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The inclusion of exons during the splicing process depends on the binding of splicing factors to short low-complexity reg-

ulatory sequences. The relationship between exonic splicing regulatory sequences and coding sequences is still poorly un-

derstood. We demonstrate that exons that are coregulated by any given splicing factor share a similar nucleotide

composition bias and preferentially code for amino acids with similar physicochemical properties because of the nonran-

domness of the genetic code. Indeed, amino acids sharing similar physicochemical properties correspond to codons that

have the same nucleotide composition bias. In particular, we uncover that the TRA2A and TRA2B splicing factors that

bind to adenine-rich motifs promote the inclusion of adenine-rich exons coding preferentially for hydrophilic amino acids

that correspond to adenine-rich codons. SRSF2 that binds guanine/cytosine-rich motifs promotes the inclusion of GC-rich

exons coding preferentially for small amino acids, whereas SRSF3 that binds cytosine-rich motifs promotes the inclusion

of exons coding preferentially for uncharged amino acids, like serine and threonine that can be phosphorylated. Finally,

coregulated exons encoding amino acids with similar physicochemical properties correspond to specific protein features.

In conclusion, the regulation of an exon by a splicing factor that relies on the affinity of this factor for specific nucleo-

tide(s) is tightly interconnected with the exon-encoded physicochemical properties. We therefore uncover an unanticipated

bidirectional interplay between the splicing regulatory process and its biological functional outcome.

[Supplemental material is available for this article.]

Alternative splicing is a cellular process involved in the regulated
inclusion or exclusion of exons during the processing of mRNA
precursors. Alternative splicing is the rule rather than the excep-
tion in human because 95% of human genes produce several splic-
ing variants (Pan et al. 2008;Wang et al. 2008). The exon selection
process relies on RNA binding proteins or splicing factors that en-
hance or repress exon inclusion following two main principles.
First, splicing factors bind to short intronic or exonic motifs (or
splicing regulatory sequences) that are often low-complexity se-
quences composed of the repetition of the same nucleotide or
dinucleotide (Fu and Ares 2014). In addition, the interaction of
splicing factors with their cognate binding motifs often depends
on the sequence context and on the presence of clusters of related
binding motifs (Zhang et al. 2013; Cereda et al. 2014; Fu and Ares
2014; Dominguez et al. 2018; Jobbins et al. 2018). The secondprin-
ciple states that the splicing outcome (i.e., exon inclusion or skip-
ping) depends on where splicing factors bind on pre-mRNAs with
respect to the regulated exons. For example, HNRNP-like splicing
factors often repress the inclusion of exons they bind, but they
enhance exon inclusion when they do not bind exons but instead
bind to introns (Erkelenz et al. 2013; Fu and Ares 2014; Geuens
et al. 2016). Meanwhile, the exonic binding of SR-like splicing fac-

tors (SRSFs) usually enhances exon inclusion (Erkelenz et al. 2013;
Fu and Ares 2014).

Because some splicing regulatory sequences lie within pro-
tein-coding sequences, a major challenge is to understand how
coding sequences accommodate this overlapping layer of informa-
tion (Itzkovitz et al. 2010; Lin et al. 2011; Savisaar andHurst 2017a,
b). To date, a general assumption is that protein-coding sequences
can accommodate overlapping information or “codes” (including
the “splicing code”) as a direct consequence of the redundancy of
the genetic code that allows the same amino acid to be encoded by
several codons differing only on their third “wobble” nucleotide
(Goren et al. 2006; Itzkovitz and Alon 2007; Itzkovitz et al. 2010;
Lin et al. 2011; Shabalina et al. 2013; Savisaar and Hurst 2017a,b).
Therefore, coding and exonic splicing regulatory sequences could
evolve independently because of the variation of the third nucle-
otides of codons. In this setting, it has recently been shown that
splicing regulatory sequence selection severely constrains coding
sequence evolution (Savisaar and Hurst 2018). In addition, it has
been reported that some amino acids are preferentially encoded
near exon–intron junctions because of the presence of general
splicing consensus sequences near splicing sites (Parmley et al.
2007; Warnecke et al. 2008; Smithers et al. 2015). Finally, recent
evidence has suggested that exons that are coregulated in specific
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pathophysiological conditions may code for protein regions en-
gaged in similar cellular processes (Irimia et al. 2014; Tranchevent
et al. 2017). These observations raised the possibility that exons
regulated by the same splicing regulatory process code for similar
biological information. So far, the lack of large sets of coregulated
exons has limited the studies addressing the interplay between the
splicing regulatory process and peptide sequences encoded by
splicing-regulated exons. By focusing on exons coregulated by dif-
ferent splicing factors, we uncover a bidirectional interplay be-
tween the physicochemical protein features encoded by exons
and their regulation by splicing factors.

Results

Nucleotide composition bias of coregulated exons

To investigate the relationship between exonic splicing regulatory
sequences and coding sequences, we analyzed publicly available
RNA-seq data sets generated from different cell lines transfected
with siRNAs or shRNAs targeting specific splicing factors (e.g.,
SRSF1, SRSF3, TRA2A, TRA2B) or transfected with an SRSF2-
expression vector (Supplemental Table S1). Because TRA2A and
TRA2B are paralogous and have been codepleted in the analyzed
data sets, we will refer both of these factors as TRA2. SRSF1,
SRSF2, SRSF3, and TRA2 belong to the family of Arg/Ser (RS)
domain-containing splicing factors (SRSFs). Each splicing factor
regulated a common set of exons in several cell lines, butmany ex-
ons were regulated on a cell line–specific mode (Supplemental Fig.
S1). SRSF1, SRSF2, SRSF3, andTRA2bind toGGA-richmotifs, SSNG
motifs (where S =GorC),C-rich andG-poormotifs, andAGAA-like
motifs, respectively (Grellscheid et al. 2011; Tsuda et al. 2011;
Änkö et al. 2012; Pandit et al. 2013; Ray et al. 2013; Best et al.
2014; Fu and Ares 2014; Anczuków et al. 2015; Hauer et al. 2015;
Giudice et al. 2016; Luo et al. 2017). As expected, hexanucleotides
enriched in SRSF1-, SRSF2-, SRSF3-, or TRA2-activated exons across
different cell lines were enriched in purine-rich, S-rich, C-rich, or
A-rich hexanucleotides, respectively, when compared to control
exons and in contrast to exons repressed by the same factor (posi-
tion weight matrices [PWM]) (Fig. 1A; Supplemental Fig. S2A;
Supplemental Table S2).

Each set of splicing factor–regulated exons had a specific
nucleotide composition bias. Indeed, SRSF1-activated exons (but
not SRSF1-repressed exons) were enriched in G when compared
to control exons (Mann–Whitney U test P-value 0.029) (Fig. 1A;
see also Supplemental Fig. S2B; Supplemental Table S2). SRSF2-ac-
tivated exons (butnot SRSF2-repressed exons)were enriched inS (G
or C; randomization test FDR<1×10−3) (Fig. 1A). SRSF3-activated
exons were enriched in C (randomization test FDR<1×10−4)
(Fig. 1A) and impoverished in G (Supplemental Fig. S2C). Finally,
TRA2-activated exons were enriched in A (randomization test
FDR<1×10−4), unlike TRA2-repressed exons (randomization test
FDR<1×10−4), when compared to control exons (Fig. 1A).
Accordingly, a high density of G, S, C, or A nucleotides was more
frequent in SRSF1-, SRSF2-, SRSF3-, or TRA2-activated exons, re-
spectively, when compared to the corresponding repressed exons
(Kolmogorov–Smirnov [K–S] test P-value <1×10−14) (Fig. 1B).

Although the enriched nucleotides within splicing factor–
regulated exons could be randomly distributed across exons, we
observed an increased frequency of specific dinucleotides and
low-complexity sequences. For example, GG, SS, CC, or AA
dinucleotides were more frequent in SRSF1-, SRSF2-, SRSF3-, or
TRA2-activated exons, respectively, than in control exons or in

the corresponding repressed exons (Supplemental Fig. S2D;
Supplemental Table S2). We next performed a logistic regression
analysis to test differences in low-complexity sequence content be-
tween activated and repressed exons for a given splicing factor
while accounting for cell line variations. As shown in Figure 1C,
a larger proportion of SRSF1-, SRSF2-, SRSF3-, or TRA2-activated ex-
ons contained G-, S-, C-, or A-rich low-complexity sequences, re-
spectively, when compared to the corresponding repressed exons
(logistic regression analysis P-value <3×10−7).

Amino acid composition bias of SRSF-coregulated exons

We next analyzed the codon content of exons regulated by SRSF-
related splicing factors. In agreementwith the nucleotide composi-
tion bias described previously, SRSF1-, SRSF2-, SRSF3-, or TRA2-
activated exons were enriched in G-, S-, C-, or A-rich codons,
respectively, compared to both sets of control exons or the corre-
sponding repressed exons (randomization test FDR<0.05) (Fig.
2A; see also Supplemental Fig. S3; Supplemental Table S2). In this
setting, it has been proposed that coding sequences can accommo-
date exonic splicing regulatory sequences through variation of the
third codonposition (“Introduction”). Accordingly, thenucleotide
composition bias observed at the whole exon level (Fig. 1) was also
observedon the third codonpositionacross somedata sets and fora
subset of codons (Fig. 2B, upper panels; Supplemental Table S2;
Supplemental Fig. S4). However, the identity of the nucleotide at
the first or second codon positions was systematically biased (Fig.
2B, lower panels; Supplemental Table S2). This raises the possibility
that different sets of SRSF-regulated exons may preferentially code
for different amino acids.

As shown in Figure 3A (upper panels), amino acids more fre-
quently encoded by SRSF1-, SRSF2-, SRSF3-, and TRA2-activated
exons corresponded to G-, S-, C-, and A-rich codons, respectively
(see also Supplemental Fig. S5; Supplemental Table S2). This was
in sharp contrast to the corresponding repressed exons (Fig. 3A,
lower panels). For example, glycine (GGN codons) was more fre-
quently encoded by SRSF1-activated exons (Mann–Whitney
U test P-value 0.029) than by control exons and SRSF1-repressed
exons (Fig. 3B). A counting of glycines encoded within SRSF1-
activated versus SRSF1-repressed exons showed a mirrored distri-
bution: A large proportion of activated exons (∼60%) coded for
more than three glycines, whereas nearly 70% of repressed exons
coded for a maximum of one glycine (Fig. 3C). Similarly, alanine
(GCN codons), proline (CCN codons), and lysine (AAR codons)
were more frequently encoded by SRSF2-, SRSF3-, and TRA2-acti-
vated exons, respectively (Fig. 3B,C).

SRSF-coregulated exons code for amino acids with similar

physicochemical properties

The preceding observations revealed a nucleotide composition
bias of splicing factor–regulated exons and a bias regarding the
nature of the amino acids that are encoded by these exons. In
this setting, it is well established that amino acids sharing similar
physicochemical properties (e.g., size, hydropathy, charge) are en-
coded by similar codons (i.e., codons composed of the same nucle-
otides) (Woese 1965; Wolfenden et al. 1979; Taylor and Coates
1989; Biro et al. 2003; Prilusky and Bibi 2009). For example, small
amino acids (Ala, Asn, Asp, Cys, Gly, Pro, Ser, Thr)—in particular,
very small amino acids (Ala, Gly, Ser, Cys)—are encoded by S-rich
codons, whereas large amino acids (Arg, Ile, Leu, Lys, Met, Phe,
Trp, Tyr) are encoded by S-poor codons (Fig. 4A). SRSF2 binds to
SSNG motifs and SRSF2-activated exons are S-rich (Fig. 1). The

Fontrodona et al.

712 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241315.118/-/DC1


two sets of analyzed SRSF2-activated exons encoded more
frequently for very small and small amino acids when compared
to control exons, in contrast to SRSF2-repressed exons (randomi-
zation test FDR<0.0003) (Fig. 4B; Supplemental Table S2).
Conversely, large amino acids were less frequently encoded by
SRSF2-activated exons (randomization test FDR<1×10−4) (Fig.
4B). Accordingly, a high density of very small amino acids was
more frequent in SRSF2-activated when compared to SRSF2-re-
pressed exons, whereas a high density of large amino acids was
more frequent in SRSF2-repressed when compared to SRSF2-acti-
vated exons (K–S test P-value< 5×10−6) (Fig. 4C).

Amino acids can be classified in three families in regard to
their hydropathy, and each family is encoded by codons having

different features. Hydrophilic amino acids (Arg, Asn, Asp, Gln,
Glu, Lys) are encoded by A-rich codons, hydrophobic amino acids
(Ala, Cys, Ile, Leu,Met, Phe, Val) are encoded byU-rich and A-poor
codons, and ambivalent or neutral amino acids (Gly, His, Pro,
Ser, Thr, Tyr) are encoded by C-rich codons (Fig. 4D; Kyte and
Doolittle 1982; Engelman et al. 1986; Chiusano et al. 2000; Biro
et al. 2003; Pommié et al. 2004; Prilusky and Bibi 2009; Zhang
and Yu 2011). TRA2 that binds to AGAA-like motifs activates the
inclusion of A-rich exons (Fig. 1). TRA2-activated exons encoded
hydrophilic amino acids more frequently (randomization test
FDR<1×10−4) and neutral or hydrophobic amino acids less fre-
quently than control exons (randomization test FDR<1×10−4 )
(Fig. 4E; Supplemental Table S2). Similar results were obtained by

A

B

C

Figure 1. Nucleotide composition bias of coregulated exons. (A) Position weight matrices (PWM) using the 10most enriched hexanucleotides in SRSF1-,
SRSF2-, SRFS3-, or TRA2-activated exons. The histograms represent the relative frequency (%) when compared to sets of control exons of G, S, C, and A
nucleotides in SRSF1-, SRSF2-, SRSF3-, and TRA2-regulated exons, respectively, identified in different cell lines. The average values obtained from four data
sets are represented in the case of SRSF1: (∗∗) Mann–Whitney U test P-value < 0.03. The sets of the other SRSF-regulated exons originated from K562 (1),
Huh7 (2), HepG2 (3), GM19238 (4), and MDA-MB-231 (5) cell lines: (∗) randomization test FDR <0.03. (B) Density chart of G, S, C, and A nucleotides in
SRSF1-, SRSF2-, SRSF3-, and TRA2-regulated exons, respectively: (∗∗) Kolmogorov–Smirnov (K–S) test < 1 × 10−13. (C) Proportion of exons containing at
least one low-complexity (LC) sequence of 6, 7, 9, or 10 nt. In a sliding window of N nucleotides, the number of the same nucleotide (G, S, C, or A)
must be equal to or greater than (N-1). The x-axis is labeled to indicate the number of single nucleotides identified in a given window. For example,
“5G/6N” means that a sequence of 6 consecutive nucleotides (6N) is composed of at least 5 Gs (5G). The average values obtained from four data sets
are represented in the case of SRSF1. The sets of the other SRSF-regulated exons originated from K562 (1), Huh7 (2), HepG2 (3), GM19238 (4), and
MDA-MB-231 (5) cell lines. A logistic regression analysis was performed to test if the presence of low-complexity sequences was different between activated
and repressed exons by a given splicing factor while accounting for cell line variations: (∗) P-value < 3×10−7.
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using different hydrophobicity propensity scales (Fig. 4F).
Accordingly, a high density of hydrophilic amino acids was more
frequently encoded by TRA2-activated when compared to TRA2-
repressed exons (K–S test P-value <1×10−13) (Fig. 4G).

Polar uncharged amino acids (Asn, Gln, Ser, Thr, Tyr), includ-
ing hydroxyl-containing amino acids (e.g., Ser and Thr) corre-
spond to C-rich and G-poor codons, whereas polar charged
amino acids (Asp, Glu, Lys, Arg) correspond to G-rich and C-poor
codons (Fig. 4H; Biro et al. 2003; Zhang and Yu 2011). SRSF3 binds
to C-rich motifs and activates C-rich and G-poor exons (Fig. 1).
Two sets of SRSF3-activated exons encoded uncharged (including
hydroxyl-containing) amino acids more frequently than control
exons (randomization test FDR<1×10−4) or SRSF3-repressed ex-
ons (Fig. 4I; Supplemental Table S2). They also encoded more fre-
quently hydropathically neutral amino acids (randomization test
FDR<1×10−4 for both cell lines) (Fig. 4I) that correspond to C-
rich codons (Fig. 4D). As shown in Figure 4J, a high relative density
of uncharged versus charged and hydroxyl versus negatively
charged amino acids was more frequent in SRSF3-activated when
compared to SRSF3-repressed exons (K–S test P-value<3 ×10−12).
These observations suggest a link between splicing-related nucleo-
tide composition bias of splicing-regulated exons and physico-
chemical properties of the exon-encoded amino acids.

HNRNP-corepressed exons code for amino acids with similar

physicochemical properties

SRSF-like splicing factors activate exons they bind, in contrast
to HNRNP-like splicing factors that repress exons they bind. We
analyzed publicly available RNA-seq data sets generated from
different cell lines transfected with siRNAs or shRNAs targeting
HNRNPH1, HNRNPK, HNRNPL, or PTBP1 (Supplemental Table
S1; Supplemental Fig. S1). HNRNPH1, HNRNPK, HNRNPL, and
PTBP1 bind to G-rich, C-rich, CA-rich, and CU-richmotifs, respec-
tively (Klimek-Tomczak et al. 2004; Katz et al. 2010; Llorian et al.
2010; Ray et al. 2013; Rossbach et al. 2014; Hauer et al. 2015;
Giudice et al. 2016). As shown in Figure 5A, HNRNPH1-repressed
exons were enriched in Gs (randomization test FDR<0.005),
whereas HNRNPK-repressed exons were enriched in Cs when
compared to control exons (randomization test FDR<1×10−4)
(Supplemental Fig. S2F). This nucleotide composition bias was ob-
served at the first and second codon positions (randomization test
FDR<0.003) (Fig. 5B; Supplemental Fig. S2G). Accordingly, gly-
cine (GGNcodons) andproline (CCNcodons)weremore frequent-
ly encoded by HNRNPH1-repressed and by HNRNPK-repressed
exons, respectively (randomization test FDR<0.05) (Fig. 5C;
Supplemental Fig. S2H). As in the case of C-rich SRSF3-activated

A

B

Figure 2. Nucleotide composition bias of codons of coregulated exons. (A) Color code of the relative frequency (%) compared with sets of control exons
of some codons in SRSF-activated and SRSF-repressed exons across different cell lines: K562 (1), HepG2 (2), GM19238 (3), HeLa (4), K562 (5), Huh7 (6),
HepG2 (7), GM19238 (8), andMDA-MB-231 (9). The frequency of each codon was calculated in SRSF-activated and SRSF-repressed exons and expressed
as the percentage of the average frequency calculated in sets of control exons. Red and green colors indicatewhen the codon frequency is higher and lower,
respectively, in the sets of regulated exons when compared with sets of control exons. Only some enriched codons identified in SRSF-activated exons are
represented: (∗) randomization test FDR<0.05. (B) The upper panels represent the relative frequency (%) compared with sets of control exons of G (G3), S
(S3), C (C3), or A (A3) nucleotides at the third codon positions in SRSF-activated and SRSF-repressed exons. The lower panels represent the relative frequen-
cy (%) comparedwith sets of control exons of G (G1-2), S (S1-2), C (C1-2), or A (A1-2) nucleotides at the first and second codon positions in SRSF-activated
and SRSF-repressed exons. The average values obtained from four data sets are represented in the case of SRSF1: (∗∗) Mann–Whitney U test P-value < 0.03.
The sets of the other SRSF-regulated exons originated from K562 (1), Huh7 (2), HepG2 (3), GM19238 (4), and MDA-MB-231 (5) cell lines: (∗) random-
ization test FDR<0.03.
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exons (Fig. 4I), C-richHNRNPK-repressed exons encodedmore fre-
quently uncharged and hydropathically neutral amino acids than
control exons (randomization test FDR<1×10−4) (Fig. 5D;
Supplemental Fig. S2I).

As mentioned above, HNRNPL represses the inclusion of ex-
ons containing CA-richmotifs, whereas PTBP1 represses the inclu-
sion of exons containing CU-rich motifs. As shown in Figure 5E
(left), HNRNPL repressed the inclusion of exons enriched in CA
and AC dinucleotides when compared to PTBP1-repressed exons
(Mann–Whitney U test P-value=0.029), whereas PTBP1 repressed
exons enriched in CU and UC dinucleotides unlike HNRNPL
(Mann–Whitney U test P-value=0.029). Glutamine (Gln, CAR co-
dons) and threonine (Thr, ACN codons) were more frequently en-
coded by HNRNPL-repressed exons than by PTBP1-repressed
exons, whereas serine (Ser, UCN codons) was more frequently
encoded by PTBP1-repressed exons than by HNRNPL-repressed
exons (Mann–Whitney U test P-value =0.03) (Fig. 5E, right).

Both HNRNPL- and PTBP1-repressed exons, respectively, encoded
more frequently hydroxyl-containing amino acids and less fre-
quently negatively charged amino acids, compared to control ex-
ons (Mann–Whitney U test P-value=0.03) (Fig. 5F). This is
consistent with the fact that hydroxyl-containing and charged
amino acids are C-rich and C-poor, respectively (Fig. 4H).

In conclusion, each tested set of SRSF- or HNRNP-coregulated
exons has a specific nucleotide composition bias and codes for
amino acids with similar physicochemical properties.

Bidirectional interplay between the splicing regulatory process

and its functional outcome

The physicochemical properties of amino acids are often related.
For example, hydrophilic amino acids are often charged amino
acids. In addition, we observed that exons regulated by a given
splicing factor often coded for amino acids that have different

A C

B

Figure 3. Amino acid composition bias encoded by coregulated exons. (A) Nucleotide composition of codons corresponding to amino acids more fre-
quently encoded, when compared to sets of control exons, by SRSF1-, SRSF2-, SRSF3-, or TRA2-activated (upper) and -repressed exons (lower). (B) Relative
frequency (%) compared with sets of control exons of glycine (Gly corresponding to GGN codons), alanine (Ala corresponding to GCN codons), proline
(Pro corresponding to CCN codons), and lysine (Lys corresponding to AAR codons) encoded by SRSF1-, SRSF2-, SRSF3-, or TRA2-activated and -repressed
exons. The average values obtained from four data sets are represented in the case of SRSF1: (∗) Mann–Whitney U test P-value < 0.03. The sets of the other
SRSF-regulated exons originated from K562 (1), Huh7 (2), HepG2 (3), GM19238 (4), and MDA-MB-231 (5) cell lines: (∗∗) randomization test FDR<0.03.
(C) Proportion (%) of exons from SRSF1-, SRSF2-, SRSF3, and TRA2-regulated exons encoding for 0, 1, 2, andmore than 3 Gly, Ala, Pro, or Lys amino acids,
respectively. The average values obtained from four data sets are represented in the case of SRSF1. A logistic regression analysis was performed to test if the
presence or absence of an amino acid at a given level was different between activated and repressed exons for a given splicing factor while accounting for
cell line variations: (∗) P-value <0.05.
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physicochemical properties depending on whether the exons are
activated or repressed by this factor (Fig. 4). Consequently, each
splicing factor induced a shift toward different combinations of
protein physicochemical properties encoded by their regulated ex-
ons (Mann–Whitney U test FDR<0.05) (Fig. 6A,B).

Because protein features dependon amino acid physicochem-
ical properties, we measured an enrichment Z-score of annotated
protein features to determinewhether each factor-specific set of ex-
ons encodes specific protein features using our recently developed
Exon Ontology bioinformatics suite (Tranchevent et al. 2017). As
shown in Figure 6C, all sets of SRSF-activated exons preferentially
encoded intrinsically unstructured protein regions (IUPR; FDR<
0.05), in agreement with previous reports indicating that alterna-
tively spliced exons often code for intrinsically disordered regions

(Trancheventet al.2017).However,eachsetofSRSF-coregulatedex-
ons encoded specific sets of annotated protein features. For exam-
ple, C-rich SRSF3-activated exons encoded peptides that are
enriched for experimentally validated phospho-serine and -threo-
nine (“PTM”; FDR<0.05) (Fig. 6C,D). These phosphorylation sites
arise in serine- and proline-rich regions (Fig. 6E). This observation
is consistent with the fact that hydroxyl-containing amino acids
and proline correspond toC-rich codons (Fig. 4H). Serine- and pro-
line-rich regions have been shown to play a role in RNA-protein in-
teractions that can be regulated by phosphorylation (Wang et al.
2006; Thapar 2015). In this setting, SRSF3-activated exons encoded
annotated “Nucleic Acid Binding” activity (FDR<0.05) (Fig. 6C).

Alongthesameline,A-richTRA2-activatedexonsoftenencod-
ed for nuclear localization signal (NLS) (Fig. 6F). This is consistent

A

D

H I J

E F G

B C

Figure 4. SRSF-coregulated exons code for amino acids with similar physicochemical properties. (A) Nucleotide composition of codons encoding small,
very small, and large amino acids: S =G or C. (B) Relative frequency (%), when compared to sets of control exons, of very small, small, and large amino acids
encoded by two sets of SRSF2-activated and SRSF2-repressed exons identified in the K562 (1) and Huh7 (2) cell lines: (∗∗) randomization test FDR<0.0003.
(C ) Density chart of SRSF2-activated and SRSF2-repressed exons identified in K562 cells coding for very small and large amino acids: (∗∗) K–S test < 5 × 10−6.
(D) Nucleotide composition of codons encoding hydrophobic, neutral, and hydrophilic amino acids. (E) Relative frequency (%), when compared to sets of
control exons, of hydrophilic, neutral, and hydrophobic amino acids encoded by TRA2-activated and TRA2-repressed exons: (∗∗) randomization test FDR<
0.005. (F) Hydrophobic scales of TRA2-activated and TRA2-repressed exons. The green line (bottom) indicates the Mann–Whitney U test P-value < 0.05 at
each amino acid position. (G) Density chart of TRA2-activated or TRA2-repressed exons coding for hydrophilic amino acids: (∗∗) K–S test < 1 × 10−13. (H)
Nucleotide composition of codons encoding polar uncharged, hydroxyl-containing, and charged amino acids. (I) Relative frequency (%), when compared
to sets of control exons, of polar uncharged, hydroxyl-containing, charged, or neutral (in terms of hydropathy) amino acids encoded by two sets of SRSF3-
activated and SRSF3-repressed exons identified fromHepG2 (1) and GM19238 (2) cell lines: (∗∗) randomization test FDR <1×10−4. (J, left) Density chart of
SRSF3-activated and SRSF3-repressed exons describing the frequencies of polar uncharged amino acids compared to all polar amino acids. (Right) Density
chart of SRSF3-activated and SRSF3-repressed exons describing the frequencies of hydroxyl amino acids compared to negatively charged amino acids.
Note that hydroxyl amino acids can be negatively charged after phosphorylation: (∗∗) K–S test < 3 × 10−12.
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with the fact that they encode hydrophilic amino acids, in particu-
lar lysine, that correspond to A-rich codons (Figs. 3B,C, 4D–G), a
major amino acid of classical NLS (Marfori et al. 2011). In
contrast, A-poor TRA2-repressed exons code for intramembrane
protein parts (Mne; FDR<0.05) (Fig. 6F) that are intrinsically rich
in hydrophobic amino acids. This is consistent with the fact that
A-poor TRA2-repressed exons encode more frequently hydropho-
bic amino acids corresponding to A-poor codons (Fig. 4D–G).
Collectively, theseobservationssupportamodel inwhichasplicing
factor–related nucleotide composition bias of exons (Figs. 1–3) af-
fects the physicochemical properties of their encoded amino acids
because of the nonrandomness of the genetic code (Fig. 4) with di-
rect consequences on protein features encoded by splicing factor–
regulated exons (Fig. 6A–F).

On one hand, splicing factors bind to sequences that have a
biased nucleotide composition and on the other hand, amino ac-
idswith similar physicochemical properties are encodedby codons
having the same nucleotide composition bias. Therefore, we hy-
pothesized that increasing the exonic density of specific nucleo-
tides as measured in splicing factor–regulated exons would
increase the density of encoded amino acids sharing the same
physicochemical properties, as observed in those exons. To chal-
lenge this possibility, we generated random exonic coding se-
quences enriched in specific nucleotide(s) by following the
human codon usage bias (labeled CUB sequences) or by randomly
mutating human coding exons (labeled MUT sequences). For ex-

ample, we generated 100 sets of 300 coding exons containing
either 53%or 47%of S nucleotides, asmeasured in SRSF2-activated
and SRSF2-repressed exons, respectively. Increasing by ∼13% the
density of S nucleotides in coding exons (S-CUB or S-MUT) in-
creased (by ∼15%) the frequency of encoded very small amino ac-
ids, whereas it decreased (by∼10%) the frequency of encoded large
amino acids (“S =53%vs. 47%”; t-test P-value <1×10−14) (Fig. 6G),
as observed when comparing SRSF2-activated and SRSF2-repressed
exons (Fig. 4B). Increasing the density of A nucleotides in coding
exons (A-CUB and A-MUT) from 23% to 34%, as measured in
TRA2-repressed and TRA2-activated exons, respectively, increased
(by ∼40%) the frequency of encoded hydrophilic amino acids and
it decreased (by ∼20%) the frequency of encoded hydrophobic
amino acids (“A=34% vs. 23%”; t-test P-value<1×10−14) (Fig.
6G), as observed when comparing TRA2-activated and TRA2-re-
pressed exons (Fig. 4E). Finally, increasing the density of C nucle-
otides in coding exons (C-CUB and C-MUT) from 21% to 29%, as
measured in SRSF3-repressed and SRSF3-activated exons, respec-
tively, increased the frequency of encoded uncharged amino acids
and neutral amino acids whereas it decreased the frequency of en-
coded charged amino acids (“C=29% vs. 21%”; t-test P-value< 1×
10−14) (Fig. 6G), as observed when comparing SRSF3-activated and
SRSF3-repressed exons (Fig. 4I).

We next generated exons coding for different proportions
of amino acids sharing the same physicochemical features by mu-
tating randomly selected human coding exons. For example, we

A

E F

B C D

Figure 5. HNRNP-corepressed exons code for amino acids with similar physicochemical properties. (A) Relative frequency (%), when compared to sets of
control exons, of G and C nucleotides in HNRNPH1- and HNRNPK-repressed exons identified in 293T and GM19238 cells, respectively: (∗∗) randomization
test FDR <0.006. (B) Relative frequency (%), when compared to sets of control exons, of G (G1–2), or C (C1–2) nucleotides at the first and second codon
position from HNRNPH1- or HNRNPK-repressed exons identified in 293T and GM19238 cells, respectively: (∗∗) randomization test FDR<0.003. (C )
Relative frequency (%), when compared to sets of control exons, of glycine (Gly corresponding to GGN codons) and proline (Pro corresponding to CCN
codons) encoded by HNRNPH1- and HNRNPK-repressed exons identified in 293T and GM19238 cells, respectively: (∗∗) randomization test FDR<0.05.
(D) Relative frequency (%), when compared to sets of control exons, of polar uncharged, charged, or neutral (in terms of hydropathy) amino acids encoded
by HNRNPK-repressed exons identified in GM19238 cells: (∗∗) randomization test FDR<1×10−4. (E) The left panel represents the average of the relative fre-
quency (%), when compared to sets of control exons of CA, CT, AC, and TC dinucleotides calculated from four sets from different cell lines of HNRNPL- or
PTBP1-repressed exons. The right panel represents the average of the relative frequency (%), when compared to sets of control exons of histidine (His cor-
responding to CAY codons), glutamine (Gln corresponding to CAR codons), leucine (Leu corresponding to CTN codons), threonine (Thr corresponding
to ACN codons), and serine (Ser corresponding to TCN codons) encoded by four sets of HNRNPL- and PTBP1-repressed exons. A Mann–Whitney U test
was used to compare whether the real frequencies of those amino acids and dinucleotides between HNRNPL- and PTBP1-repressed exons: (∗) P-value <
0.03. (F) Relative frequency (%), when compared to sets of control exons, of hydroxyl-containing and negatively charged amino acids encoded by
HNRNPL- or PTBP1-repressed exons. The average values of four data sets are represented for HNRNPL and PTBP1: (∗∗) Mann–WhitneyU test P-value < 0.03.
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Figure 6. Bidirectional interplay between splicing regulatory process and its functional outcome. (A) Color code corresponding to the relative frequency
(%) of amino acid physicochemical properties as indicated, when comparing all the SRSF1-, SRSF2-, SRSF3-, and TRA2-activated exons to all the SRSF1-,
SRSF2-, SRSF3-, and TRA2-repressed exons, respectively, or when comparing all the HNRNPH1-, HNRNPK-, HNRNPL-, and PTBP1-repressed exons to all the
HNRNPH1-, HNRNPK-, HNRNPL-, and PTBP1-activated exons, respectively. The sets of exons used correspond to exons regulated by a given splicing factor
in at least one cell line and being regulated in the same manner when regulated in multiple cell lines. (B) Relative frequency (%) of very small, large, hy-
drophilic, neutral, hydrophobic, charged, uncharged, negatively charged (charged−), and positively charged (charged +) amino acidswhen comparing all
the SRSF1-, SRSF2-, SRSF3-, or TRA2-activated exons to all the SRSF1-, SRSF2-, SRSF3-, or TRA2-repressed exons, respectively. The sets of exons used cor-
respond to exons regulated by a given splicing factor in at least one cell line and being regulated in the same manner when regulated in multiple cell lines:
(∗) Mann–Whitney U test FDR<0.05. (C ) Color code corresponding to the Z-score of annotated protein features encoded SRSF1-, SRSF2-, SRSF3-, and
TRA2-activated exons compared to all human coding exons: (IUPR) intrinsically unstructured regions; (CBR) compositionally biased protein region;
(PTM) post-translational modifications; (∗) Mann–Whitney U test FDR<0.05. (D) Z-score of experimentally validated phosphorylated serine (pS) and thre-
onine (pT) encoded by SRSF3-activated and -repressed exons compared to all human coding exons: (∗) Mann–Whitney U test FDR<0.05. (E) Sequence
logo generated from PhosphoSitePlus (Hornbeck et al. 2015) using sequences surrounding experimentally validated phosphorylated residues coded by
SRSF3-activated exons. (F) Z-score of nuclear localization signal (NLS) and intramembrane peptides (Mne) terms encoded by TRA2-activated and -re-
pressed exons compared to all human coding exons: (∗) Mann–WhitneyU test FDR<0.05. (G, left) The relative frequency (%) of very small and large amino
acids encoded by 100 sets of 300 generated-exonic sequences containing a high frequency (53%) of the S nucleotide (S-CUB and S-MUT) compared to
100 sets of 300 generated-exonic sequences containing a low S-nucleotide frequency (47%); (middle) the relative frequency (%) of hydrophilic and hy-
drophobic amino acids encoded by exonic sequences containing a high frequency (34%) of A nucleotide (A-CUB and A-MUT) compared to exonic se-
quences containing a low A-nucleotide frequency (23%); (right) the relative frequency (%) of polar uncharged, charged, and neutral (in terms of
hydropathy) amino acids encoded by exonic sequences containing a high frequency (29%) of Cs (C-CUB and C-MUT) compared to exonic sequences
containing a low C-nucleotide frequency (21%); (∗∗) t-test P-value <1 ×10−14. (H, left) The relative frequency (%) of the S nucleotide and GC dinucleotide,
as well as the relative proportion (%) of exons with S-rich low-complexity (LC) sequences of 100 sets of 300 mutated exons encoding for the same phys-
icochemical properties as SRSF2-activated exons compared to 100 sets of 300mutated exons encoding for the same physicochemical properties as SRSF2-
repressed exons; (middle) the relative frequency (%) of the A nucleotide and AA dinucleotide, as well as the relative proportion (%) of exons with A-rich low-
complexity sequences ofmutated exons encoding for the same physicochemical properties as TRA2-activated exons compared tomutated exons encoding
for the same physicochemical properties as TRA2-repressed exons: (right) the relative frequency (%) of the C nucleotide and CC dinucleotide, as well as the
relative proportion (%) of exons with C-rich low-complexity (LC) sequences of mutated exons encoding for the same physicochemical properties as SRSF3-
activated exons compared to mutated exons encoding for the same physicochemical properties as SRSF3-repressed exons; (∗∗) t-test P-value <1×10−14.
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generated 100 sets of 300 mutated exons encoding different pro-
portions of very small and large amino acids, using their respective
frequency measured in SRSF2-activated or SRSF2-repressed exons
(Methods).Mutated exons codingmore frequently very small rath-
er than large amino acids had a higher frequency of S nucleotides
and GC dinucleotides and contained more frequently S-rich
low-complexity sequences (“SRSF2-like encoded properties”;
t-test P-value <1×10−14) (Fig. 6H), as observed when comparing
SRSF2-activated to SRSF2-repressed exons (Fig. 1). Mutated exons
encoding more frequently hydrophilic amino acids had a higher
frequency of A nucleotides and AA dinucleotides and contained
more frequently A-rich low-complexity sequences (“TRA2-like en-
coded properties”; t-test P-value<1×10−14) (Fig. 6H), as observed
when comparing TRA2-activated to TRA2-repressed exons (Fig.
1). Finally, mutated exons encoding more frequently hydropathi-
cally neutral amino acids had a higher frequency of C nucleotides
and CC dinucleotides and contained more frequently C-rich
low-complexity sequences (“SRSF3-like encoded properties”;
t-test P-value <1×10−14) (Fig. 6H), as observed when comparing
SRSF3-activated to SRSF3-repressed exons (Fig. 1).

Discussion

In this work, we uncover a direct link between the splicing regula-
tory process and its biological outcome relying on two straightfor-
ward principles: (1) Splicing factors bind to exonic sequences that
have a nucleotide composition bias with consequences on the nu-
cleotide composition of codons from coregulated exons; and
(2) codons having the same nucleotide composition bias encode
amino acids with similar physicochemical properties with conse-
quences on protein features encoded by the coregulated exons.

Exons coregulated by a given splicing factor are enriched for
specific low-complexity sequences—often composed of a repeated
(di)nucleotide—that correspond to the RNA binding sites of the
cognate factor (Figs. 1A–C, 5A,E). We showed that each set of
exons whose inclusion (or exclusion) is enhanced by a given splic-
ing factor is enriched for specific nucleotide(s) when compared to
control exons or to exons repressed (or activated, respectively) by
the same factor (Fig. 1A–C). To the best of our knowledge, this
splicing-related exonic nucleotide composition bias has not been
reported yet. However, it is in agreement with recent observations
indicating that the interaction of a splicing factor with a binding
motif depends on the sequence context and on the presence of
clusters of related binding motifs (Zhang et al. 2013; Cereda
et al. 2014; Fu and Ares 2014; Dominguez et al. 2018; Jobbins et
al. 2018). For example, increasing the exonic frequency of GGA-
like motifs increases the probability of an exon to be regulated
by the SRSF1 splicing factor that binds to GGAGGA-like motifs al-
though only one binding site is used (Jobbins et al. 2018). In this
setting, we observed similar nucleotide and amino acid composi-
tion biases when analyzing exons regulated by a splicing factor
or exons containing CLIP-related signals for the same splicing fac-
tor (Supplemental Fig. S6).

Coding sequencesoverlap several kindsof regulatory sequenc-
es, including exonic splicing regulatory sequences. To date, it has
been assumed that the redundancyof the genetic codepermits pro-
tein-coding regions to carry this extra information (Goren et al.
2006; Itzkovitz and Alon 2007; Itzkovitz et al. 2010; Lin et al.
2011; Shabalina et al. 2013; Savisaar and Hurst 2017a,b). This
means that the sequence constraints imposed by splicing factor
bindingmotifs would accommodatewith coding sequences by im-
pacting only the third codon position. In this setting, we observed

thatnucleotide compositionbiasof splicing factor–regulatedexons
impacts not only the third codonpositionbut also the first and sec-
ond positions (Figs. 2B, 5B). Because amino acids having the same
physicochemical properties correspond to codons with similar
nucleotide composition bias, a direct consequence of the exonic
nucleotide composition bias associated with the splicing regulato-
ry process is that each set of splicing factor–regulated exons prefer-
entially encodes amino acids having similar physicochemical
properties (Figs. 4, 5). In addition, because specific local protein fea-
tures depend on amino acid physicochemical properties, splicing
factor–coregulated exons encode specific sets of protein features
(Fig. 6A–F).

Therefore, we propose that the interplay between coding and
exonic splicing regulatory sequences that we report is based on
straightforward principles related to both the nonrandomness of
the genetic code and the preferential binding of splicing factors
to low-complexity sequences. Owing to these properties, the
high exonic density of a specific nucleotide related to splicing fac-
tor binding features increases the probability that an exon encodes
amino acids with similar physicochemical properties (Fig. 6G).
Conversely, the high density of amino acids corresponding to
specific physicochemical properties increases the probability of
generating exonic nucleotide composition bias and nucleotide
low-complexity sequences (Fig. 6H).

A deeper understanding of the interplay between splicing reg-
ulatory sequences and coding information will require improving
(1) the characterization of splicing factor binding sites, (2) the
analysis of exon-encoded protein features, and (3) the identifica-
tion of exons dependent on several splicing factors. Indeed, splic-
ing factor binding sites are unlikely to be defined by their sole
nucleotide composition bias. For example, it has been recently
shown that RNA binding sites are within specific context and
that some RNA binding sites correspond to spaced “bipartite”
short linear motifs (Zhang et al. 2013; Cereda et al. 2014; Fu and
Ares 2014; Dominguez et al. 2018; Jobbins et al. 2018). By dissect-
ing each RNA binding site, their flanking nucleotide preferences,
their clustering, and the space between them, it would be possible
to better characterize the way they can affect codon and amino
acid usage. In this setting, although we focused our investigation
on general properties of amino acids, it will be interesting to
look for a complex pattern of protein-related features. For example,
the alternation of amino acids having specific features (e.g., alter-
nation of hydrophilic and hydrophobic amino acids) may allow
uncovering specific protein-related properties (e.g., alpha-helix
made of periodic alternation of hydrophilic and hydrophobic ami-
no acids). Finally, it will be important to identify exons that are
simultaneously regulated by two different splicing factors and to
characterize how the combination of different regulatory binding
motifs impacts coding sequences. An interesting possibility is that
the combinatory regulation of an exon by two splicing factors is as-
sociated with specific exonic encoded protein features.

Another challenge will be to link our observations with the
known tissue-specific regulation of alternative splicing. Based on
this work and previously published observations (Irimia et al.
2014; Tranchevent et al. 2017), it can be anticipated that tissue-
specific coregulated exons encode similar protein-related features.
In this setting, the function of splicing factorswould be not only to
regulate the production of individual specialized protein isoforms,
but also tomore globally control the intracellular content of specif-
ic protein regions having specific physicochemical properties.
Each splicing factor (or combination of factors) would control a
specific combination of exon-encoded protein physicochemical
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properties accordingly to its (or their) affinity for specific nucleo-
tides. Our work unravels how a complex phenomenon (e.g., the
splicing regulatory process and its biological consequences) can
rely on straightforward principles.

Methods

RNA-seq data set analyses

Publicly available RNA-seq data sets generated from different hu-
man cell lines transfectedwith siRNAs or shRNAs targeting specific
splicing factors or transfected with splicing factor expression vec-
tors were recovered from NCBI Gene Expression Omnibus (GEO)
(Supplemental Table S1). These RNA-seq data sets were analyzed
using FARLINE, a computational program dedicated to analyze
and quantify alternative splicing variations as previously reported
(Benoit-Pilven et al. 2018). This pipeline is freely available (http://
kissplice.prabi.fr/pipeline_ks_ farline). To determine a set of exons
that is regulated by a given splicing factor, we measured the
percent-spliced-in (PSI) that corresponds to the exon inclusion
rate. Each exon with a PSI variation (deltaPSI) greater than 10%
or lower than −10% and a P-value <0.05, when comparing each
sample to its corresponding control, is considered to be regulated
(Benoit-Pilven et al. 2018). FARLINE analyzes exons annotated
from FASTERDB (http://fasterdb.ens-lyon.fr/faster/home.pl) that
is based on hg19 annotation. A liftOver from hg19 to GRCh38 re-
covers the same sequence for 99.94% of the analyzed exons.

Frequency of hexanucleotides, dinucleotides, nucleotides,

codons, amino acids, and amino acid physicochemical features in

exon sets

Equation (1) was used to compute the frequencies of words (Dn) of
size n within a set of exons SN= {y1,…, yN} such that yi is an exon i
having a number Li of nucleotides as follows:

Freq(Dn)=

if n[ {2, 1}

∑N
i=1

xi
Li− (n−1)

( )

N

else if n= 6⇒
∑N

i=1
xi

Li− (n−1)
×min
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( )
, 1

( )( )

∑N
i=1min
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P
, 1

( )

else if n=3⇒
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, 1

( )( )

∑N
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P
, 1

( )
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

inwhich xi is the number of occurrences ofDn in exon i; and n is set
to 6, 2, and 1 for hexanucleotides, dinucleotides, and nucleotides,
respectively. For codons, amino acids, and amino acid physico-
chemical properties, n is set to 3. P=51 is a penalty size used to
decrease the border effects seen in small exons, and N is the num-
ber of exons in the set SN. For hexanucleotides and dinucleotides,
the occurrences xi of Dn are overlapping, whereas they are contig-
uous for the others. In the particular case of amino acids and ami-
no physiochemical properties, Dn represents a group of codons
encoding the same amino acid or the same physiochemical prop-
erties, respectively. To compute the frequencies of a nucleotide D1

at a specific codon position for a set of exon SN , Equation (1) with
n ∈{1, 2} is used with small variations. In that case, xi corresponds
only to the number of occurrences of D1 at this given codon posi-
tion and Li corresponds to the number of nucleotides at this codon

position for the exon i. When coding phase is mandatory, incom-
plete codons at exon borders were deleted.

Position weight matrices of the 10 most enriched hexanu-
cleotides (Supplemental Table S2) in SRSF1-, SRSF2-, SRFS3-, or
TRA2-activated exons were created using the MEME-Suite (Bailey
et al. 2015) website (http://meme-suite.org/index.html).

Very small (Ala, Gly, Ser, Cys), small (Ala, Asn, Asp, Cys, Gly,
Pro, Ser, Thr), large (Arg, Ile, Leu, Lys, Met, Phe, Trp, Tyr), polar
uncharged (Asn, Gln, Ser, Thr, Tyr), charged (Asp, Glu, Lys, Arg),
hydroxyl-containing (Ser, Thr, Tyr), hydrophilic (Arg, Asn, Asp,
Gln, Glu, Lys), hydro-neutral (Gly, His, Pro, Ser, Thr, Tyr), and hy-
drophobic (Ala, Cys, Ile, Leu, Met, Phe, Val) amino acids were clas-
sified as previously reported (Kyte and Doolittle 1982; Engelman
et al. 1986; Pommié et al. 2004).

The hydrophobicity scale was calculated as defined by Kyte
and Doolittle (1982) and Engelman et al. (1986). TRA2-activated
or -repressed exons larger than or equal to 30 amino acids were se-
lected to calculate the average of hydrophobicity using a sliding
window of five amino acids with a step of one amino acid for
the first 30 and last 30 amino acids. Mean and standard deviation
of the hydrophobicity values corresponding to each exon set were
then calculated for each window position.

Generation of sets of control exons and statistical analyses

To test whether a feature was enriched in a set SN ofN exons, a ran-
domization test was made by sampling, from FASTERDB
(Mallinjoud et al. 2014), 10,000 sets of control exons, C= {C1, …,
C10,000}, with Cl = { yl,1, …, yl,i} such that yl,i is the exon i having a
number of Ll,i nucleotides following the constraints:

Ll,i =
if Li , 50 ⇒ Ll,i [

Li

3
, max (Li × 3,50)

[ ]

else if 50 ≤ Li ≤ 300 ⇒ Ll,i [
Li

2
, Li × 2

[ ]

else Li . 300 ⇒ Ll,i [ [300, +1]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

in which 50 and 300 nt correspond approximately to the 4th and
96th percentile of exon length distribution.

The relative frequency of a feature Dn in SN compared
to the sets of control exons C was calculated by the following
formula:

RFreq (Dn) =
Freqobs (Dn)− 1

10,000
×

∑10,000

l=1
Freqcontrol,l (Dn)

( )
1

10,000
×

∑10,000

l=1
Freqcontrol,l (Dn)

( )

in which Freqobs(Dn) is the frequency, as in Equation (1), of a word
Dn of size n in SN and

1
10,000

∑10,000
l=1

Freqcontrol,l (Dn)

is the average frequency, as in Equation (1), of Dn in C.
To calculate an empirical P-value, the number of control

frequencies upper or lower than the frequency in the set of in-
terest is determined. Then, the smaller number between those
two is kept and divided by the number of control sets (i.e.,
10,000).

All P-values obtained for each set of features have been
corrected using the Benjamini–Hochberg procedure (Benjamini
and Hochberg 1995). The nucleotide composition of enriched
codons or codons corresponding to enriched amino acids was cal-
culated after recovering codons or amino acids whose frequency
was 10% higher in the set of exons of interest than their average
frequency in sets of control exons.
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Low-complexity and random sequences

Low-complexity sequences were defined as sequences of n (n=5–
10) nucleotides containing at least n−1 occurrences of the same
nucleotide.

Randomexonic sequences (from50- to 300-nt long)with spe-
cific nucleotide composition bias were generated using two strate-
gies. First, random codon sequences respecting the human codon
usage bias (CUB exons) were generated. These sequences were then
mutated randomly, one nucleotide at a time, to increase or
decrease the frequency of a specific nucleotide. Onlymutations in-
creasing or decreasing the frequency toward Freqtarget (D1) were
kept. Freqtarget (D1) is computed using the following formula:

Freqtarget (D1) =

if Freqcub (D1) . Freqobs (D1) ⇒ Freqobs (D1)+ y + 1
2Lcub

else if Freqcub (D1) , Freqobs (D1) ⇒ Freqobs (D1)+ y − 1
2Lcub

⎧⎪⎪⎨
⎪⎪⎩

in which Freqobs(D1) is the nucleotide frequency observed in a spe-
cific set of activated or repressed exons by a given splicing factor;
Freqcub(D1) is the nucleotide frequency observed in CUB exons be-
fore the mutation procedure; y is a random value sampled from

N 0,
1
30

( )
, and Lcub corresponds to the number of nucleotides in

the CUB exon. The mutation procedure was stopped when

Freqmcub(D1) ≥ Freqtarget (D1); if Freqcub(D1) , Freqtarget (D1)
Freqmcub(D1) ≤ Freqtarget (D1); if Freqcub(D1) . Freqtarget (D1)

{

nwhichFreqmcub(D1) is thenucleotide frequency inCUBexonsafter
the mutation procedure. Second, exonic sequences (MUT exons),
selected by sampling human coding exons, were mutated using
the same principle used for CUB sequences. In each case, 100 sets
of 300 exonic sequences with specific features were generated. A
t-test was performed to compare the average frequency of amino
acid physicochemical properties between the generated sets.

Exonic sequences encoding for specific amino acid physico-
chemical properties were generated from sampled human coding
exons (MUT exons). The mutation procedure used was similar to
the one we applied at the nucleotide level, except that Lcub corre-
sponds in this case to the codon length of the sampled sequences.
These sequences were modified by codon substitution to increase
the frequency of amino acids encoding for a given physicochemi-
cal property P1 and to decrease the frequency of another given
physicochemical property P2. Codons that encode P2 were substi-
tuted toward codons encoding P1 following the human codon us-
age bias. SRSF2-like encoded properties were generated using the
frequency of very small (0.27) and large (0.34) amino acids mea-
sured in SRSF2-activated exons or the frequency of very small
(0.21) and large (0.38) amino acids measured in SRSF2-repressed
exons. TRA2-like encoded properties were generated using the fre-
quency of hydrophilic (0.4) and hydrophobic (0.33) amino acids
measured in TRA2-activated exons or the frequency of hydrophilic
(0.26) and hydrophobic (0.39) amino acids measured in TRA2-re-
pressed exons. SRSF3-like encoded properties were generated using
the frequency of hydro-neutral (0.38) and charged (0.17) amino
acids measured in SRSF3-activated exons or the frequency of hy-
dro-neutral (0.31) and charged (0.22) amino acids measured in
SRSF3-repressed exons. The same procedure was used to compare
the frequencies of nucleotides or dinucleotides with a t-test.

Density charts

For each exon, the frequency of each nucleotide or each amino
acid physicochemical property was calculated and the exonic se-

quences were parsed using a sliding window (of size 1 and step
1). Truncated codons (at 3′ or 5′ exon extremities) or codons down-
stream from stop codonswere ignored. Frequency histogramswere
then computed with the R software (R Core Team 2018). Density
charts were made using sets of exons regulated by a given splicing
factor in at least one cell line and being regulated in the sameman-
ner when regulated in multiple cell lines.

Statistical analysis

The Kolmogorov–Smirnov nonparametric test was performed us-
ing the R software (command ks.test) (R Core Team 2018) to com-
pare the distributions of nucleotide or amino acid frequency into
two data sets (e.g., activated vs. repressed exons). A logistic regres-
sion analysis was performed to test if activated or repressed exons
by a given splicing factor have a different content in terms of low-
complexity sequences (Fig. 1) or in codons encoding particular
amino acids (Fig. 3). We modeled the presence or the absence of
a given amino acid or the presence or absence of low-complexity
sequences according to the cell line and the regulation of the
exon (i.e., activated or repressed) using the glm function, with
family=binomial (“logit”) in R software. To test the effect of the
regulation status of the exon, we used a likelihood ratio test of
this model against the null model without this effect (R software,
function anova with test = “Chisq”).
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