then
studied the time-dependent activation of the neural modes, the
latent activity21,28,34,44 that characterizes the neural population
dynamics within the manifold. We found significant similarities
for the different tasks, with the activity of one set of preserved
neural modes being strongly predictive of muscle activity patterns
(EMG) across tasks. Our observations stand in contrast to pre-
vious studies that tried to identify stable behavioral correlates of
single neuron activity and found instead that these relationships
were quite labile10,11,13,15,18,45–47. The presence of neural modes
in other brain areas, like frontal, prefrontal, parietal, visual,
auditory, and olfactory cortices (see refs. 21,28 for recent reviews)
suggests that the activation of flexible combinations of neural
modes may be the general mechanism underlying the population
dynamics associated with neural computation.

Results
Hypothesis. We hypothesized that skilled motor behaviors are
generated by the flexible activation of different combinations of
well-preserved neural modes, rather than the independent mod-
ulation of single neurons. Consider a simple three-neuron
example (Fig. 1b). The population activity during movement
traces a trajectory that could in principle explore all regions of the
neural space. In practice, correlations (covariations) between
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Fig. 1 Hypothesis: varied motor behaviors are caused by the flexible
activation of combinations of neural modes. a The connectivity of the
cortical network results in neural modes whose combined activity explains
the specific activity of individual neurons. b The neural space for the three
neurons recorded in a. The time-dependent population activity is
represented by a trajectory (in black, arrow indicates time direction) mostly
confined to a two-dimensional neural manifold (gray plane) spanned by two
neural modes (green u1 and blue u2 basis vectors). c The time-dependent
activity of each recorded neuron is a weighted combination of the latent
activities L1 and L2, each the time-dependent activation of the
corresponding neural mode. d Do neural manifolds for different tasks
(shown in gray and light purple) have similar orientation? Are the latent
activities for the two tasks (shown in black and purple) similar? These are
the two critical questions to test our hypothesis
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neurons constrain the possible population patterns29 and thus the
region of neural space actually explored by the population
dynamics. We use a dimensionality reduction technique, such as
principal component analysis (PCA)28,30,34 to identify two
dominant neural modes for this trajectory (u1 and u2 in Fig. 1b).
These two modes span a two-dimensional (2-D) neural
manifold21,29,30, the plane where the trajectory is largely confined
(Fig. 1b).

Based on the presumed relationship between network con-
nectivity and the neural manifold21,29,35, we hypothesized that
varied skilled arm and hand tasks would involve similar neural
modes. If correct, this hypothesis would have two implications.
First, neural manifolds for different tasks should be relatively well
aligned, a prediction we can test using principal angles48. As an
example, consider the 2-D manifolds in Fig. 1d. Since they
intersect, the smallest principal angle is actually zero. The second
principal angle is the small angle between the two manifolds.
These small principal angles quantify similar orientation and
indicate that much of the neural covariance structure is preserved
across these two tasks. Second, we would expect similarities in the
dynamic activation of these neural modes49, the latent activity;
these similarities would arise from generic activity patterns
intrinsic to the network26,50 and/or from similarities in motor
output across tasks. Demixed PCA (dPCA)51 and canonical
correlation analysis (CCA)22,52 are useful tools for comparing
latent activities.

Behavioral tasks and neural recordings. To study M1 activity,
we recorded data using 96-channel microelectrode arrays
chronically implanted in the hand area of M1 of three rhesus
macaque monkeys (Monkeys C, T, and J). In each session, the
monkeys performed one of two sets of motor tasks (Methods).
The first set comprised several wrist tasks used to dissociate
kinematics and forces needed to acquire a given target, a strategy
used in many prior single neurons studies2–5,16,53. This set of
tasks included 1-D isometric, unloaded, and elastic-loaded
movements (Monkeys C and J); Monkey J also performed a 2-
D version of the isometric task12. The other set (Monkeys T and
C) included a power grip task54,55, and a task that required a ball
to be grasped, transported, and dropped55. One task of each set is
illustrated in Fig. 2. In the 1-D isometric wrist task (Fig. 2a), the
monkeys controlled cursor movements to specific targets through
the torque exerted at the wrist (Fig. 2b; see Fig. 2c for the torque
trajectories during the 2-D isometric task, and Fig. 2d for the
torques and velocities for all wrist tasks). In the power grip task
(Fig. 2f), the monkeys reached for and grasped a pneumatic tube,
squeezing it to achieve a target force (Fig. 2g). During each task,
we identified neural units through threshold crossings on each
electrode. Across all tasks, sessions, and monkeys, we detected
65.9 ± 16.9 (mean ± s.d.; range, 45–91) units with waveforms that
were stable throughout a given session. Each task was associated
with distinct patterns of muscle (Supplementary Fig. 1) and
neural activity (Fig. 2e, h, Supplementary Fig. 2). Complex
changes in the activity of individual units across tasks resulted in
relatively low correlations in the activity of individual units across
tasks (Fig. 2i).

For each task, we used PCA to identify leading neural modes
spanning a 12-dimensional (12-D) manifold21,28,30,34 (Methods).
Activity confined to these 12-D manifolds accounted for 73.4 ±
6.5% of the variance for all tasks, across all datasets (Supplemen-
tary Fig. 3a, c). This dimensionality is comparable to that
reported for populations of neurons in the arm area of M1 during
reaching29,38 and reach-to-grasp tasks40,56. Notably, most units
contributed to all neural modes; each mode captured a
population-wide activity pattern (Supplementary Fig. 3b, d).

Neural modes and their activity were robust against the particular
choice of randomly sampled units: both were remarkably well
preserved even if computed from only 60% of the recorded units
(Supplementary Fig. 3e, f). The low dimensionality of these
manifolds and their robustness against eliminated units indicate
that they can be reliably estimated from the activity of ~100
recorded units, even though these are only a very small fraction of
the participating population. These observations support the view
that the orientation of the neural manifold and the activity within
it do not depend on specific recorded units57 and are not an
artifact of their currently inevitable undersampling33,37.

Comparison of neural modes across motor tasks. If M1 does
indeed generate movement through flexible combinations of well-
preserved neural modes, the neural manifolds corresponding to
different tasks should be similarly oriented. To test this con-
jecture, we computed the 12 principal angles48 between the 12-D
manifolds for all pairs of tasks during each session (Methods).
Our hypothesis predicts that these angles will be small. In con-
trast, if M1 recruited neurons in arbitrary combinations rather
than as part of stable neural modes, the covariance structure
would change across tasks and the corresponding manifolds
would not be similarly oriented. To provide an intuition for the
value of the 12 principal angles between two 12-D manifolds
within a high-dimensional neural space, we computed the dis-
tribution of principal angles obtained from a null hypothesis
generated with the tensor maximum entropy method27. For each
comparison to experimental results, we generated surrogate
neural activity patterns that preserved the covariance of the ori-
ginal data over time and across targets, but not across neurons,
since this was the variable whose stability we tested. We com-
puted the distributions of the 12 principal angles between the 12-
D manifolds for the surrogate data (Methods, Supplementary
Fig. 4a,b), and used them to set a conservative threshold (P <
0.001) below which the principal angles between manifolds for
different tasks were considered significantly small.

Representative individual sessions in Fig. 3a show the leading
principal angles between pairs of task-specific manifolds; these
were far smaller than the surrogate threshold (dashed lines in the
figure), with only the final non-leading two angles comparable to
the surrogate. When pooling across all monkeys, sessions, and
task comparisons, most principal angles were well below this
threshold (Fig. 3b; all datasets in Supplementary Fig. 4c). As an
example, the three leading principal angles averaged 8.4 ± 2.3°,
11.3 ± 2.9°, and 15.1 ± 4.6°, while the corresponding surrogate
thresholds were 31.0 ± 7.4°, 38.9 ± 6.9°, and 44.6 ± 6.4°. This result
held for a broad range of manifold dimensionalities (Supplemen-
tary Fig. 5a shows from 8 to 15), and when using single units
instead of multi-units to compute the manifolds (Supplementary
Fig. 4e).

To better interpret this degree of similarity across manifolds
corresponding to different tasks, we projected the data from one
task onto the manifold of another task, computed the neural
variance accounted for (VAF) by this 12-D manifold (across-task
VAF), and compared it to the VAF when the same data were
projected onto its original 12-D manifold (within-task VAF)58.
The across-task VAF was as large as 83.0 ± 6.6% of the within-
task VAF (Fig. 3c), a significantly large result when compared to
the VAF ratios obtained by projecting data on a randomly
oriented manifold with maximal VAF (P~0, two-sided Wilcoxon
rank sum test; see Methods).

The strong similarity in the orientation of manifolds
corresponding to different skilled arm and hand tasks indicates
that the structure of neural modes activated by these tasks is well
preserved, as predicted by our hypothesis. The structure of the
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population covariance patterns was thus strongly conserved
despite the complex changes in the activity of individual units
across tasks.

Task-specific and task-independent latent activity. Given the
significant degree of task-independence in the orientation of the
neural manifold, we ask: how do M1 populations generate motor
output appropriate to distinct tasks in the face of this largely
preserved neural covariance? One intriguing possibility is that the
brain exploits the flexible activation of a fairly stable set of neural
modes to generate task-specific motor commands.

To investigate this possibility, we used dPCA51 to find a single
neural manifold for all tasks in a given session. We relied on
dPCA’s ability to identify neural modes whose activity covaries
with specific behavioral parameters to assess the task-specificity of
the corresponding latent activity (Methods; Supplementary
Fig. 6a). Specifically, we looked for four different types of neural
modes. The activity of two types of modes was task-independent:

the activity of time-related modes depended only on time (i.e.,
progression through a trial) and was unrelated to specific details
of the motor output, and the activity of target-related modes
depended on the exerted movement or torque, as determined by
the location of the target. The activity of two types of modes was
task-dependent: the activity of task-related modes depended only
on the task being performed, and the activity of task/target modes
related to both task and the direction of the exerted movement or
torque. We chose these covariates to dissociate latent activity
features intrinsic to the neural dynamics from those related to
potential commonalities in motor output imposed by task and
target similarities. We confined this analysis to the wrist datasets
(1-D isometric, movement, and elastic-loaded movement tasks
for Monkeys J and C, and also 2-D isometric for Monkey J;
Methods), to analyze both task and target dependence of the
latent activity. CCA22,52, an alternative approach that we could
also apply to the reach-to-grasp datasets, yielded similar results
(Methods; Supplementary Fig. 7).
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Given the small principal angles between manifolds corre-
sponding to different tasks (Fig. 3), dPCA unsurprisingly found a
single 12-D neural manifold that captured most of the population
variance across all tasks (95.5 ± 0.5% of the VAF by 12-D regular
PCA; Supplementary Fig. 6b, f). Each of the dPCA neural modes
that spanned this manifold covaried almost exclusively with one
of the chosen behavioral parameters (Fig. 4a; additional example
in Supplementary Fig. 6c). Although the activity of individual
neural units was strongly task-dependent, as evidenced by their
low correlations across pairs of tasks (Fig. 2i), neural modes that
shared task-independent activity captured more than half of the
total neural variance (65.5% for Monkey C, 59.0% for Monkey J;
see Fig. 4c). As was the case for the principal angle analysis, these
results held for a broad range of manifold dimensionalities
(Supplementary Fig. 5b).

Figure 4b shows the latent activity corresponding to the eight
leading dPCs for each of the 24 task-target combinations (four
tasks × six targets; see Fig. 4d for target organization) for one
representative session (Supplementary Fig. 6d, e show one
example session from another monkey). The top row in Fig. 4b
shows neural modes whose activity was virtually identical for all
targets and tasks; a striking similarity given the different time
courses of the corresponding motor outputs (Fig. 2d, Supple-
mentary Fig. 1). The second row in Fig. 4b shows additional task-
independent activity for target-related modes that capture the
direction of action, indicated by the sign of the corresponding
velocity or torque. This activity separated targets requiring wrist
extension from those requiring wrist flexion, regardless of the
specifics of the task.

The third row in Fig. 4b shows neural modes with task-specific
activity. For example, mode 3 displays a task-related offset that
distinguishes the 1-D tasks from the 2-D task. This offset, present
well before the movement is initiated, presumably represents
some aspect of movement preparation22,24,38,41,58 that is task but
not target specific. Activity of the modes in the fourth row in
Fig. 4b covaried jointly with task and target, following complex
patterns. Analysis of these dPCs shows that not only was the
structure of the neural modes preserved across different tasks, but
that the activity of a subset of them, which explained as much as
~60% of the total neural variance (Fig. 4c), was also stable. Thus,
M1 may generate different behaviors through the flexible

activation of different combinations of a well-preserved set of
neural modes, rather than through the modulation of the activity
of individual neurons (Supplementary Fig. 7g).

Do motor output similarities explain manifold similarities?.
We investigated whether the observed similarities in neural mode
structure and activity might be expected based simply on simi-
larities in the associated motor output, characterized here by
muscle activity (EMG). We first tested whether the covariance of
the EMG patterns was as well-preserved across tasks as the
covariance of the neural activity. We used PCA to identify the
EMG manifold associated with each task. These manifolds are
spanned by leading muscle covariance patterns, the EMG modes
(analogous to muscle synergies59,60). We then computed the
principal angles between EMG manifolds for different tasks. The
EMG manifolds were much less well aligned across tasks than the
corresponding neural manifolds (Fig. 5a). Therefore, the observed
across-task similarities in the orientation of neural manifolds are
not simply a reflection of a similarly well-preserved orientation in
the EMG manifolds associated with the motor output.

Next, we compared the similarity in latent activity to the
similarities in EMGs. We used CCA52, a method for comparing
multi-dimensional time series22 (Methods). This analysis yields as
many canonical correlations (CC) as variables being compared;
each CC ranges from 0 to 1, with 1 indicating perfect correlation.
The leading CCs between latent activities across tasks were
considerably higher than those between EMGs (Fig. 5b, c); the
substantial similarities in latent activity cannot be trivially
explained by comparable similarities in muscle activity. This
observation is further supported by the contrasting result
obtained with a computational model that simulates M1 activity
corresponding to observed EMGs (Methods; Fig. 5d). We
simulated neural activity from the EMGs for each pair of tasks,
and observed that for any given number of neural modes, the
simulated activity captured a larger fraction of neural variance
than the actual data (Fig. 5e). For the simulated data, the CCs
across tasks were over two times lower than those for the actual
neural data (2.3 ± 3.9; see Fig. 5f for a comparison of the across-
task latent activity CCs from the real and simulated neural data;
P~0, two-sided Wilcoxon rank sum test). Together, these two
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results indicate that neural activity synthesized from EMGs is
both lower dimensional and less dynamically correlated across
tasks than the actual neural activity.

From neural modes to muscle commands. For any given task,
EMGs can be reasonably well predicted based on the activity of
either a group of neurons23,61 or the neural modes19,22,24,26.
Using dPCA, we identified a set of target-related neural modes
whose largely task-independent activity was related to the motor
output. Their latent activity separated wrist flexion from wrist
extension (Fig. 4b, modes 1 and 11; Supplementary Fig. 8e, modes
1 and 7), which suggests that these neural modes may relate to a
target-dependent but task-independent component of EMG
activity. To test for this possibility, we built a standard Wiener
cascade decoder55,61 for all wrist tasks in a given session, using
only the two leading target-related dPCs as EMGs predictors
(Methods). If the task-independent aspect of these modes’ activity
is relevant to the EMGs, these decoders should yield good
predictions.

As exemplified in Fig. 6a, these decoders made EMG
predictions that were >50% as accurate as those made with
decoders based on all 12 neural modes as inputs (normalized R2

across all muscles, tasks, and monkeys: 0.52 ± 0.32; see Methods).
Moreover, these decoders far outperformed all other decoders
based on two neural modes related to any of the other three
behavioral parameters: time, task, and task/target (Fig. 6b; by
paired two-sided Wilcoxon rank sum test, P~0 for all three

comparisons). Finally, the ability to predict EMGs from the
target-related neural modes cannot be attributed simply to the
amount of neural variance of these modes explained (Fig. 6c);
time-related neural modes explained more variance than the
target-related neural modes, yet their EMG predictions were
worse by a factor of ~2.5. The target-related neural modes were
good predictors of the EMGs because a large fraction of the EMG
variance was target-related and task-independent (Supplementary
Fig. 8). Thus, the target-related neural modes identified directions
within the manifold that captured a task-independent contribu-
tion of neural activity onto muscle activity.

Discussion
Motor cortical population activity during a variety of skilled
motor tasks is well described by a small number of neural modes,
a set of population activity patterns19–21,24,38,40,41,56,62 that span
the neural manifold. These neural modes are putatively related to
the connectivity of the network29,35,49, and their activity is a good
predictor of behavior19,24,39–42,62,63. Here we reported the first
comparison of neural manifolds associated with a variety of
skilled arm and hand tasks. Our results suggest that different
behaviors may be generated by the activation of flexible combi-
nations of a set of well-preserved neural modes20,21, since: (1)
despite the distinct patterns of muscle and neural unit activity
associated with these tasks, the structure of the neural modes was
largely preserved; (2) based on their activity, we could divide
these modes into task-specific and task-independent sets, with the
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latter able to explain ~60% of the total variance across different
wrist tasks; and (3) the set of neural modes with task-independent
activity included some that mapped consistently onto EMGs.
These results provide new insight into how movement is gener-
ated by the motor cortex.

Neural population activity, and thus latent activity, potentially
includes intrinsic dynamics and response to inputs in addition to
outputs16,21,22,26. Our dPCA analysis identified time-related
neural modes whose activity was virtually the same regardless
of the task and even the action required (top row in Fig. 4b).
These modes are thus unlikely to reflect inputs or outputs;
instead, they probably capture generic temporal features19,22,26, a
common temporal evolution of the network during the set of
tasks used here. Their activity may reflect the transition from a
planning state to a movement state; the activity of the leading
time-related mode has been found to predict the reaction time of
reaching movements with great accuracy50. Time-related neural
modes may also support the generation of robust motor com-
mands26, or the state-dependent switching from active postural
control to movement control11,64.

However, similarities in latent activity across tasks are not fully
explained by time-related modes. We also found target-related
modes that had a task-independent mapping to muscle activity
(Figs. 4 and 6), a mechanism that might help simplify limb
control as well as motor adaptation41. For example, adaptation to
a force field may be accomplished using alternative latent activity
within the same manifold that controls the unperturbed move-
ment41. This adaptation mechanism would be simpler than using
a force-field-specific mapping to muscle commands, requiring not

only alternative latent activity but also an alternative mapping
onto muscle activity.

Our finding of a task-independent mapping of M1 activity onto
EMGs might be due to the similarity in motor action for similarly
arranged targets in the wrist tasks considered here (Fig. 4d).
Although the EMGs for a given target were quite different across
the wrist tasks (Supplementary Fig. 1), the similarity in target
arrangements resulted in a target-related but task-independent
EMG mode that separated wrist flexion and extension (Supple-
mentary Fig. 8). This preserved M1 to EMG mapping was found
across isometric and movement tasks that require quite different
muscle (Supplementary Fig. 1) and neural unit activity patterns
(Fig. 2, Supplementary Fig. 2).

This task-independent M1 to EMG mapping is in contrast
to the behavior-specific mapping found in mice when
forelimb population activity during reaching was compared to
that during treadmill walking42. The corresponding manifolds
of these two tasks were orthogonal42, with none of the simila-
rities in orientation and activity found here. This lack of simi-
larity is perhaps not surprising, as M1 is less directly involved
in the control of treadmill walking than of reaching42,65. In
contrast, we expect M1 neurons to be directly involved in the
full range of skilled reach-to-grasp and wrist/hand motor
behaviors13,53,54,66,67 of the type studied here. We were unable
to compare the reach-to-grasp tasks to the wrist tasks because
they were studied in different monkeys or using different
microelectrode arrays (Methods), but we conjecture that when
compared, the neural modes for these tasks would exhibit many
of the similarities reported here.
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Increasing evidence, primarily from sensory systems21,35,
suggests that the neural covariation patterns captured by the
neural modes may arise from the underlying network con-
nectivity. In M1, the most compelling evidence for this view
comes from a brain–computer interface study in which monkeys
trained to produce accurate cursor movements were subjected to
decoder perturbations29. Perturbations outside the existing
manifold proved to be considerably more challenging to learn
than perturbations within the manifold, which simply required
activating the existing neural modes in novel combinations29. In
view of this reported difference between within-manifold and
outside-manifold learning, our results on the similar orientation
of manifolds associated with different skilled motor tasks suggest
that learning one of those tasks would significantly facilitate the
acquisition of any of the others, a facilitation not expected
between tasks with orthogonal manifolds.

Although our experiments did not directly probe the presumed
relationship between neural modes and network connectivity,
they do provide additional indirect evidence. First, if the covar-
iance patterns captured by the neural modes were mere by-
products of task constrains, it is unlikely that they would be so
well-preserved across tasks (Fig. 3). Second, the activity of two
subsets of these well-preserved neural modes was largely corre-
lated across wrist tasks (Fig. 4); a qualitatively similar observation
held for the reach-to-grasp tasks (Supplementary Fig. 7). These
structural and dynamic similarities seem unlikely if the neural
modes did not reflect a stable property of the underlying neural
network.

Prior studies have tried to explain how M1 controls movement
by looking for a fixed relationship between single neuron activity
and behavioral parameters, to elucidate what single neurons
encode or represent. The differences in activity across M1

neurons hints at the challenge of this approach9,10,13,53. Indeed,
few individual neurons have simple, invariant tuning to a single
behavioral parameter4,10,11,14–16,25. Instead, they typically corre-
late with a variety of behavioral parameters, including hand
position, joint kinematics, end point force, and muscle activity,
among others (for reviews, see refs.10,15). These observations have
led to varied interpretations, for example, that different para-
meters are encoded by distinct subclasses of neurons4,14,15, or
that single neurons simultaneously encode multiple
parameters18,45,46,68.

Many experiments, beginning with the studies of Evarts2,
Humphrey5, and Thach3, have attempted to dissociate
these confounded behavioral parameters by using different
limb postures, workspaces, or external loads4,12–14,16–18,53,54.
The ultimate goal was to identify fundamental representations
that are stable against such manipulations. Cheney and
Fetz found that the relationship between the activity of cortico-
motoneuronal cells and the exerted torque changes during
isometric and elastic-loaded movement wrist tasks53. Others
investigated the stability of single neuron representations
across different postures during isometric and movement wrist
tasks, and found that only a limited fraction of M1 neurons
change their activity in a way that parallels the changes in
task kinematics or EMGs4,12. Similar manipulations have
been used during reach-to-grasp tasks, to find that the relation-
ship between the activity of corticomotoneuronal cells and
the EMGs of their target muscles changed between power grip
and precision grip tasks54. The relationship between the activity
of single M1 cells and the exerted torque was also found to
change across task conditions13. These studies highlight that
single neuron representations of movement parameters are
quite labile.
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In contrast with this representational view, other groups have
adopted the view that the dominant function of M1 is that of a
controller that causes movement; in this view, the neural repre-
sentations described above are merely a by-product of this
role15,20,21,25,26. Among these studies, those that have adopted the
population approach of the neural manifold have so far focused
on single skilled motor tasks. Our experiments and analyses were
designed to test whether the neural manifolds for different tasks
have similar orientations and activity. The observed commonal-
ities provide strong evidence that the neural manifolds capture
fundamental principles of the cortical control of movement.

Neural modes are not restricted to the motor cortices (for
reviews, see refs. 21,28). This observation raises an intriguing
question: do populations of neurons in other cortical areas also
use flexibly activated neural modes to perform their varied
functions? The application of dPCA to neural recordings during
sensory discrimination has revealed manifolds with stimulus-
related, decision-related, and time-related modes, in both monkey
prefrontal and rat olfactory cortex51. Similarly, during a working
memory task, population activity in prefrontal cortex was asso-
ciated with a manifold spanned by modes linearly related to
memory storage and stimulus response69. Thus, population
activity in multiple cortical areas is associated with neural
manifolds whose modes relate strongly to task-relevant para-
meters. The similarity between these results and the ones reported
here for M1 suggests a general mechanism by which the brain
could flexibly perform varied functions.

In summary, we have shown that manifolds associated with
different skilled motor tasks have similar orientation. It is the
covariance among units that is well-preserved across tasks, as
opposed to the activity of independently modulated M1 neurons.
Moreover, in contrast with the highly varied patterns of muscle
and neural unit activity, the activity of two sets of neural modes
was stable across behaviors. One of these sets captured generic
temporal features of the tasks, unrelated to the details of the
motor output, and the other provided inputs to a stable task-
independent mapping onto muscle activity. These results support
the view that motor cortex may control different motor behaviors
through the flexible activation of different combinations of neural
modes, which themselves may arise from network connectivity.
We further suggest that a similar mechanism may underlie the
ability of other cortical areas to perform varied non-motor
functions.

Methods
Experimental subjects. We recorded data from three 9–10 kg male Macaca
mulatta monkeys (J, C, T; age: 6, 14, and 11 years when the experiments started)
while they performed one of two sets of wrist or reach-to-grasp motor tasks over
several sessions (see Tasks, below). All surgical and behavioral procedures were
approved by the Animal Care and Use Committee at Northwestern University. The
monkeys were implanted with a 96-channel microelectrode silicon array (Utah
electrode arrays, Blackrock Microsystems, Salt Lake City, UT) in the hand area of
M1, which we identified intraoperatively through microstimulation of the cortical
surface. For monkey C, we recorded neural activity for each of the two sets of tasks
using different microelectrode arrays sequentially implanted in different brain
hemispheres. The monkeys were also implanted with intramuscular EMG elec-
trodes in a variety of wrist and hand muscles. We report data from the following
muscles: Monkey J: flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor
carpi radialis (ECR), extensor carpi ulnaris (ECU), flexor digitorum profundus
(FDP), flexor digitorum superficialis (FDS), extensor digitorum communis (EDC;
radial and ulnar aspects), brachioradialis, and supinator; Monkey C: FCR, FCU,
ECR, ECU, FDP (radial and ulnar aspects), FDS (radial and ulnar aspects), EDC
(radial and ulnar aspects), flexor pollicis brevis (FPB), opponens pollicis, and
extensor pollicis longus; Monkey T: ECR, ECU, FCR, FCU, FDP (radial and ulnar
aspects), FDS (radial and ulnar aspects), EDC, FPB, first dorsal interosseous (FDI).
For the wrist tasks of monkey C, we recorded EMGs using pairs of gelled surface
electrodes placed over FCR, FCU, ECR, ECU, FDS, and EDC. We report EMG
results for 5–12 muscles (mean ± s.d., 8.2 ± 2.8), depending on the session. All
surgeries were performed under isoflurane gas anesthesia (1–2%) except during
cortical stimulation, for which the monkeys were transitioned to reduced isoflurane

(0.25%) in combination with remifentanil (0.4 µg kg−1 min−1 continuous infu-
sion). Monkeys were administered antibiotics, anti-inflammatories, and bupre-
norphine for several days after surgery.

Tasks and recordings. In each session, monkeys performed either a set of reach-
to-grasp tasks or a set of wrist tasks (Fig. 2). Within a session, the tasks were
performed in consecutive blocks; the order of the tasks varied randomly across
sessions. For each set of tasks, we collected data from two monkeys during two or
three sessions. This shows reproducibility in the standard manner for this type of
research; no blinding was necessary. All monkeys had been trained prior to their
implant surgeries, and were proficient at the tasks at the time of the recordings.
Monkeys C and T performed the set of reach-to-grasp tasks, which comprised the
“ball” task and a power grip (“grip”) task (monkey C, three sessions; monkey T,
two sessions). In the ball task, monkeys had to reach to a ball (diameter 24, 35, or
40 mm), grasp it, and then transport it and drop it in an open cylindrical con-
tainer55. In the power grip task, monkeys reached to and grasped a pneumatic tube
that then had to be squeezed to control the movement of a cursor used to acquire
one of two or three 1-D force targets55. Monkeys initiated both tasks by resting
their hand on a touch pad, and waited for a target—or go signal for the ball task—
to be presented. Monkeys C and J performed the wrist tasks, which comprised
three 1-D tasks2,4,53: an isometric task, a movement task, and an elastic loaded
movement task (both monkeys, three sessions); monkey J also performed a 2-D
isometric center-out task12 in two of three sessions (see Fig. 2a, b). Throughout the
paper, we abbreviate these tasks as “iso,” “mov,” “spr,” and “iso2D,” respectively.
As for the reach-to-grasp tasks, monkeys could initiate movement after the target
was presented. Note that we recorded the wrist and reach-to-grasp datasets from
monkey C in different years, using microelectrode arrays implanted in different
cortical hemispheres. During the experiments, we recorded neural and EMG data,
as well as kinematics or force, depending on the task. All data were saved to disk
and analyzed in Matlab (The Mathworks Inc., Natick, MA).

To characterize neural population activity, we identified threshold crossings
from each electrode; these included well-discriminated single-unit as well as multi-
unit activity. Throughout this paper we refer to these as neural units, without
distinction. For each session, data included all units whose average waveform,
triggered by the threshold crossing, remained stable across all tasks (examples in
Fig. 2, Supplementary Fig. 2). We did not choose neurons based on tuning,
modulation depth, or any other property. To obtain a smooth discharge rate as
function of time, we applied a Gaussian kernel (s.d.: 50 ms) to the binned square-
root-transformed firings (bin size: 20 ms) of each unit34. For each task, this
produced a neural data matrix X of dimensions n by T, where n is the number of
recorded units and T is time duration of all concatenated trials. It must be noted
that although our analyses were based on threshold crossings, a recent simulation
and experimental study57 indicates that the properties of the manifold and the
activity within it would not have been different if we had used well-isolated single
units instead.

The EMG envelopes, a proxy for the neural commands to muscles, were
computed by a sequence of high-pass filtering (fourth-order zero-phase
Butterworth filter, fc: 10 Hz), rectification, and low-pass filtering (fourth-order
zero-phase Butterworth filter, fc: 50 Hz) of the raw EMG signals. We subsequently
normalized these EMG envelopes by the 99th percentile of their distribution across
all tasks for each session.

We used single-trial data for all the analyses except for dPCA, a method that
requires trial-averaged data51 (see details below). A trial was defined from target
presentation (or go signal for the ball task) until the monkey received a reward; the
very few unsuccessful trials were discarded. For trial averaging, we computed the
mean firing rate (peristimulus time histogram) from target presentation until an
end time determined by the shortest time to reward. We used both the reach-to-
grasp and wrist datasets for all the analyses except for dPCA; the latter requires
target equalization across tasks, which can only be achieved for the wrist tasks (see
main text and dPCA section below). In every session, we made all possible
comparisons between pairs of tasks.

Task-specific neural manifolds and latent activity. The activity of n recorded
units was represented in a neural space, an n-dimensional sampling of the state of
M1. In this space, each point represents the state of the population of recorded
units, and the coordinate of this point along each axis represents the firing rate of
the corresponding unit (Fig. 1b). Within this space, we computed the low-
dimensional neural manifold associated with each task by applying PCA to the
corresponding smoothed firing rates of all n units. In an n-dimensional space, PCA
finds n principal components (PCs), each a linear combination of the firing rates of
the recorded units, designed to sequentially maximize the amount of shared var-
iance (covariance). The PCs are ranked according to their contribution to
explaining the total amount of variance in the original data. We defined m-
dimensional task-specific manifolds that accounted for most of the neural popu-
lation variance by keeping only the leading m PCs (Fig. 1b). We chose m= 12, to
account for at least 60% of the total neural variance across all tasks and monkeys
(Supplementary Fig. 3). Importantly, and in agreement with previous
reports29,38,58, the results reported here were not sensitive to the somewhat arbi-
trary choice of manifold dimensionality (see Supplementary Fig. 5a for results for
m= 8, 15). Each PC is a neural mode associated with a specific direction within the
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neural space; together, the neural modes provide a basis that spans the low-
dimensional neural manifold. We computed the latent activity, the dynamic acti-
vation of the neural modes, by projecting the n-dimensional, time-varying neural
population activity onto each of the m neural modes (PCs) that span the neural
manifold.

Comparison of task-specific neural manifolds. Principal angles provide a mea-
sure of the relative alignment of two m-dimensional manifolds embedded in an n-
dimensional space; their alignment is quantified in terms of the m angles between
sequentially aligned pairs of basis vectors, each within one of the respective
manifolds48. These vectors, selected in each manifold so as to systematically
minimize the angle between them, provide a new basis for each of the two
manifolds being compared. Note that manifold directions chosen to minimize the
angles between manifolds are not necessarily those that maximize variance within
each of the two manifolds; it is thus not the angles between the PC neural modes
that determine the principal angles. Our hypothesis that the task-specific manifolds
compared here are similarly oriented implies that the leading principal angles will
be small.

To compute the principal angles between two m-dimensional manifolds A and
B embedded in an n-dimensional neural space, we follow the method by Björck and
Golub48 : consider the corresponding m-dimensional bases WA and WB provided
by the m leading PC neural modes, construct their m by m inner product matrix,
and perform a singular value decomposition to obtain

WT
AWB¼PACP

T
B ð1Þ

Here Wi, i= A, B are the n by m PC matrices that span the task-specific manifolds
A and B; the corresponding PC neural modes are their column vectors. The
matrices PA and PB, both of dimension m by m, define the new manifold directions
that successively minimize the principal angles. Note that these new projections are
specific to the pair of tasks being compared. The matrix C is a diagonal matrix
whose elements are the ranked cosines of the principal angles θi, i= 1,…, m:

C ¼ diagðcosðθ1Þ; cosðθ2Þ; ¼ cosðθmÞÞ ð2Þ

Note that, by construction, the principal angles are ordered form smallest to
largest.

To assess whether the experimentally obtained principal angles between pairs of
task-specific manifolds were significantly small, we compared them to the principal
angles between manifolds associated to surrogate datasets that were randomly
generated but preserved key statistics of the actual data. These surrogate datasets
were generated using the Tensor Maximum Entropy (TME) method27, to preserve
the structure of the covariance of the original neural data both over time and across
targets. We generated and compared 10,000 surrogate pairs for each pair of tasks.
For each pair of surrogate datasets, we computed their associated neural manifolds
and the principal angles between them, using the same methods as for the original
neural data. We used the 0.1th percentile of the distributions of principal angles
between surrogate datasets to define a threshold below which angles can be
considered significantly small (with a probability P < 0.001). We note that even
though the TME method is designed for trial-averaged data27, we were able to
apply it to assess the significance of the neural manifolds identified using
concatenated single-trial data because the orientation of each task-specific neural
manifold showed only small differences when computed using either type of data.

An additional analysis to compare the orientation of manifolds from two
different tasks was based on measuring how much of the neural variance associated
with a given task was accounted for when the data was projected onto the manifold
of a different task58. We computed the variance accounted for (VAF) when
projecting the data from task A onto the manifold of task B (across-task VAF) and
compared it to the VAF obtained when the data from task A were projected onto
the original manifold of task A (within-task VAF). If the two manifolds A and B
had similar orientations within the high-dimensional neural space, we would
expect these across-task to within-task VAF ratios to be quite close to one. To
verify that the computed VAF ratios were significantly large, we compared them to
the largest ratios that could be obtained by chance. For each task comparison, we
projected the original data for task A onto 10,000 randomly generated and thus
randomly oriented m-dimensional manifolds, obtaining a distribution of surrogate
across-task VAFs. We used the 0.1th percentile of this distribution as the
maximum across-task VAF that could be expected by chance, and computed the
corresponding ratio to the within-task VAF. We assessed the significance of the
actual across-task to within-task VAF ratios by comparing them to these surrogate
VAF ratios. We used a two-sided Wilcoxon rank sum test, because the data did not
conform to normality (Lilliefors test, P < 0.01 to reject). Note that the comparison
was performed twice for each pair of tasks, considering either A or B as the within-
task manifold.

Task-specific and task-independent latent activity. To understand the role of
the latent activity in movement generation, we used another linear dimensionality
reduction method, dPCA51. This approach identifies a single neural manifold for
all the data (here, pooled across all tasks in one session), spanned by neural modes

whose activity is a linear readout of the activities associated with specifically chosen
behavioral parameters51. The ability to find a single neural manifold for all the
tasks in one session is due to the strong similarity in the orientation of the cor-
responding task-specific manifolds (Fig. 3).

Mathematically, dPCA starts by representing the mean-subtracted, trial-
averaged activity of all units, concatenated over all tasks and targets within a
session, as a neural data matrix �X of dimensions n by (α × γ × τ). Here n is, as
before, the number of recorded units, α is the number of tasks performed in that
session, γ is the number of targets equalized across tasks, and τ is the trial time
duration, equalized across tasks and targets by truncation to the shortest trial. Since
trial durations were overall very similar, the deleted portions were short. This data
matrix �X is decomposed as a sum of matrices �X; , each describing the neural
activity associated with a specific behavioral parameter ;, and the measurement
noise Xnoise:

�X ¼
X

;
�X; þ Xnoise ð3Þ

The decomposition ensures that the �X; are uncorrelated: the n by n covariance
matrix C ¼ �X�XT is thus the sum of covariance matrices, one associated with each
behavioral parameter:

C ¼
X

;
C; þ Cnoise ð4Þ

Dimensionality reduction in dPCA is based on the minimization of a
reconstruction error

E�X ¼
X

;
E�X; ð5Þ

with

E�X; ¼ �X; � A; �X
�� ��2 ð6Þ

The minimization of the reconstruction error becomes equivalent to a classical
regression problem with a least-squares solution:51

ALS
; ¼ �X; �X

Tð�X�XTÞ�1 ð7Þ

In dPCA, the rank m of the n by n matrix A is chosen as the desired
dimensionality of the manifold. The least-square problem thus becomes a reduced-
rank regression problem that is solved using singular value decomposition51. A
detailed description of dPCA for neural population data has been given by Kobak
et al.51; notably, this implementation of dPCA has an analytic as opposed to a
numerical solution.

The behavioral parameters ; used here are: time along the trial, task, target
location, and the combination task/target location. We performed the dPCA
analysis on the wrist tasks, as these datasets included three or four tasks (α= 3 or
α= 4) for which six targets (γ= 6) were similarly located in space (see target
organization in Fig. 4d, Supplementary Fig. 1 and 2), thus easily achieving target
equalization. As before, the chosen manifold dimensionality was m= 12, although
the results held for m= 8, 15 (see Supplementary Fig. 5b). In spite of the constraint
that the activity of each dPC has to covary with one or a few of the chosen
behavioral parameters, the neural variance gradually explained by the neural modes
identified with dPCA was very similar to that explained by the PCA modes (see
Supplementary Fig. 6b).

Comparison of latent activity across tasks. To investigate potential similarities
in latent activity across tasks, we compared the corresponding task-specific
manifold activity using CCA52. The method systematically finds new directions
within each manifold such that the corresponding one-dimensional projected
activities are maximally correlated. As is the case with the manifold directions used
to compute principal angles, these directions are not necessarily those of the PC
neural modes selected to maximize projected variance.

Consider again the two manifolds A, B to be compared. We start by projecting
the neural activity for each task onto the m PC neural modes that span the
respective manifolds, to obtain two m by T latent activity matrices LA and LB; here
T is time duration of all concatenated trials for each task within a session. CCA
finds two linear transformation matrices, one for each of the two matrices Li, i=A, B,
to obtain new manifold directions so that the activities projected onto these new
directions are maximally correlated across the two manifolds52.

CCA starts with a QR decomposition of the transposed latent activity matrices
LA and LB, LTA ¼ QARA, L

T
B ¼ QBRB . The first m column vectors of Qi; i ¼ A;B

provide an orthonormal basis for the column vectors of LTi ; i ¼ A;B. We then
construct the m by m inner product matrix of QA and QB and perform a singular
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value decomposition to obtain

QT
AQB ¼ USVT ð8Þ

The elements of the diagonal matrix S are the canonical correlations (CCs),
sorted from largest to smallest. The new manifold directions that CCA finds so as
to maximize the pairwise correlations between latent activities across the two tasks
are the corresponding m by m matrices

MA ¼ R�1
A U;MB ¼ R�1

B V ð9Þ

To implement this method, the matrices Li, i= A, B included all the
concatenated trials for each of the two tasks being compared. To assemble these
data matrices, we first equalized the number of trials across all tasks and targets
within the corresponding session; we took the first k trials for each task and target,
with k being the minimum number of successful trials across all targets and tasks
within the session. When comparing tasks with different number of targets, the
number of trials per target was adjusted so as to equalize the number of trials per
task. For each trial, we used either a 700 ms long (wrist tasks) or a 1000 ms long
(reach-to-grasp tasks) window of neural data, starting around target onset or go
signal. We then concatenated these k individual trials according to the common
sequence of visual targets. When comparing two 1-D wrists tasks, we matched the
trials by target location; when comparing the 2-D isometric task to any of the 1-D
wrist tasks, we labeled targets according to their projection onto the horizontal axis.
No target matching was done for the reach-to-grasp tasks, as the ball task had no
targets. We did not exclude trials based on their execution time, or based on the
EMG, kinematics, or force patterns; only the few failed trials were excluded.

We used an analysis of within-task variability across trials to obtain an upper
bound for the across-task CCs. We computed within-task CCs by dividing all the
trials for a given task into two random target-matched subgroups (100 repetitions)
across which we calculated the corresponding CCs. We used the 99.9th percentile
of each within-task CC distribution as the upper bound CC value; for a given pair
of tasks, the across-task upper bound was taken to be the maximum of the two
corresponding within-task upper bounds. To more clearly visualize how the across-
task CCs relate to this upper bound, we computed the ratio between them
(Supplementary Fig. 7e). We also used bootstrapping to assess the significance of
the across-task comparisons of latent activities. The latent activity for one of the
tasks was randomized over time (for all modes simultaneously), and smoothed with
a Gaussian kernel designed to match the spectral content of the actual data (s.d.: 50
ms). We then used CCA to find maximal correlations between these surrogate first
task data and the data from the second task. We repeated this procedure 5000 times
for each task comparison, and took the 99.9th percentile of the resultant
distribution of CCs as a significance threshold (P < 0.001).

Neural variance explained. We used a series of analyses (principal angles, CCA,
dPCA) to compare the structure of the neural modes and their activity across
different tasks. Each one of these approaches involves projecting the original n-
dimensional data onto manifold directions that differ from those found by PCA. In
order to assess the cumulative neural variance associated with incremental subsets
of these new directions 1 ≤ h ≤m, we express the fractional variance accounted for
(VAF) in terms of the corresponding reconstruction error,

VAFh ¼
Xk k2� X �DhEhXk k2

Xk k2 ð10Þ

For principal angles and CCA, the n by T data matrix X is task-specific and
represents concatenated trials for a given task during one session, pooled across all
targets. The PCA leading to the m-dimensional manifold requires that the data be
mean-subtracted, Σjxij=0 for all i. Thus Xk k2¼ P

ij x
2
ij is the total variance. The

matrices Eh and Dh are encoding and decoding matrices, respectively. The h by n
matrix Eh projects the original data onto the leading h new manifold directions,
and the n by h matrix Dh optimally reconstructs the data from this h-dimensional
projection. For both principal angles and CCA, encoding starts by projecting the
original data onto the manifold spanned by the m leading PCs: WT

i Xifor i= A, B.
For principal angles, the data is then projected into new manifold directions

given by the columns of the corresponding matrix Pi, i= A, B. The encoding
matrix for this specific A,B comparison thus is Eh ¼ PT

hW
T , where PT

h is the
transpose of the first h columns of the projection matrix P. Because both the matrix
W and the matrix P are orthogonal, the optimal decoding matrix—in the sense of
minimizing the squared reconstruction error—is the transpose of the encoding
matrix. Thus Dh ¼ PT

hW
T

� �T¼ WPh . To represent the variance explained across
the two tasks A and B as a single number, we took the mean of the two values.

For CCA, once the data has been projected onto the m leading principal
components using the corresponding task-specific PC matrixWi, i=A, B, it is then
projected into new manifold directions given by the columns of the corresponding
matrix Mi, i= A, B. The encoding matrix for this specific A, B comparison thus is
Eh ¼ MT

hW
T, where MT

h is the transpose of the first h columns of the projection
matrix M. Because the matrix W is orthogonal but the matrix M is not, the optimal

decoding matrix is not just simply the transpose of the encoding matrix, but
Dh ¼ WMh MT

hMh

� ��1
: The extra factor of MT

hMh

� ��1
corrects for the non-

orthogonality of the M matrix.
The amount of explained variance for dPCA is similarly computed through the

reconstruction error of the mean-subtracted trial-averaged data matrix �X;

VAFh ¼
�Xk k2� �X �DhEh

�Xk k2
�Xk k2

ð11Þ

The encoding and decoding matrices Eh and Dh are computed as described by
Kobak, Brendel and colleagues51. When computing the dPCA manifold for a
specific task, the matrix �X included only the trial-averaged neural activity for the
task being considered, concatenated over all corresponding targets. In contrast with
principal angles and CCA, dimensionality reduction is directly effected by dPCA
and does not require PCA as a preliminary step. In addition, the analysis is task
specific and does not involve a comparison between two tasks. Note that since the
manifold directions found by dPCA are not necessarily orthogonal, the decoding
matrix Dh is not the transpose of the encoding matrix Eh.

Relationship between latent activity and EMGs. To understand the role of the
neural modes in movement generation, we investigated how their activity related to
the ongoing muscle commands (EMGs) by building standard neural decoders as
previously used by our group61. We were particularly interested in the role of the
target-related but task-independent neural modes identified with dPCA. To assess
whether these target-related modes captured task-independent EMG components,
we compared the predictions of decoders based on target-related but task-
independent modes as inputs to the predictions of decoders that used as inputs the
activity of the other three sets of modes (time-related, task-related, and task-target-
related).

The neural to EMG decoders were multiple-input single-output linear filters
followed by a static non-linearity:

y tð Þ ¼
XK

k¼1

XM�1

τ¼0

hkðτÞLkðt � τÞ ð12Þ

z tð Þ ¼ aþ b � y tð Þ þ c � y2 tð Þ ð13Þ

where z(t) is the predicted EMG, obtained by applying a static non-linearity to the
output y(t) of the linear model, which estimated the EMG as a linear combination
of the current and past values of the latent activities, Lk . In this case two inputs,
k=1, 2, were weighted by coefficients hk(τ), where τ represents a time lag into the
past. The coefficients hk(τ) followed from the lagged auto-correlations and cross-
correlations of the decoder inputs and outputs61. The coefficients a, b, and c of the
second-order polynomial in the static non-linearity resulted from least-squares
error minimization.

We built a single decoder for each behavioral parameter ; using data from all
the tasks that the monkeys performed during one session. We assessed the quality
of fit on single trial data in terms of the normalized coefficient of determination,
which is the ratio of the R2 of the EMG predictions based only on the neural modes
related to the specific behavioral parameter ;, to the R2 of the EMG predictions
based on all 12 neural modes. Fits were cross-validated (leave-one-out multifold
cross-validation using 30 s folds) in all cases. We compared EMG predictions for
different behavioral parameters ; using a paired two-sided Wilcoxon rank sum test
including each fold.

To interpret our decoding results, we decomposed the EMGs from all the tasks
within a session into EMG modes using dPCA. We kept m= 4 modes, obtained
using the same method as for the dPCA of neural data. Four dPCs sufficed since
across all datasets, 3.2 ± 0.8 EMG modes (mean ± s.d.) explained ≥95% of the total
EMG variance for each wrist task separately (Supplementary Fig. 1d). When
predicting subsets of EMG modes, we used decoders with the same structure as
described above, and followed the same cross-validation procedure.

Computational model. Given that M1 has extensive projections to upper limb
muscles, and that M1 spiking is strongly predictive of EMGs, we asked whether the
observed similarities in latent neural activity could be readily explained by simi-
larities in the EMGs. To analyze this possibility, we constructed a model that
assumes a fixed relationship between M1 activity and muscle activities. We used
actual EMG data for a given pair of tasks to obtain the corresponding simulated
neural activity. We then used the same methods as described for the actual neural
data to obtain the task-specific neural manifolds and their associated latent activity,
and to compare these across tasks for the simulated neural data. Finally, these
across-task similarities in latent activities for the simulated data were compared to
those obtained for the actual data.

Our model, largely based on that in ref. 70, is as follows. Each neural unit j was
simulated as a Poisson process with a time-dependent mean λj tð Þ given by

λj tð Þ ¼ aj þ
X

i
bjiεi tð Þ þ ηj tð Þ ð14Þ
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with 0 ≤ aj ≤ 0.1 and −1 ≤ bji ≤ 1. Here, εi(t) is the time-dependent EMG of the ith
recorded muscle, and ηj(t) is additive Gaussian noise with zero mean and a
variance of 0.05. For each task, we used all the recorded EMGs to simulate as many
units as we had recorded experimentally. The {λj} were scaled so as to match the
mean firing rates of the actual neural data. In addition, we checked that second-
order statistics of the simulated firing as measured by the VAF followed a similar
trend to that of the real data (Fig. 5e) across a fairly broad range of model
parameters {kj, gij}. Finally, we used CCA to compare the activities of these
simulated neural modes across every pair of wrist tasks that monkeys performed in
each session (Fig. 5f).

Control analyses. To probe the dependence of manifold geometry and activity on
the dimensionality of the embedding neural space, we performed unit-dropping
numerical experiments. To check for orientation robustness, we selected from all
recorded units two random subsets with the same number of units each. We
created two sets of population activity; in each of them, the activity of the units
chosen for dropping was correspondingly set to zero. In each set, we used PCA to
obtain the 12-D manifolds spanned by the 12 leading PCs; both manifolds were
embedded within the original neural space. We computed the principal angles
between them; small principal angles would signal orientation robustness against
the particular choice of units. We repeated this procedure dropping 10%, 20%,
30%, and 40% of all recorded units (100 random pairs in each case), to also check
for robustness against the number of recorded units (Supplementary Fig. 3e). In all
cases, the dimensionality of the data was preserved as that of the original neural
space, thus allowing us to compare manifold orientations using principal angles.

To check for latent activity robustness, we again selected a random subset of all
recorded units, set their activities to zero, performed PCA on the resulting neural
ensemble, obtained the 12-D manifold spanned by the 12 leading PCs, and
projected the population activity onto these neural modes to obtain their activity.
We then used CCA to compare the activities of these modes to the activities of the
12 leading modes computed from all recorded units. We repeated this operation
dropping 10, 20, 30, and 40% of all recorded units (100 random pairs in each case).
We expected leading CCs close to 1, indicating latent activities that were robust
against specific choice of units and, to some extent, their number (Supplementary
Fig. 3f).

We also evaluated whether our results depended on the choice of manifold
dimensionality, by replicating the main analyses for neural manifold
dimensionalities m= 8 and 15. No qualitative changes in the results were observed
as m was changed (Supplementary Fig. 5).

To assess EMG stability across tasks, we computed the principal angles between
the EMG manifolds for two different tasks, to establish whether they were as well
aligned as the corresponding neural manifolds. To quantify the across-task stability
of latent activity we applied CCA to the EMG activity associated with different
tasks, and computed the ratio of the across-task CCs in latent neural activities to
the across-task CCs in EMGs for as many dimensions as EMGs we had available
(typically less than 12 well-recorded muscles in any given session). Task-specific
EMG manifolds, pairwise principal angles between them, and across-task
comparisons for latent muscle activities were computed using the same methods as
for neural activity.

Code availability. Code packages for comparing manifold orientation, comparing
latent activity, simulating neural activity, and EMG decoding are available upon
request to the authors. For dPCA, we used the publicly available toolbox from the
Machens lab51 (https://github.com/machenslab/dPCA). For TME, we used the
publicly available toolbox from the Cunningham lab27 (https://github.com/
gamaleldin/TME).

Data availability
All relevant data are available from the authors upon request.
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