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Imidazole dipeptides possess important bioregulatory properties in animals. This study aimed to evaluate the effect of 
high ambient temperature on muscle imidazole dipeptides (carnosine, anserine, and balenine) in broiler chickens. Sixteen 
14-day-old male broiler chickens were divided into two groups, which were reared under thermoneutral (25 ± 1 °C) or cy-
clic high ambient temperature (35 ± 1 °C for 8 h/day) for 4 weeks. Chickens exposed to cyclic high ambient temperatures 
displayed lower skeletal muscle anserine and carnosine content than control chickens. Balenine could not be detected in 
the pectoral muscle of either group. The pectoral muscles of broiler chickens kept under cyclic high-temperature exhibited 
significantly lower mRNA expression of carnosine synthase 1, which synthesizes carnosine and anserine; but a significantly 
higher mRNA expression of carnosinase 2, which degrades carnosine and anserine. Our results suggest that heat exposure 
decreases pectoral imidazole dipeptide content in broiler chickens. This may be attributed to a lower expression of imidazole 
dipeptide-synthesizing genes, but higher levels of genes involved in their degradation.
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Introduction

Imidazole dipeptides (IDPs), such as carnosine (β-alanyl-L-
histidine), anserine (β-alanyl-Nπ-methyl-L-histidine), and balen-
ine (β-alanyl-Nτ-methyl-L-histidine), are abundant in the skeletal 
muscle of vertebrates[1–3]. These IDPs exert metal chelation, 
antioxidant, antiglycation, and antifatigue activity[4].

Consumers tend to believe that food contributes to their 

health[5]. Goddard and Muringai[6] reported that consumers 
were willing to pay more for pork with enhanced carnosine lev-
els. Chicken meat contains more anserine than other meats, such 
as beef and pork[7], making it a good source of IDPs. The Con-
sumer Affairs Agency of Japan launched the “Foods with Func-
tion Claims (FFC)” system, which allowed businesses to inde-
pendently evaluate the safety and scientific claims of their food 
products, as well as label their functionality[8]. Chicken and pork 
rich in IDPs have been registered as FFC foods[8].

Attempts to increase muscle IDP content in chickens have fo-
cused on changes to the birds’ diet[9–13], such as enrichment in 
either histidine or β-alanine. In skeletal muscles, IDP synthesis is 
mediated by carnosine synthase 1[14,15], whereas IDPs are de-
graded by carnosinase 2[16–18]. In chickens, muscle carnosine 
content correlates with mRNA expression of carnosine synthase 
1[19].
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Livestock animals are normally reared under high ambient 
temperatures (HT), which are above their thermoneutral zone. 
These conditions alter the animals’ physiology, metabolism, and 
meat quality[20]. In pigs, one of the consequences is decreased 
carnosine and carnosine synthase 1 mRNA expression in skeletal 
muscles[21,22]. This finding raised the possibility that muscle 
IDPs content varied seasonally, with summer values lower than 
the expected FFC content. However, no reliable quantitative 
variation in these IDPs in meat from chickens reared under HT 
conditions has been reported.

Thus, the present study sought to investigate the effect of pro-
longed heat exposure on muscle IDP (carnosine, anserine, and 
balenine) content in broiler chickens. To mimic a realistic “ex-
tremely hot day”, defined by the Japan Meteorological Agency 
as daily maximum temperatures above 35 °C[23], a cyclic HT 
environment (35 ± 1°C for 8 h/day) was used.

Materials and Methods

Animal experiment
The experimental protocols and procedures were reviewed 

and approved by the Animal Care and Use Committee of Ka-
goshima University (approval number: A22013). Sixteen newly 
hatched male Ross308 broiler chicks (Gallus gallus domesticus) 
were supplied by a commercial hatchery (Kumiai Hina Centre, 
Kagoshima, Japan). The chicks were housed in an electrically 
heated battery brooder, and provided with water and a starter diet 
until they were 11 days old. On day 11, the chicks were housed 
individually in wire-bottomed aluminum cages (50 × 40 × 60 
cm) and fed a growth diet. On day 14, chicks were randomly 
divided into two groups. One group of chicks was exposed to 
cyclic HT (35 ± 1 °C for 8 h every day), while another group 
was kept in a thermoneutral (TN) environment at 25 ± 1 °C. On 
day 25, the chicks were fed a finisher diet. The formulations and 
nutrient compositions of the diets are reported in Table 1. On day 
42, all chickens were sacrificed by cervical dislocation following 
carbon dioxide anesthesia, after measuring their body tempera-
ture and body weight. Following dissection, the right half of the 
pectoralis major muscle was used to determine drip loss; whereas 
a portion of the left half was snap-frozen in liquid nitrogen and 
stored at -80 °C for subsequent determination of free amino acid 
content and gene expression.
Determination of muscle malondialdehyde (MDA) concentra-
tion

To evaluate lipid peroxidation in the skeletal muscles of 
chickens at slaughter, MDA content was determined colorimetri-
cally following reaction with 2-thiobarbituric acid, as described 
by Ohkawa et al.[24]. Briefly, 0.3 g of the pectoralis major mus-
cle was homogenized in 1 mL of 1.15% KCl and centrifuged at 
20,000 × g for 5 min. Then, 80 μL of supernatant was mixed with 
80 μL of 8.1% sodium dodecyl sulfate, 220 μL of 20% acetic acid 
(pH 3.5), and 300 μL of 0.8% 2-thiobarbituric acid. After vor-
texing, the samples were incubated at 95 °C for 1 h, transferred 
to ice, mixed with 1 mL butanol-pyridine 15:1 (v/v), vortexed 
again, and finally centrifuged at 20,000 × g for 5 min. Absor-

bance of the supernatant, which contained the butanol-pyridine 
layer, was measured at excitation and emission wavelengths of 
535 and 585 nm, respectively.
Determination of skeletal muscle drip loss

Drip loss was measured using the method described by Ber-
ri et al.[25]. The right half of the pectoralis major muscle was 
weighed immediately after dissection, placed in a plastic bag, 
and stored for 48 h in a low-temperature incubator (MIR 153; 
Sanyo Electric Co., Osaka, Japan) set at 4 °C, then wiped and 
weighed again. The difference in mass corresponded to drip loss, 
which was expressed as a percentage of the initial muscle mass.
Determination of free amino acid and imidazole dipeptide con-
centrations

Free amino acids were quantified by pre-column high-per-
formance liquid chromatography (HPLC) as detailed previ-
ously[26,27]. One gram of frozen pectoralis major muscle was 
weighed and homogenized in 10 mL ice-cold 0.1 M HCl contain-
ing 100 μM d-norvaline (FUJIFILM Wako Chemicals, Osaka, 
Japan) as internal standard. Hexane (10 mL) was added, mixed 
by vortexing for 1 min, and centrifuged at 22,000 × g for 5 min. 
Next, 400 μL of the lower layer was mixed with 1,200 µL water-
acetonitrile (1:2 v/v) by vortexing for 1 min and centrifuged at 
22,000 × g for 5 min. The resulting supernatant was filtered using 
a 0.2-µm pore size filter.

The supernatant was analyzed by a NexeraX2 HPLC system 
(Shimadzu Co., Ltd., Kyoto, Japan) equipped with a Kinetex 2.6 
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Table 1. Composition of experimental diets.
Starter Grower Finisher

Ingredients (g/100 g)
Corn meal 48.85 53.10 58.15
Soybean meal 42.60 37.78 32.70
Corn oil 4.45 5.20 5.80
CaCO3 1.00 1.00 0.90
CaHPO4 1.50 1.30 1.15
NaCl 0.50 0.50 0.50
Methionine 0.25 0.32 0.20
Lysine-HCl 0.20 0.15
Threonine 0.10 0.10 0.10
Valine 0.05 0.05
Mineral and vitamin premixa) 0.50 0.50 0.50

Calculated analysis
Crude protein (%) 23.30 21.50 19.50
Metabolizable energy (MJ/kg) 13.01 13.46 13.87

a)Content per kg of the vitamin and mineral premix: vitamin A, 90 mg; 
vitamin D3, 1 mg; DL-alpha-tocopherol acetate, 2000 mg; vitamin K3, 
229 mg; thiamin nitrate, 444 mg; riboflavin, 720 mg; calcium d-panto-
thenate, 2174 mg; nicotinamide, 7000 mg; pyridoxine hydrochloride, 
700 mg; biotin, 30 mg; folic acid, 110 mg; cyanocobalamin, 2 mg; cal-
cium iodinate, 108 mg; MgO, 198,991 mg; MnSO4, 32,985 mg; ZnSO4, 
19,753 mg; FeSO4, 43,523 mg; CuSO4, 4,019 mg; and choline chloride, 
299,608 mg.
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µm column (EVO C18; 100×3.0 mm; Phenomenex, Torrance, 
CA, USA). The amino acids were separated following the Shi-
madzu Corporation (2019) manual based on gradient elution 
with two mobile phases. Mobile phase A consisted of 17 mM 
potassium dihydrogen phosphate and 3 mM dipotassium hydro-
gen phosphate; whereas mobile phase B contained a mixture of 
deionized water:acetonitrile:methanol (15:45:40). Pre-column 
derivatization was performed by the HPLC system using 45 µL 
mercaptopropionic acid, 22 µL ortho-phthalaldehyde, and 7.5 µL 
samples. The mixture was incubated for 2 min. Then, 5 µL of flu-
orenylmethyl chloroformate was mixed and let stand for 2 min. 
Finally, 1 µL of the mixture was injected into the column. Flow 
rate was set to 0.85 mL/min and column temperature to 35 °C. An 
RF-20Axs high-sensitivity fluorescence detector (Shimadzu Co., 
Ltd.) was set to Ch1 excitation/emission of 350/450 nm and Ch2 
excitation/emission of 266/305 nm.

A total of 24 compounds were measured: alanine, anserine, 
arginine, asparagine, aspartic acid, balenine, β-alanine, carno-
sine, cystine, glutamic acid, glutamine, glycine, histidine, isoleu-
cine, leucine, lysine, methionine, phenylalanine, proline, serine, 
threonine, tryptophan, tyrosine, and valine. The concentrations of 
these compounds in the pectoral muscle are expressed as mg/100 
g of tissue.
RNA extraction, reverse transcription, and quantitative real-
time polymerase chain reaction (PCR)

Skeletal muscle tissue was homogenized in ISOGEN II 
(Nippon Gene, Tokyo, Japan) and 60 ng of purified total RNA 
was reverse-transcribed using the PrimeScript RT Reagent Kit 
(RR036A; TaKaRa Bio, Shiga, Japan). Real-time PCR was per-
formed as described previously[28], with the following primers: 
carnosine synthase 1, 5′- GATGCCCCTCACCATAGACC-3′ 
and 5′- CCCAGTACGCACACAGTCAT-3′; carnosinase 2, 
5′-GGCGCAACAACATTCTGGTC-3′ and 5′-TGGATT-
GCTACCCACTCAGC-3′; carnosine N-methyltransferase 1, 
5′-CGGTGACAGAGATCCGCC-3′ and 5′-CTCCTGATCCT-
GCTCCTCCT-3′; and 18S ribosomal RNA, 5′-AAACGGCTAC-

CACATCCAAG-3′ and 5′-CCTCCAATGGATCCTCGTTA-3′. 
The resulting mRNA levels were expressed relative to the values 
for control chickens.
Statistical analysis

Data are presented as the mean ± standard error of the mean. 
Student’s t-test was conducted to compare growth performance, 
concentration of free amino acids and IDPs, as well as gene ex-
pression between the HT and TN groups. Pearson’s correlation 
and regression analyses were used to compare drip loss and IDPs 
(anserine and carnosine). Statistical analyses were conducted in 
R version 4.3.2[29]. The ‘t.test’ function was utilized for Stu-
dent’s t-test, the ‘cor’ function for Pearson’s correlation coeffi-
cients, and the ‘lm’ function for regression analysis. Statistical 
significance was set at P < 0.05.

Results and Discussion

When exposed to HT, chickens exhibit slower growth and 
poor feed efficiency, along with decreased meat yield[30,31]. 
In this study, we confirmed that cyclic HT conditions lowered 
final body weight, body weight gain, and feed intake in broiler 
chickens; while significantly increasing body temperature (Table 
2). Muscle, liver, and heart weight was also lower in chickens 
maintained under cyclic HT (Table 2). In contrast, HT conditions 
have been shown to increase MDA levels and muscle drip loss in 
chicken meat[20]. The pectoral muscles of chickens kept under 
cyclic HT conditions showed higher lipid peroxidation and drip 
loss than those of control chickens (Table 3). These results sug-
gest that the cyclic HT environment used in this study realisti-
cally triggered the negative effects commonly observed in broiler 
chickens maintained in HT-inducing environments.

Chronic heat stress enhances systemic amino acid catabolism 
in chickens[32]. Here, the levels of most free amino acids mea-
sured in chickens kept under cyclic HT conditions were lower 
than those of control animals (Table 4), with significant differ-
ences in muscle histidine and tyrosine contents. Cyclic HT con-
ditions resulted in significantly decreased carnosine and anserine 

Table 2. Effect of a cyclic high ambient temperature on growth performance parameters of broiler chickens.
Thermo-neutral temperature 

(25 ± 1 °C)
Heat ambient temperature 

(35 ± 1 °C for 8 h/day)
Final body weight (g) 2391.69 ± 153.30 1768.59 ± 151.92a)

Body weight gain (g) 2015.82 ± 149.31 1383.24 ± 149.18a)

Feed intake (g) 3171.12 ± 151.04 2476.11 ± 140.34a)

Feed conversion ratio 1.60 ± 0.09 1.87 ± 0.13
Body temperature (°C) 40.78 ± 0.09 41.39 ± 0.15a)

Pectoral major muscle (g) 436.45 ± 19.72 323.06 ± 28.48a)

Pectoral minor muscle (g) 88.05 ± 4.09 61.54 ± 4.56a)

Leg muscles (g) 467.21 ± 33.24 362.79 ± 28.57a)

Liver (g) 35.44 ± 2.27 26.73 ± 1.92a)

Heart (g) 8.39 ± 0.65 6.36 ± 0.65a)

Abdominal fat tissue (g) 17.5 ± 2.59 16.89 ± 2.90

Results are expressed as mean ± standard error of the mean (n = 8). a)P < 0.05 (vs. control).
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levels in the pectoral muscles of chickens at slaughter (Table 
4); whereas balenine could not be detected in either group. The 
amount of anserine and carnosine was more than 30% lower in 
the pectoral muscle of chickens kept under cyclic HT conditions 
(muscle IDP content: 1262.07 ± 67.32 and 874.29 ± 75.03 mg/100 
g, control group and HT group, respectively). A decreased mus-
cle carnosine content has been observed in pigs kept under HT 
conditions[21,22]. Moreover, pigs raised in a constant HT envi-
ronment (30 °C for 7 days) were reported to have low carnosine 
in the longissimus dorsi muscle[21]. HT conditions favor the 
generation of reactive oxygen species (ROS) in various tissues 
as the heat load increases[33,34]. Because IDPs and their deriva-

tives are involved in antioxidant activity[35–40], IDPs may act as 
reducing agents that neutralize heat stress-induced ROS.

The decrease in muscle IDPs content may be explained by the 
lower muscle free histidine level observed in this study. Muscle 
histidine content is generally high relative to the Km of carno-
sine synthase 1[41]. In contrast, even though muscle β-alanine 
contributes to carnosine formation[42], its content did not dif-
fer between the two groups (Table 4). Another possible expla-
nation for the decrease in muscle IDPs may be the suppression 
of de novo IDP synthesis, which is mediated by carnosine syn-
thase[14,15]. In chickens, there is a correlation between muscle 
carnosine content and mRNA levels of carnosine synthase 1, 
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Table 3. Effects of a cyclic high ambient temperature on MDA concentration and drip loss in the skeletal 
muscle of broiler chickens.

Thermo-neutral temperature 
(25 ± 1 °C)

Heat ambient temperature 
(35 ± 1 °C for 8 h/day)

Muscle MDA concentration 
(nmol MDA equivalents /g tissue) 193.02 ± 57.15 252.81 ± 17.49a)

Drip loss (%) 3.25 ± 0.67 4.65 ± 0.87a)

Results are expressed as mean ± standard error of the mean (n = 8). a)P < 0.05 (vs. control). MDA, malondialdehyde

Table 4.  Effect of a cyclic high ambient temperature on muscle free amino acids and imidazole  
dipeptide concentration in broiler chickens.

Thermo-neutral temperature 
(25 ± 1 °C)

Heat ambient temperature 
(35 ± 1 °C for 8 h/day)

Alanine 1.67 ± 0.22 1.63 ± 0.13
Arginine 4.58 ± 0.92 2.88 ± 0.62
Asparagine 4.30 ± 0.71 3.07 ± 0.38
Aspartic Acid 4.26 ± 0.57 4.14 ± 0.92
β-Alanine 2.53 ± 0.78 2.88 ± 0.52
Cystine 41.32 ± 4.55 36.15 ± 5.64
Glutamic Acid 15.95 ± 3.47 12.80 ± 2.57
Glutamine 25.63 ± 5.82 24.13 ± 4.36
Glycine 24.56 ± 6.14 22.00 ± 5.14
Histidine 0.77 ± 0.08 0.53 ± 0.09a)

Isoleucine 0.75 ± 0.10 0.58 ± 0.10
Leucine 2.23 ± 0.27 1.69 ± 0.27
Lysine 2.60 ± 0.21 3.14 ± 0.47
Methionine 0.88 ± 0.15 0.66 ± 0.14
Phenylalanine 1.80 ± 0.28 1.33 ± 0.22
Proline 0.73 ± 0.03 0.66 ± 0.05
Serine 12.34 ± 1.14 14.84 ± 1.41
Threonine 6.10 ± 1.40 3.78 ± 0.80
Tryptophane 0.61 ± 0.12 0.58 ± 0.10
Tyrosine 4.81 ± 0.80 2.03 ± 0.20a)

Valine 2.09 ± 0.22 1.92 ± 0.21
Anserine 1035.17 ± 63.97 705.66 ± 69.27a)

Carnosine 226.90 ± 23.11 168.63 ± 21.84a)

Results are expressed as mean ± standard error of the mean (n = 8). a)P < 0.05 (vs. control).
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which is responsible for IDP synthesis in skeletal muscle[19]. 
In pigs, carnosine synthase 1 mRNA expression was found to be 
significantly decreased in the longissimus dorsi muscle 3 weeks 
after heat exposure[22]. In accordance with these studies, we 
found that cyclic HT resulted in decreased carnosine synthase 
1 mRNA expression in the pectoral muscles of broiler chickens 
(Figure 1). It has been theorized that prolonged heat stress reduc-
es energy generation efficiency and ATP synthesis in birds[43]. 
Because carnosine synthase requires ATP to work[44], it seems 
reasonable that broiler chickens kept under cyclic HT conditions 
would suppress de novo synthesis of carnosine and anserine to 
reduce ATP consumption in skeletal muscles. In addition, in the 
present study, we found significantly higher mRNA expression of 
carnosinase 2, which degrades carnosine and anserine[16–18], 
in the pectoral muscles of broiler chickens kept under cyclic HT 
conditions compared to that in control chickens (Figure 1). In-
stead, we observed no difference in the expression of carnosine 
N-methyltransferase 1, which is responsible for carnosine meth-
ylation. These results suggest that cyclic HT exposure results in 
decreased muscle IDP content via both reduced synthesis and 
increased degradation of anserine and carnosine in the pectoral 
muscle of chickens. However, owing to the lack of reports on the 
transcriptional regulation of carnosine synthase 1 or carnosinase 
2, the mechanism by which cyclic HT affects the expression of 
these genes requires further investigation.

Dietary supplementation with carnosine has been reported 
to decrease drip loss, cooking loss, shear force, and hardness of 
broiler chicken meat[13]. Furthermore, muscle carnosine levels 
correlate with drip loss in broiler chicken meat[45]. In agreement 
with the above evidence, we found that muscle IDP content cor-
related negatively with muscle drip loss in the pectoralis muscle 
of broiler chickens (r = -0.605, Pearson’s correlation). Similarly, 
regression analysis suggested that muscle IDP concentration 
might influence muscle drip loss (R2 = 0.3205, P < 0.05). These 

results point to the importance of muscle IDPs for the water-
holding capacity of chicken meat during storage. Further studies 
are required to determine whether regulating muscle IDP content 
in chickens maintains or improves the water-holding capacity of 
chicken meat.

In conclusion, raising broiler chickens under cyclic HT con-
ditions resulted in significantly decreased skeletal muscle IDP 
content and increased muscle drip loss, which was accompanied 
by changes in the mRNA levels of carnosine synthase 1 and car-
nosinase 2 in the pectoral muscles of these animals.
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