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Abstract: A highly efficient liquid-phase hydrogenation reaction using a recyclable palladium on
carbon (Pd/C) catalyst has been used for the transformation of naringin to its corresponding
dihydrochalcone. The effects of various solvents on the hydrogenation process were studied,
with water being identified as the optimal solvent. The analysis also revealed that sodium hydroxide
(NaOH) can accumulate on the surface of the Pd/C catalyst in alcoholic solvents, leading to its
inactivation. The higher solubility of NaOH in water implies that it remains in solution and does not
accumulate on the Pd/C catalyst surface, ensuring the catalytic activity and stability.
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1. Introduction

There has been significant interest in dihydrochalcones (DHC) since Horwits reported their
strong sweetness in 1963 [1]; these heterocycles are also known to exhibit antioxidant or antidiabetic
activities [2,3]. For example, Chao et al. [4] used phlorizin as a DHC template to develop three
antidiabetic drugs approved by the Food and Drug Administration (FDA) and the European Medicine
Agency (EMA) [5]. Snijman et al. [6] reported that the dihydrochalcones aspalathin and nothofagin
exhibit strong antioxidant activities, implying that they are ingested into the human body as intact
glycosides. Janvier et al. [7] gained approval for using the dihydrochalcone neohesperidin as a food
additive (E959) in Europe. Naringin is a flavanone occurring as the major component of exocarpium
and pomelo, which are cultivated widely in south China [8–10]. Therefore, processes to convert
naringin to value-added products on an industrial scale must be developed.

Naringin dihydrochalcone (NDC) can be prepared from naringin via a two-step alkali- mediated
hydrogenation reaction at high pressures [11]. First, NaOH(aq) or (KOH(aq)) is used as a base for
ring-opening of the tetrahydropyran-4-one fragment of naringin to afford the corresponding chalcone
intermediate with an (E)-alkene bond. Second, selective hydrogenation of this alkene bond using
Pd/C (or Raney nickel) catalyst at high hydrogen pressures yield the dihydrochalcone product; the
reaction scheme is shown in Scheme 1. The key feature of this reaction is the selective hydrogenation
of the C=C bond of the DHC intermediate over its C=O functionality. An ideal process would
involve hydrogenation at medium-to-low hydrogen pressures at an ambient temperature using a
heterogeneous catalyst that can be easily recovered and recycled [12,13]. Pd/C has often been used as a
catalyst to selectively reduce the C=C bond of α, β-unsaturated carbonyl compounds, and the efficacy
and mechanism of this reaction has been proven by experimental and theoretical results [14–16] and
studies [17–19].
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Scheme 1. The reaction scheme of hydrogenation of naringin. 

The choice of an appropriate solvent is critical for the success of hydrogenation using 
heterogeneous catalysis; the physical properties of solvents can significantly influence the yield and 
distribution of the hydrogenated products. An ideal solvent in a catalytic reaction can dissolve the 
solid reactants and products effectively, enhance conversion rates, and ensure that the catalyst 
surface remains free of inhibitors [20]. Alcohols (e.g., methanol or ethanol) are the most widely used 
solvents for reported heterogeneous catalytic hydrogenation reactions [21]. Wei et al. [22] have 
shown that Pd catalysts exhibit higher activity for hydrogenation reactions in toluene and ethanol, 
than in DMF, acetonitrile, or water. However, Ma et al. [23,24] reported that water was a more 
effective solvent for liquid-phase hydrodechlorination of chlorophenols catalyzed by Raney nickel. 
However, there has been little research on the effects of different solvents on liquid-phase catalytic 
hydrogenation of naringin. 

In this study, our primary aim was to develop a practical process for catalytic hydrogenation of 
naringin to afford naringin dihydrochalcone using Pd/C as a recyclable heterogeneous catalyst. This 
was achieved by studying the effects of different solvents and the influence of water content on the 
yield of hydrogenation. The effects of solvents and reaction conditions on the structure of the 
recovered Pd/C catalyst was also studied using transmission electron microscopy (TEM), X-ray 
photoelectron spectroscopy (XPS), etc. 

2. Experimental Section 

2.1. Materials and Methods 

The 732 cation exchange resin was purchased from Shape Chemical, Shanghai, China. Naringin 
was obtained from the National Institute for the Control of Pharmaceutical and Biological Products 
in Beijing, China. Other chemicals of analytical grade were purchased from Sigma-Aldrich, St. Louis, 
MO, USA. 

TEM characterization was performed using a Hitachi HT-7700 microscope (Hitachi 
Corporation, Tokyo, Japan). High-resolution TEM (HRTEM) was performed using a Tecnai G2 F30 
S-Twin microscope (Thermo Fisher Scientific, MA, USA) operated at an acceleration voltage of 300 
kV. 

The surface composition of the catalyst was analyzed using XPS (Thermo Escalab 250Xi XPS) 
(Thermo Fisher Scientific, MA, USA) with Al Kα radiation, operated at 15 kV and 14.9 mA, as the 
excitation source. Binding energy values were referenced to the C (1s) peak at 285.0 eV. 

2.2. Preparation of Pd/C Catalyst 

The 10 wt% Pd/C catalyst was prepared by adding 0.2 g of activated carbon to 40 mL of water 
containing 0.11 g Na2PdCl4 (Sigma-Aldrich, St. Louis, MO, USA). After sonication for 10 min and 
stirring for 4 h, NH3·H2O (Sigma-Aldrich, St. Louis, MO, USA) was added dropwise to the solution 
for adjusting pH to 8.5. Next, the Pd adsorbed on activated carbon was reduced by adding 10 mL of 

Scheme 1. The reaction scheme of hydrogenation of naringin.

The choice of an appropriate solvent is critical for the success of hydrogenation using heterogeneous
catalysis; the physical properties of solvents can significantly influence the yield and distribution of
the hydrogenated products. An ideal solvent in a catalytic reaction can dissolve the solid reactants
and products effectively, enhance conversion rates, and ensure that the catalyst surface remains free
of inhibitors [20]. Alcohols (e.g., methanol or ethanol) are the most widely used solvents for reported
heterogeneous catalytic hydrogenation reactions [21]. Wei et al. [22] have shown that Pd catalysts
exhibit higher activity for hydrogenation reactions in toluene and ethanol, than in DMF, acetonitrile,
or water. However, Ma et al. [23,24] reported that water was a more effective solvent for liquid-phase
hydrodechlorination of chlorophenols catalyzed by Raney nickel. However, there has been little research
on the effects of different solvents on liquid-phase catalytic hydrogenation of naringin.

In this study, our primary aim was to develop a practical process for catalytic hydrogenation
of naringin to afford naringin dihydrochalcone using Pd/C as a recyclable heterogeneous catalyst.
This was achieved by studying the effects of different solvents and the influence of water content
on the yield of hydrogenation. The effects of solvents and reaction conditions on the structure of
the recovered Pd/C catalyst was also studied using transmission electron microscopy (TEM), X-ray
photoelectron spectroscopy (XPS), etc.

2. Experimental Section

2.1. Materials and Methods

The 732 cation exchange resin was purchased from Shape Chemical, Shanghai, China. Naringin
was obtained from the National Institute for the Control of Pharmaceutical and Biological Products in
Beijing, China. Other chemicals of analytical grade were purchased from Sigma-Aldrich, St. Louis,
MO, USA.

TEM characterization was performed using a Hitachi HT-7700 microscope (Hitachi Corporation,
Tokyo, Japan). High-resolution TEM (HRTEM) was performed using a Tecnai G2 F30 S-Twin
microscope (Thermo Fisher Scientific, MA, USA) operated at an acceleration voltage of 300 kV.

The surface composition of the catalyst was analyzed using XPS (Thermo Escalab 250Xi XPS)
(Thermo Fisher Scientific, MA, USA) with Al Kα radiation, operated at 15 kV and 14.9 mA, as the
excitation source. Binding energy values were referenced to the C (1s) peak at 285.0 eV.

2.2. Preparation of Pd/C Catalyst

The 10 wt % Pd/C catalyst was prepared by adding 0.2 g of activated carbon to 40 mL of water
containing 0.11 g Na2PdCl4 (Sigma-Aldrich, St. Louis, MO, USA). After sonication for 10 min and
stirring for 4 h, NH3·H2O (Sigma-Aldrich, St. Louis, MO, USA) was added dropwise to the solution
for adjusting pH to 8.5. Next, the Pd adsorbed on activated carbon was reduced by adding 10 mL of
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freshly prepared 0.08 mol L-1 NaBH4 (Sigma-Aldrich, St. Louis, MO, USA) solution. The mixture was
further stirred for 12 h. Finally, the Pd/C was washed and collected by several rounds of centrifugation
and the final product was dried under vacuum for 12 h.

2.3. Procedures Used to Carry Out Hydrogenation Reactions

Liquid-phase hydrogenation was performed in a 250-mL Hastelloy autoclave (Parr, Illinois, USA)
fitted with a mechanical stirrer and an electric temperature controller. In a typical reaction, the reactor
was loaded with 0.50 g of the reduced heterogeneous Pd/C catalyst and 150 mL of an aqueous solution
containing 5.0 g of naringin and 0.6 g of NaOH (Sigma-Aldrich, St. Louis, MO, USA).

The reactor was purged with H2 to remove air and was then pressurized to 1.5 MPa using H2.
The reactor was then heated to 40 ◦C and stirred at 600 rpm for 10–14 h. The reaction mixture was
then filtered to recover the heterogeneous catalyst and the filtrate was passed through a type 732
cation exchanger (Shape Chemical, Shanghai, China) (to exchange Na+ for H+ cations). This resulted
in crystallization of the dihydrochalcone product from the solution, and the crystals were collected
using vacuum filtration [8].

3. Results and Discussion

3.1. Characterization of Pd/C and the Product DHC

The TEM images (Figure 1) of the as-synthesized Pd/C indicated that Pd nanoparticles with
diameters of 4.3 nm are dispersed uniformly on the carbon black. The X-ray diffraction (XRD) patterns
of the Pd/C sample (Figure 2a) exhibit three typical peaks at 2θ = 40.1◦, 47.4◦, and 68.7◦, corresponding
to the (111), (200), and (220) reflections, respectively, of crystalline Pd, which matches well with PDF
65-6174. The diameters of the Pd nanoparticles can also be measured by XRD using the Scherrer
equation [25]: L = Kλ/β cos θ. Where λ is the X-ray wavelength in nanometer (nm), β is the peak
width of the diffraction peak profile at half maximum height resulting from small crystallite size in
radians and K is a constant related to crystallite shape, normally taken as 0.89. The diameter of the Pd
nanoparticle calculated using Scherrer equation is 0.41 nm, which is similar to the average particle size
(0.43 nm) observed from TEM. The XPS spectrum of Pd/C (Figure 2b) shows two symmetrical peaks
assigned to the Pd 3d 5/2 and Pd 3d 3/2 core levels. The peaks at 335.9 and 341.4 eV are attributed to
metallic Pd0, while those at 337.3 eV and 343.4 eV correspond to the Pd 2+ species. The percentage of
metallic Pd0 was calculated from the relative areas under these peaks; metallic Pd0 was found to be
the main metal species on the surface of the as-prepared catalyst (65 wt %).
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Figure 2. (a) XRD and (b) X-ray photoelectron spectroscopy (XPS) patterns of Pd/C. 

The product naringin hydrochalcone was characterized by infrared spectroscopy (IR) 
absorption (Figure 3). IR absorption at 3390 cm-1 (-OH), 2923.84 cm-1 (-CH3), 1631 cm-1 (conjugated 
-C=O), 1513 cm-1, 1438 cm-1 and 817 cm-1 (aromatic nucleus) were indicative of a hydroxylated 
dihydrochalcone, similar to the result of Tang et al. [8]. 

Figure 2. (a) XRD and (b) X-ray photoelectron spectroscopy (XPS) patterns of Pd/C.
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The product naringin hydrochalcone was characterized by infrared spectroscopy (IR) absorption
(Figure 3). IR absorption at 3390 cm−1 (-OH), 2923.84 cm−1 (-CH3), 1631 cm−1 (conjugated
-C=O), 1513 cm−1, 1438 cm−1 and 817 cm−1 (aromatic nucleus) were indicative of a hydroxylated
dihydrochalcone, similar to the result of Tang et al. [8].Materials 2017, 10, x FOR PEER REVIEW  6 of 12 
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Figure 3. IR absorption of naringin hydrochalcone (DHC). 
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The hydrogenation of naringin over Pd/C catalyst was examined in various solvents, including 
methanol, ethanol, iso-propanol, and n-hexane (Figure 4a). It was found that naringin could be 
hydrogenated in all these solvents, with DHC yields depending strongly on the solvent, according to 
the following order: methanol > ethanol > iso-propanol > n-hexane > toluene. The Pd/C catalyst 
showed greater activity in alcoholic solvents than in n-hexane and toluene. Therefore, protic solvents 
are better solvents than aprotic ones for liquid-phase hydrogenation reactions of naringin. These 
results are consistent with previous reports, which describe that hydrogenation of non-polar 
substrates in polar solvents give the best yields of hydrogenated products [20,26]. The rates of these 
hydrogenation reactions were also dependent on solvent polarity, with hydrogenation reactions 
occurring faster in higher-polarity solvents. Indeed, for alcoholic solvents, DHC yield was directly 
proportional to the order of the normalized empirical parameter (ETN), dielectric constant (ε), and 
dipole moment (μ) of the solvents [23,27,28]. 

Figure 3. IR absorption of naringin hydrochalcone (DHC).

3.2. Solvent Effect on the Hydrogenation Reaction of Naringin over Pd/C Catalyst

The hydrogenation of naringin over Pd/C catalyst was examined in various solvents, including
methanol, ethanol, iso-propanol, and n-hexane (Figure 4a). It was found that naringin could be
hydrogenated in all these solvents, with DHC yields depending strongly on the solvent, according
to the following order: methanol > ethanol > iso-propanol > n-hexane > toluene. The Pd/C catalyst
showed greater activity in alcoholic solvents than in n-hexane and toluene. Therefore, protic solvents
are better solvents than aprotic ones for liquid-phase hydrogenation reactions of naringin. These results
are consistent with previous reports, which describe that hydrogenation of non-polar substrates in
polar solvents give the best yields of hydrogenated products [20,26]. The rates of these hydrogenation
reactions were also dependent on solvent polarity, with hydrogenation reactions occurring faster in
higher-polarity solvents. Indeed, for alcoholic solvents, DHC yield was directly proportional to the
order of the normalized empirical parameter (ETN), dielectric constant (ε), and dipole moment (µ) of
the solvents [23,27,28].

Water, a highly polar protic solvent, can be used as an additive to increase the polarity of alcoholic
solvents. Therefore, a series of mixed alcohol/water solvents were investigated to determine the
impact of solvent polarity on hydrogenation reactions. A series of Pd/C-catalyzed hydrogenation
reactions of naringin were performed in different mixed solvents, i.e., ethanol, 20 wt % water-ethanol
(20/80, v/v), 50 wt % water-ethanol (50/50, v/v), 80 wt % water-ethanol (80/20, v/v), and water
(Figure 4b). These experiments revealed that the highest DHC yield was obtained using water as the
solvent, followed by progressively lower DHC yields for 80 wt % water-ethanol, 50 wt % water-ethanol,
20 wt % water–ethanol, and ethanol. These results showed that the rate of hydrogenation increased
with increasing polarity of the mixed ethanol-water solvents. Therefore, the rate of hydrogenation
of naringin over the Pd/C catalyst can be increased significantly by simply adding water to the
alcoholic solvent.
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Figure 4. Hydrogenation of naringin in different solvents over 10 wt% Pd/C catalyst. (a) 
Hydrogenation of naringin in various solvents. (b) Hydrogenation of naringin in various ethanol–
water mixtures. Reaction conditions: 150 mL of each solvent, 5 g of naringin, solvent pH 12, 0.5 g of 
10 wt% Pd/C(0), temperature of 45 °C, and H2 pressure of 1.5 MPa.  
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water-ethanol, 20 wt% water–ethanol, and ethanol. These results showed that the rate of 
hydrogenation increased with increasing polarity of the mixed ethanol-water solvents. Therefore, 
the rate of hydrogenation of naringin over the Pd/C catalyst can be increased significantly by simply 
adding water to the alcoholic solvent. 

The stability and recyclability of the 10 wt% Pd/C catalyst used for hydrogenation in water, 50 
wt% water-ethanol (50/50, v/v), and ethanol were then investigated (Figure 5). In ethanol, the initial 
DHC yield was 70 wt% after 12 h; however, this yield dropped to 59 wt% on using Pd/C catalyst that 
had been recycled five times. However, the DHC yield obtained using water or water-ethanol (50/50, 
v/v) as solvent remained almost unchanged after six rounds of catalyst recycling, indicating superior 
stability of the Pd/C catalyst in these solvents. Therefore, we concluded that water was the best 
solvent for performing Pd/C-catalyzed liquid-phase hydrogenation of naringin. 

Figure 4. Hydrogenation of naringin in different solvents over 10 wt % Pd/C catalyst. (a) Hydrogenation
of naringin in various solvents. (b) Hydrogenation of naringin in various ethanol–water mixtures.
Reaction conditions: 150 mL of each solvent, 5 g of naringin, solvent pH 12, 0.5 g of 10 wt % Pd/C(0),
temperature of 45 ◦C, and H2 pressure of 1.5 MPa.

The stability and recyclability of the 10 wt % Pd/C catalyst used for hydrogenation in water,
50 wt % water-ethanol (50/50, v/v), and ethanol were then investigated (Figure 5). In ethanol, the initial
DHC yield was 70 wt % after 12 h; however, this yield dropped to 59 wt % on using Pd/C catalyst
that had been recycled five times. However, the DHC yield obtained using water or water-ethanol
(50/50, v/v) as solvent remained almost unchanged after six rounds of catalyst recycling, indicating
superior stability of the Pd/C catalyst in these solvents. Therefore, we concluded that water was the
best solvent for performing Pd/C-catalyzed liquid-phase hydrogenation of naringin.
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Figure 5. Repeated hydrogenation of naringin in water, water-ethanol, and ethanol. 
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Figure 5. Repeated hydrogenation of naringin in water, water-ethanol, and ethanol.

3.3. The Influence of Solvent on Pd/C Catalyst Structure

Having shown that among the solvents studied, water is the optimal solvent for hydrogenation
of naringin [20,28–30], we used TEM and XPS studies to elucidate the solvent effect on the structure
of the Pd/C catalyst. The recovered 10 wt % Pd/C catalyst after six rounds of use for hydrogenation
of naringin was analyzed using TEM. The surface morphologies of 10 wt % Pd/C catalyst that had
been reused six times using water (Figure 6b) and 50 wt % water-ethanol (Figure 6c) as solvent were
almost identical to that of the original Pd/C catalyst. On the other hand, when ethanol was used as
the solvent, the morphology of the recovered Pd/C catalyst changed significantly, with significant
amounts of crystalline material deposited on its surface after six rounds of use in the hydrogenation
reactions (Figure 6d).

To gain more information about the structural composition of this crystalline material, 10 wt %
Pd/C catalysts recovered from ethanol–water (50/50) and ethanol reactions were subjected to XPS
analysis. Table 1 provides the XPS analysis results of the composition of fresh and reused Pd/C
catalysts. This table shows the presence of Pd3d and O1s emissions at 336.39 eV and 532.60 eV,
respectively, probably due to the presence of PdO. The biggest difference between catalyst samples
recovered from hydrogenation reactions in water and ethanol was in their Pd3d and Na1s emissions.
The Pd-to-Na ratios of a Pd/C catalyst recovered from hydrogenation reactions in water and ethanol
were 1.79:1 and 0.38:1, respectively. This indicates that the crystalline material observed on the surface
of the catalyst recovered from hydrogenation reactions in ethanol is probably NaOH. Therefore,
the reduced catalytic activity of Pd/C in ethanol is due to NaOH blocking the catalytically active sites
on the catalyst surface, preventing it from effectively absorbing hydrogen and the naringin substrate.
However, when water is present, its higher polarity ensures that NaOH remains in solution, preventing
the Pd/C catalyst surface from becoming deactivated.
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Figure 6. TEM images of the Pd/C catalysts fresh (a), after 6 cycles of hydrogenation in water (b), after 6
cycles of hydrogenation in ethanol-water (50/50) (c), after 6 cycles of hydrogenation in ethanol (d).

Table 1. XPS analysis of fresh and recycled Pd/C catalysts.

Peak _ ID
Area Centre AT (wt %)

Ethanol-Water Ethanol Ethanol-Water Ethanol Ethanol-Water Ethanol

O1s 18,667 12,383 532.60 532.42 83.4 83.63
Na1s 2700 3323 1071.52 1071.47 4.63 11.87
Pd3d 19,280 6107 336.39 336.11 11.96 4.5

3.4. Optimal Reaction Conditions for Naringin Hydrogenation

The effects of reaction temperature, pressure, pH, and catalyst content on the DHC yield in
hydrogenation of naringin were then investigated (Figure 7). Figure 7a shows that the DHC yield in
these reactions increased up to a maximum at hydrogen pressure of 2.0 MPa, with no further increase
in yield at higher pressures. Figure 7b shows that the optimal temperature for these hydrogenation
reactions was 42–45 ◦C. Higher temperatures resulted in catalyst degradation, leading to lower DHC
yields. Increasing the amount of catalyst from 2 wt % to 10 wt % significantly increased the DHC yield,
while the optimum basicity of the NaOH(aq)solvent was found to be pH 11.8 (Figure 7d). The role
of NaOH on the reaction is to open heterocycles of naringin for forming the corresponding chalcone
intermediate. If the pH is lower than 11, the heterocycles cannot be opened. If the pH is too high,
the glycoside bonds on naringin may be destroyed, and the corresponding chalcone intermediate
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cannot be formed. These results were combined to design the optimal conditions for this hydrogenation
reaction: hydrogen reaction pressure of 2.0–2.5 MPa, reaction temperature of 40–45 ◦C, pH 11.5–12.0,
and Pd/C catalyst loading of 8–10 mol wt %.
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Figure 7. Effects of reaction pressure (a), temperature (b), catalyst content (c), and pH (d) on the DHC 
yield. The Reaction conditions: 150 mL of each solvent, 5 g of naringin, solvent pH 12, 0.5 g of 10 wt% 
Pd/C(0), temperature of 45 °C, and H2 pressure of 1.5 MPa. 
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The effects of various solvent systems on the Pd/C-catalyzed liquid-phase hydrogenation of 
naringin have been investigated. Water was found to be the optimal solvent for affording the 
corresponding dihydrochalcone in good yield. The presence of water was critical for preventing 
accumulation of NaOH on the surface of the Pd/C catalyst, which can lead to catalyst deactivation in 
alcoholic solvents. An optimal high-yielding and scalable process was developed using a hydrogen 
pressure of 2.0–2.5 MPa, a reaction temperature of 40–45 °C, an aqueous solvent of pH 11.5–12.0, and 
a recyclable Pd/C catalyst loading of 8–10 wt%. 

Figure 7. Effects of reaction pressure (a), temperature (b), catalyst content (c), and pH (d) on the DHC
yield. The Reaction conditions: 150 mL of each solvent, 5 g of naringin, solvent pH 12, 0.5 g of 10 wt %
Pd/C(0), temperature of 45 ◦C, and H2 pressure of 1.5 MPa.

4. Conclusions

The effects of various solvent systems on the Pd/C-catalyzed liquid-phase hydrogenation of
naringin have been investigated. Water was found to be the optimal solvent for affording the
corresponding dihydrochalcone in good yield. The presence of water was critical for preventing
accumulation of NaOH on the surface of the Pd/C catalyst, which can lead to catalyst deactivation in
alcoholic solvents. An optimal high-yielding and scalable process was developed using a hydrogen
pressure of 2.0–2.5 MPa, a reaction temperature of 40–45 ◦C, an aqueous solvent of pH 11.5–12.0, and a
recyclable Pd/C catalyst loading of 8–10 wt %.
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