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BACKGROUND: Previous studies indicate that disulfiram (DS), an anti-alcoholism drug, is cytotoxic to cancer cell lines and reverses
anticancer drug resistance. Cancer stem cells (CSCs) are the major cause of chemoresistance leading to the failure of cancer
chemotherapy. This study intended to examine the effect of DS on breast cancer stem cells (BCSCs).
METHODS: The effect of DS on BC cell lines and BCSCs was determined by MTT, western blot, CSCs culture and CSCs marker
analysis.
RESULTS: Disulfiram was highly toxic to BC cell lines in vitro in a copper (Cu)-dependent manner. In Cu-containing medium (1 mM), the
IC50 concentrations of DS in BC cell lines were 200–500 nM. Disulfiram/copper significantly enhanced (3.7–15.5-fold) cytotoxicity of
paclitaxel (PAC). Combination index isobologram analysis demonstrated a synergistic effect between DS/Cu and PAC. The increased
Bax and Bcl2 protein expression ratio indicated that intrinsic apoptotic pathway may be involved in DS/Cu-induced apoptosis.
Clonogenic assay showed DS/Cu-inhibited clonogenicity of BC cells. Mammosphere formation and the ALDH1þVE and CD24Low/
CD44High CSCs population in mammospheres were significantly inhibited by exposure to DS/Cu for 24 h. Disulfiram/copper induced
reactive oxygen species (ROS) generation and activated its downstream apoptosis-related cJun N-terminal kinase and p38 MAPK
pathways. Meanwhile, the constitutive NFkB activity in BC cell lines was inhibited by DS/Cu.
CONCLUSION: Disulfiram/copper inhibited BCSCs and enhanced cytotoxicity of PAC in BC cell lines. This may be caused by
simultaneous induction of ROS and inhibition of NFkB.
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Published online 12 April 2011
& 2011 Cancer Research UK

Keywords: disulfiram; reactive oxygen species; NFkB; breast cancer stem cells; paclitaxel; MAPK pathway

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The development of drug resistance remains the major obstacle to
the success of breast cancer (BC) chemotherapy. Drug-induced
DNA damage triggers the expression of anti-apoptotic proteins,
which confer drug resistance upon cancer. The NFkB is one of the
major chemoresistance-related anti-apoptotic factors. Many
human cancers including BC possess high levels of the constitutive
NFkB activity, which can be further induced by some anticancer
drugs. High NFkB activity links inflammation and tumourigenesis
(Greten et al, 2004). Activated NFkB triggers a series of molecular
reactions including up-regulation of anti-apoptotic protein-encod-
ing genes (Dutta et al, 2006) that induce cancer chemoresistance.
High NFkB activity has been identified in drug-resistant cancer
cells and ectopic over-expression of NFkB can block anticancer
drug-induced apoptosis (Wang et al, 1998, 1999, 2004). Previous
studies in our laboratory demonstrate that 5-fluorouracil (5-FU)-
and gemcitabine (dFdC)-resistant cancer cell lines possess higher
NFkB activity (Wang and Cassidy, 2003; Guo et al, 2009). Over-
expression of p50 and p65, the two subunits of NFkB, results in

increased NFkB activity and induces 5-FU and dFdC resistance
(Wang et al, 2004; Guo et al, 2009). Although NFkB is an attractive
molecular target for therapeutic intervention, inhibition of NFkB
alone can only induce limited cell death. The disappointing clinical
trial outcomes from using NFkB inhibitor in treatment of
metastatic BC patients (Yang et al, 2006; Cresta et al, 2008)
indicate that BC chemotherapy cannot be efficiently improved by
only targeting NFkB pathway.

Reactive oxygen species (ROS) (Gupte and Mumper, 2009) are a
group of oxygen-containing chemical species normally generated
from mitochondrial respiratory chain reaction with reactive
chemical properties. High ROS activity can damage DNA, protein
and lipid membrane leading to apoptosis. In comparison with
normal tissues, cancer cells generally possess high ROS activity
(Fruehauf and Meyskens, 2007) and can tolerate higher levels of
ROS. It has been suggested that further increasing ROS exposure
induced by ROS-generating agents will exhaust the cellular
antioxidant capacity, pushing cancer cells over the tolerated ROS
threshold and leading to apoptosis (Lopez-Lazaro, 2007). Reactive
oxygen species-induced apoptosis is highly reliant on persistent
activation of pro-apoptotic MAPK pathways (cJun N-terminal
kinases (JNKs) and p38) (Nakano et al, 2006) mainly through
modulating the activities of mitochondrial pro- and anti-apoptotic
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proteins by phosphorylation events (Junttila et al, 2008). Many
conventional anticancer drugs induce ROS generation and trigger
cancer cell apoptosis via ROS–MAPK pathway. However, antic-
ancer drug-induced ROS activation also triggers expression and
activation of a number of anti-apoptotic factors including NFkB
that dampen the ROS-induced cytotoxic effect (Nakano et al,
2006).

Owing to the cross-talk between NFkB and ROS–MAPK
pathways, singly targeting either pathway may not be sufficient
for inducing cancer cell killing. Therefore, identification of small
molecules that simultaneously activate the ROS–MAPK pro-
apoptotic pathway and block ROS-induced anti-apoptotic path-
ways may improve BC chemotherapy. Disulfiram (DS) is a
commercially available anti-alcoholism drug (Johansson, 1992).
We have previously demonstrated that DS inhibits NFkB activity
and enhances 5-FU- and dFdC-induced apoptosis in drug-sensitive
and -resistant colon cancer cell lines (Wang et al, 2003; Guo et al,
2009). Disulfiram also potentiates the cytotoxicity of cyclopho-
sphamide, cisplatin and radiation in vitro and protects normal
cells in kidney, gut and bone marrow in vivo, while increasing
the therapeutic index of a wide range of cytotoxic drugs (Evans
et al, 1982; Hacker et al, 1982; Bodenner et al, 1986). The molecular
anticancer mechanisms of DS are still largely unknown.
The previous publications indicate that the anticancer effect of
DS is copper (Cu) dependent (Nobel et al, 1995; Cen et al, 2002,
2004; Chen et al, 2006). Copper has a crucial role in redox
reactions and triggers generation of ROS in human cells.
Disulfiram/copper is a strong ROS inducer (Nobel et al, 1995)
and proteasome-NFkB pathway inhibitor (Chen et al, 2006).
Combination of DS with Cu may target cancer cells by simultaneously
tackling both ROS and NFkB.

Cancer derives from a very small fraction (1%) of cancer stem
cells (CSCs) (Dalerba et al, 2007), which are relatively quiescent
and express multidrug resistant and anti-apoptotic proteins
(Marques et al, 2010; Storci et al, 2010). Conventional anticancer
drugs target the proliferating and differentiated tumour bulk,
but fail to eradicate the CSCs, which become the source of tumour
recurrence. Aldehyde dehydrogenases (ALDHs) are functional
markers of normal and breast cancer stem cells (BCSCs) (Ginestier
et al, 2007; Marcato et al, 2011). It recently reported that targeting
ALDH1A1 gene can target ovarian CSCs (Landen et al,
2009). Disulfiram is a specific inhibitor of ALDHs (Johansson,
1992; Lam et al, 1997). Therefore, it may also be an inhibitor of
BCSCs.

This study demonstrated that in combination with physiological
concentration of Cu, DS was highly cytotoxic to BCSCs and
synergistically enhanced the cytotoxicity of paclitaxel (PAC) in BC
cell lines.

MATERIALS AND METHODS

Cell lines and reagents

The BC cell lines MCF7, MDA-MB-231 and T47D were purchased
from ATCC (Teddington, UK). Disulfiram, copper (II) chloride
(CuCl2), N-acetyl-cysteine (NAC), SP600125 and SB203580 were
purchased from Sigma (Dorset, UK).

Cell culture and cytotoxicity analysis

All cell lines were cultured in DMEM (Lonza, Wokingham, UK)
supplemented with 10% FCS, 50 units ml – 1 penicillin and
50 mg ml – 1 streptomycin. For in vitro cytotoxicity assay, cells
(5000 per well) were cultured overnight in 96-well flat-bottomed
microtitre plates, then exposed to drugs for 72 h and subjected to a
standard MTT assay (Plumb et al, 1989).

Analysis of the combinational effect of PAC and DS/Cu by
combination index isobologram

Overnight cultured cells were exposed to various concentrations of
PAC, DSþCu1mM or in combination of PAC and DSþCu1 mM at a
constant PAC:DS ratio of 62.5:1 for 72 h. The cells were then
subjected to MTT analysis as described above. The combinational
cytotoxicity of PAC and DS/Cu1mM was determined using
combination index (CI) isobologram analysed by CalcuSyn
software (Biosoft, Cambridge, UK) (Chou and Talalay, 1984).
The CI was determined by mutually exclusive equations.

Western blot analysis

Cells (80% confluence) were collected by trypsinisation and
washed in ice-cold PBS and lysed in RIPA buffer. The lysate was
centrifuged for 5 min in a microfuge and the supernatants retained.
The primary antibodies (Cell Signaling, Herts, UK: JNK, phos-
phorylated JNK, cJun, phosphorylated cJun, phosphorylated p38
and cleaved PARP; Santa Cruz, CA, USA: Bcl2 and Bax) were
diluted at 1:1000 in 3% BSA-TBST (anti-phosphorylated protein)
or 5% fat-free milk-TBST (anti-non-phosphorylated protein).
Anti-a-tubulin (Amersham, Buckinghamshire, UK; 1:8000 diluted)
was used as loading control. The signal was detected using an ECL
western blotting detection kit (GeneFlow, Staffordshire, UK).

Electrophoretic mobility-shift assays

Detection of NFkB-oligonucleotide complex was performed using
a LightShift chemiluminescent electrophoretic mobility-shift assay
kit (Pierce, Northumberland, UK). Briefly, nuclear protein (5 mg)
was incubated with 20 fmol of biotin-labelled oligonucleotide for
20 min at room temperature in binding buffer. The specificity of the
NFkB DNA binding was determined in competition reactions in
which a 200-fold molar excess of unlabelled wild-type (50-AGT TGA
GGG GAC TTT CCC AGG C-30) or mutant (50-AGT TGA TAT TAC
TTT TAT AGG C-30) NFkB probes were added to the binding
reaction. The signal was detected by chemiluminescent photography.

Flow cytometric analysis of DNA content

Cells (1� 106) were exposed to drugs and harvested by trypsinisa-
tion. The cells were fixed in 70% ethanol and then incubated with
RNase A (100mg ml– 1) and propidium iodide (50mg ml – 1) for
30 min. The data from 10 000 cells of each sample were collected by
FACS Scan (Becton Dickinson, Franklin Lakes, NJ, USA) and the
DNA content analysed using CellQuest software (BD Biosciences,
Oxford, UK).

ROS activity detection

The intracellular ROS levels were determined using 20,70-dichlor-
odihydrofluorescein diacetate (H2DCFDA) probe (Invitrogen,
Paisley, UK). Cancer cells (1� 106) were cultured in 24-well plates
with 1 ml of serum- and phenol red-free DMEM medium (Sigma)
containing 20mM of H2DCFDA. Fluorescence was measured in 96-well
plates at excitation 490 nm and emission 520 nm using a Fluoroskan
Ascent fluorometer (Thermo Scientific, Northumberland, UK).

Luciferase reporter gene assay

All the transfections were performed using Lipofectamine 2000
(Invitrogen) transfection reagent following the manufacturer’s
instructions. The cells were co-transfected with luciferase reporter
vectors (pNFkB-Tal-Luc (BD Biosciences) and pGL3-Basic
(Promega, Southampton, UK)) and an internal control, pSV40-
Renilla (Promega). The luciferase activities were determined
using Dual Luciferase Assay reagents (Promega) following the
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manufacturer’s instructions. The luciferase activity in each well
was normalised to pSV40-Renilla using the formula of Ln¼ L/R
(Ln, normalised luciferase activity; L, luciferase activity reading
and R, Renilla activity reading). The Ln was further standardised
by the transcriptional activity of the pGL3-Basic using the formula
of RLU ¼ LnNFkB/LnBasic (RLU, relative luciferase unit).

Clonogenic assay

Cells (5� 104 per well in six-well plates) were exposed to
designated concentration of DS/Cu1 mM, PAC or PACþDS/Cu1mM

for 24 h. The cells were collected and further cultured for 7
(MDA-MB-231 and MCF7) to 14 (T47D) days in six-well plates

containing drug-free medium at a cell density of 2.5� 103 per well.
Clonogenic cells were determined as those able to form a colony
consisting of at least 50 cells.

Detection of ALDH-positive population

The ALDH-positive population in drug-treated BC cell lines was
detected by ALDEFLUOR kit (StemCell Tech., Durham, NC, USA)
following the supplier’s instruction. The cells (2.5� 105) were
analysed after staining in ALDH substrate containing assay buffer
for 30 min at 371C. The negative control was treated with
diethylaminobenzaldehyde (DEAB), a specific ALDH inhibitor.
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Figure 1 Disulfiram was cytotoxic to BC cells in a copper-dependent manner and synergistically enhanced cytotoxicity of PAC in BC cell lines. (A) MTT
cytotoxicity assay. The BC cells were exposed to different treatments for 72 h. (B) The morphology (� 100 magnification) of BC cell lines after 72 h drug
exposure (DS: 1mM of DS in serum-free medium, Cu: CuCl2 1mM, DS/Cu: DS 1 mM þ Cu 1mM). (C) The DNA contents of BC cells after 72 h drug
exposure (DS: 1 mM of DS in serum-free medium, Cu: CuCl2 1mM, DS/Cu: DS 1 mMþCu 1 mM). The DNA contents in the treated cells (10 000 events)
were determined. The sub-G1 population represents the apoptotic cells (**Po0.01, n¼ 3). The cleavage of PARP protein (D) and the expression levels of
Bcl2 and Bax (E) after 72 h drug exposure were determined by western blot. Tub: a-tubulin used as a loading control. (F) MTT analysis of the combined
effect of PAC and DS/Cu1mM. PAC:DS/Cu1 mM¼ 1:62.5. (G) The PAC-induced apoptosis was enhanced by DS/Cu. The DNA contents in the cell lines
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cytometry. (**Po0.01, n¼ 3).
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Figure 1 Continued.
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In vitro mammosphere culture

The BC cells were cultured in ultra-low adherence six-well plates
(Corning, Woburn, MA, USA) containing 2 ml of stem cell culture
medium (SCM, serum-free DMEM-F12 supplemented with B27
(Invitrogen), 20 ng ml – 1 epidermal growth factor (Sigma),
10 ng ml – 1 basic fibroblasts growth factor (R & D System,
Abingdon, UK), 10 mg ml – 1 insulin (Sigma)) at a density of
10 000 cells ml – 1. After 7–10 days culture, the mammospheres
were photographed and subjected to further treatments.

Flow cytometric analysis of CD24 and CD44 expression

The adherent or mammosphere cells were trypsinised and passed
through a 25G needle. The cells (2.5� 105) were incubated with
CD24 and CD44 antibodies (BD Pharmingen, Oxford, UK) for
20 min at 41C. Unbound antibodies were washed off with 2% FCS
HBSS (Sigma) and the cells (10 000 events) were examined no
longer than 1 h after staining on a BD Facscalibur (Dorset, UK).

Statistical analysis

The data analysis was performed using Student’s t-test and
one-way ANOVA.

RESULTS

The cytotoxicity of DS in BC cells was Cu dependent

In CuCl2 (1 mM)-supplemented medium, DS was highly cytotoxic to
BC cell lines (IC50_72h: 110–476 nM; Figure 1A; Table 1). Disulfiram
was also toxic to cancer cell lines in the complete medium without
CuCl2 supplement with higher IC50s (456 –1100 nM; Figure 1A;
Table 1). A biphasic effect was observed in two out of three BC cell

lines. The cancer cells appeared to be protected at higher
concentrations of DS. Disulfiram alone in serum-free medium
(to rule out the influence of trace amount of Cu contained in FCS)
or Cu alone was not toxic to BC cell lines even at a very high
concentration (20 mM). The drug-induced morphological changes
are shown in Figure 1B. The flow cytometric DNA content analysis
demonstrated significant increase of apoptosis (sub-G1 popula-
tion) in 72 h DS/Cu treated, but not other groups (Figure 1C). The
cleaved PARP protein, an indicator of caspase activation, was
detected in DS/Cu-treated cells (Figure 1D). Disulfiram/copper
significantly inhibited Bcl2 and induced Bax expression; therefore,
the Bax/Bcl2 ratio was increased in DS/Cu-treated cells (Figure 1E).
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Figure 1 Continued.

Table 1 Cytotoxicity of different treatments to breast cancer cell lines

MCF7 MDA-MB-231 T47D

IC50 (nM)
DS+serum 456 (62) 495 (49) 1100 (87)
DS/Cu 211 (23) 476 (48) 443 (62)
DS– serum 420 000 420 000 420 000
Cu 420 000 420 000 420 000
PAC alone 4.3 (1.4) 9.3 (0.7) 2.6 (0.3)
PAC+DS/Cu 0.4** (0.1) 0.6** (0.02) 0.7** (0.1)

CI values
IC50 0.183 0.437 0.446
IC75 0.213 0.436 0.661
IC90 0.265 0.457 0.633

Abbreviations: CI¼ combination index; Cu¼ copper; DS¼ disulfiram;
PAC¼ paclitaxel. The figure represents IC50 value from three experiments (mean
(s.d.)). **Compared with PAC alone, significant difference (Po0.01, n¼ 3). The cells
were treated for 72 h. DS/Cu: DS in medium supplemented with 1 mM CuCl2;
DS– serum: DS in serum-free medium; DS+serum: DS in serum-containing medium.
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DS/Cu synergistically enhanced the cytotoxicity of PAC in
BC cell lines

In combination with DS/Cu, the cytotoxicity of PAC was
significantly enhanced in BC cell lines (4–16-fold) (Figure 1F;
Table 1). There was a very strong synergistic effect between DS/Cu
and PAC over a wide range of concentrations (IC50 –IC90; Table 1).
In contrast to the slight induction of apoptosis at low concentra-
tion of PAC alone (1 nM), the proportion of apoptotic cells was
massively increased by DS/Cu (DS 100–150 nM/Cu 1 mM) and PAC
in combination (Figure 1G).

ROS activation was responsible for DS/Cu-induced
cytotoxicity

The Cu-dependent cytotoxicity of DS indicates that ROS may be
the mediator for DS/Cu-induced apoptosis. Disulfiram/copper
significantly induced ROS activity in BC cell lines (Po0.01), which
was reversed by addition of an ROS inhibitor, NAC (Po0.01;
Figure 2A). To determine the effect of ROS on DS/Cu-induced cell
death, the cytotoxicity assay was performed with or without ROS
inhibitor. As shown in Figure 2B, the DS/Cu-induced cytotoxicity
was significantly reversed by addition of NAC in the culture
(Po0.01).

DS/Cu triggered persistent activation of JNK and p38
pathways

Figure 3A shows the effect of PAC, DS/Cu and PAC/DS/Cu on the
activation of the JNK pathway. Total JNK protein expression was
not affected by the above treatments. However, the expression of
phosphorylated JNK, cJun and total cJun was persistently (up to
24 h) induced by DS/Cu and PAC/DS/Cu. In contrast, the
expression of these proteins was not or only very mildly up-
regulated by PAC. High levels of phosphorylated p38 were also
detected up to 24 h following DS/Cu and PAC/DS/Cu exposure
(Figure 3B). To determine the causal relationship between ROS
and JNK, p38 pathways, BC cell lines were exposed to DS/Cu for
24 h with or without addition of NAC. N-acetyl-cysteine signifi-
cantly inhibited or totally blocked DS/Cu-induced cJun and p38
phosphorylation (Figure 3C). cJun N-terminal kinase and p38 are
the major pathways responsible for ROS-induced apoptosis
(McCubrey et al, 2006). Singly blocking JNK or p38 also reversed
the DS/Cu-induced cytotoxicity, but at a significantly lower levels
than NAC-induced ROS blocking (Po0.01; Figure 2B).

DS/Cu inhibited NFjB activity in BC cell lines

The NFkB is an ROS-induced transcription factor with strong anti-
apoptotic activity, which in turn dampens the pro-apoptotic effect
of ROS (Nakano et al, 2006). Blockage of NFkB activation enhances
ROS-induced cytotoxicity. Both PAC and DS/Cu inhibited NFkB
DNA-binding activity in BC cell lines. The strongest inhibition was
observed in the cells treated with PAC/DS/Cu in combination
(Figure 3D). The inhibition of NFkB transcriptional activity was
also detected in PAC-, DS/Cu- and PAC/DS/Cu-treated cells by
reporter gene assay (Figure 3E).

DS/Cu inhibited the clonogenity in BC cell lines

Clonogenic assays (Franken et al, 2006) were performed to
examine the ability of DS/Cu to induce ‘reproductive death’ in
BC cells. After 16 h exposure to PAC (40 nM: 4–18-fold higher than
IC50 concentration), DS (200– 250 nM: sub-IC50 concentration)/
Cu1 mM or PAC and DS/Cu in combination, the treated cells were
collected and cultured in drug-free medium for 7– 14 days. The
colony number was reduced by exposure to PAC, DS or Cu alone.
The colony number in PAC-, DS- and Cu-treated groups was
decreased, which was caused by slow growth of the surviving cells
leading to the cell number in some colonies not reaching the
counting threshold (50 cells). In contrast, the clonogenicity of BC
cell lines was significantly inhibited by DS/Cu and totally
eradicated by exposure to PAC plus DS/Cu (Figure 4A).

DS/Cu targeted BCSCs

Furthermore, we examined the effect of different treatments on
CSCs population in MDA-MB-231 and T47D cell lines. The
mammosphere formation in both cell lines was completely blocked
by exposure to DS1mM/Cu1mM or DS/Cu plus PAC40 nM for 48 h, but
not affected by PAC, DS or Cu alone (Figure 4B). To determine the
targeting effect of DS/Cu on CSCs, the BCSCs markers in drug-
treated mammosphere cells were also analysed. Figure 4C
demonstrates that the ALDH-positive population in mammo-
spheres was significantly inhibited by DS/Cu, but not affected or
even enriched by DS or Cu treatment. In order to determine the
effect of DS/Cu on CSCs, the expression status of CD24Low/
CD44High, another marker of BCSCs, was also examined. After 16 h
exposure to different drugs, the CD24Low/CD44High population in
the mammosphere cells was determined by flow cytometry. In
comparison with the attached cells, the mammosphere population
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contained significantly higher percentage of CD24Low/CD44High

BCSCs (Figure 4D). The percentage of CD24Low/CD44High cells in
mammosphere was significantly reduced following 16 h exposure
to DS/Cu and PAC/DS/Cu, but not influenced by PAC, DS or Cu
(Figure 4D).

DISCUSSION

Disulfiram is a Food and Drug Administration-approved anti-
alcoholism drug used in clinic with extensive available pre-clinical

and clinical data (Eneanya et al, 1981). Our study demonstrated
high cytotoxicity of DS to BC cell lines in a Cu-dependent manner.
Using Cu to treat cancer has a long history (Hieger, 1926; Gupte
and Mumper, 2009), but the intracellular transport of Cu is still
one of the major hurdles for its clinical efficacy. The transport of
Cu into cell is mediated and tightly controlled by the copper
transporter, Ctr1. A derivative of DS, N,N-diethyldithiocarbamate
(deDTC), binds to Cu forming a Cu(deDTC)2 complex, which
improves the intracellular trafficking of Cu and this is probably
responsible for DS-induced apoptosis (Cen et al, 2004). Disulfiram
can also penetrate into cancer cells to form Cu(deDTC)2 with
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intracellular Cu. In comparison with normal tissues, many cancers
including BC possess higher levels of Cu (two- to three-fold)
(Mulay et al, 1971; Margalioth et al, 1983; Rizk and Sky-Peck,
1984), which may enable DS to target cancer cells selectively
(Evans et al, 1982; Hacker et al, 1982; Bodenner et al, 1986; Chen
et al, 2006; Iljin et al, 2009). In line with a previous report
(Wickstrom et al, 2007), a biphasic cytotoxic effect of DS was
observed in BC cell lines tested in complete medium without Cu
supplement (Figure 1A). Breast cancer cells were killed at low
concentration, but revived at higher DS concentrations (B10 mM).
The mechanism of the biphasic effect remains unclear. A
degradation product of DS may compete trace amounts of Cu,

block formation of Cu(deDTC)2 and inhibit transport of Cu into
cells (Cen et al, 2004). We have previously reported that DS
enhances the cytotoxicity of 5-FU and gemcitabine in colon and BC
cell lines (Wang et al, 2003; Guo et al, 2009). Here, we
demonstrated synergistic cytotoxic effect of DS/Cu and PAC on
BC cell lines.

Previous studies demonstrate that in combination with Cu, DS
induces ROS activity in melanoma cell lines (Cen et al, 2002;
Morrison et al, 2010). The recent study from Dou’s group
demonstrates that gold –dithiocarbamato complexes strongly
induce ROS and inhibit proteasome activity in BC cells (Zhang
et al, 2010). In consistence with these results, our study showed
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that DS/Cu induced ROS activity, which was responsible for DS/
Cu-induced cytotoxicity in BC cell lines. The ROS-induced
apoptosis is commonly mediated by the persistent activation of
JNK and p38 MAPK pathways (Junttila et al, 2008). In our study,
both JNK and p38 pathways were persistently (over 24 h) activated
(phosphorylation of cJun and p38) by DS/Cu and blocked by NAC.
cJun N-terminal kinase and p38 inhibitors reduced cytotoxicity of
DS/Cu, although to a lesser degree than ROS inhibition. Therefore,
ROS-activated JNK and p38 pathways were, at least partially,
responsible for ROS-induced apoptosis. The persistent activation
of JNK and p38 induces apoptosis via mitochondrial apoptotic
pathways (Junttila et al, 2008). The DS/Cu-induced apoptosis was
confirmed by DNA content and PARP protein cleavage. The
expression of Bax and Bcl2 proteins was induced and suppressed
by DS/Cu, respectively, leading to increased Bax/Bcl2 ratio. The
elevated Bax/Bcl2 ratio indicated that the intrinsic apoptotic
pathway may be involved in DS/Cu-induced apoptosis.

Owing to the high proliferative rate and energy requirement,
cancer cells are under higher ROS stress than their normal
counterparts. High levels of ROS can damage DNA, mitochondrial
inner membrane and membrane phospholipids leading to
apoptosis (Gupte and Mumper, 2009). However, ROS also activate
a wide range of anti-apoptotic factors. The effect of ROS on cancer
cells depends on the balance between ROS-induced pro- and anti-
apoptotic factors. The NFkB is one of the most important ROS-
induced anti-apoptotic factors (Gloire et al, 2006). The NFkB
activation in turn inhibits ROS and JNK, p38 activation and
ultimately inhibits ROS-induced apoptosis. Breast cancer cell lines
commonly possess high levels of constitutive NFkB activity (Wang

et al, 2004; Guo et al, 2009; Xu et al, 2009). Consistent with
previous publications (Wang et al, 2003; Guo et al, 2009), DS/Cu
inhibited NFkB activity in BC cell lines. This indicates that DS/Cu
may induce apoptosis of BC cells by simultaneously inducing ROS
generation and inhibiting ROS-NFkB pathway.

The effect of DS/Cu on the regeneration of minimal-residual
cancer cells, the main source of cancer relapse after chemotherapy,
was examined using a clonogenic assay, a gold measure to detect
the cell ‘reproductive death’ after cytotoxic agent treatments
(Franken et al, 2006). In contrast to the moderate inhibiting effect
of PAC, DS and Cu on clonogenicity of BC cells, the colony
formation was significantly reduced or completely eradicated by
DS/Cu and PAC/DS/Cu, respectively (Figure 4A).

Disulfiram/copper reverses cancer cell chemoresistance induced
by a wide range of different mechanisms (Wang et al, 2001, 2003,
2004; Guo et al, 2009). It has been widely accepted that CSCs are
responsible for tumour recurrence and may display significant
resistance to different cytotoxic drugs (Liu and Wicha, 2010). The
effect of DS/Cu on clonogenicity of BC cell lines prompted us to
examine the effect of DS/Cu on BCSCs. Disulfiram is an inhibitor
of ALDHs. Human ALDHs are a superfamily with 19 members
involved in detoxifying a wide range of aldehydes to their
corresponding weak carboxylic acids (Sladek, 2003); ALDH1A1
has been identified as a functional marker of several different types
of CSCs including BCSCs (Ginestier et al, 2007; Alison et al, 2011).
It recently reported that knockdown of ALDH1A1 expression using
siRNA can target ovarian CSCs and potentiate cytotoxicity of
taxane and platinum in vitro and in vivo (Landen et al, 2009).
Recently, Marcato et al (2011) identify ALDH1A3 as another major
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marker of BCSCs. Therefore, ALDHs may be redundantly
expressed in different cancer types and targeting one isoform
may not be sufficient for CSCs targeting. Disulfiram is a strong
inhibitor for both cytosol and mitochondrial ALDHs (Eneanya
et al, 1981; Lam et al, 1997). Kast and Belda-Iniesta (2009)
hypothesised that targeting ALDHs by DS may reverse chemore-
sistance in glioblastoma. Our study is the first report of using DS to
target BCSCs. The ALDHþVE population in BCSCs was signifi-
cantly inhibited by DS/Cu. The ability of BC cell lines to form
mammospheres was completely inhibited by 24 h exposure to
DS/Cu or PAC/DS/Cu (Figure 4B). The effect of DS/Cu on CSCs
was also confirmed by the reduction of the CD24Low/CD44High

population (Figures 4C and D). The detailed molecular mechanisms
underlying the effect of DS/Cu on BCSCs are unclear. Aldehyde
dehydrogenases detoxify intracellular aldehydes, which can form
adducts with glutathione, nucleic acids and amino acids leading
to cell death (Marchitti et al, 2008). The high expression of ALDHs
in CSCs may be protective. Mammalian cornea cells contain

abundant ALDH, which has critical role in scavenging ROS
and reduce UV-induced oxidative stress (Estey et al, 2007).
Aldehyde dehydrogenase deficiency in central nervous system is
associated with progressive neurodegeneration (Marchitti et al,
2007). Inhibition of NFkB pathway and induction of ROS
result in reduction of stem-like properties in CSCs derived
from pancreatic cancer and leukaemia (Greten et al, 2004;
Jin et al, 2010; Rausch et al, 2010). Disulfiram/copper may target
BCSCs by simultaneously inhibiting NFkB and activating ROS
activity.
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