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Abstract

This review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute
lung injury (ALI) and circulatory shock, by contrasting the promising preclinical
results to the present clinical reality. The review discusses how the narrow
therapeutic window and width, and potentially toxic effects, the route, dosing, and
timing of administration all have to be balanced out very carefully. The development
of standardized methods to determine in vitro and in vivo H2S concentrations, and
the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a
necessity to facilitate the safety of H2S-based therapies. We suggest the potential of
exploiting already clinically approved compounds, which are known or unknown H2S
donors, as a surrogate strategy.
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Background
This review explores the plausibility of hydrogen sulfide (H2S) therapy for acute lung

injury (ALI) and circulatory shock. H2S is a toxic gas with a characteristic smell of

rotten eggs, and is also produced endogenously by three different enzymes:

cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate-

sulfurtransferase (MST) [1]. In 1996 and 1997, physiological roles of H2S in the brain

and vascular smooth muscle, respectively [2, 3], were discovered, which led to its

classification as the third “endogenous gaso-transmitter” [4], besides nitric oxide and

carbon monoxide.

In 2005, in a hallmark study, Blackstone et al. demonstrated that inhaled H2S (80

ppm, ambient temperature 13 °C) can induce a “suspended-animation” like state by

reduction of the metabolic rate in spontaneously breathing mice. This was accompan-

ied by a fall in body temperature down to 15 °C [5]. The metabolic rate dropped by

90% after 6 h of H2S exposure. The effect was fully reversible upon transferring the

mice into room air and room temperature [5]. These findings led to high hopes and a
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frenzy of speculation regarding the ability of H2S to induce a hypometabolic state

which could be exploited in patient care [6]. However, the fact that this effect was first

shown in experimental conditions (low ambient temperature, no maintenance of body

temperature, and no anesthesia) that are contrary to the current clinical practice, some

drawbacks have to be anticipated in translating this effect to critical care medicine.

Interestingly, H2S-induced hypometabolism and hypothermia could be reproduced in

mice at room temperature, but could not be confirmed in anesthetized sheep [7]. In

anesthetized pigs, Simon et al. did report a sulfide-induced drop in metabolism in a

model of aortic occlusion with intravenous sulfide administration [8]. However, in large

animals, the effect seems to take longer to manifest and is not as pronounced as in ro-

dents. Thus, the concept of H2S-induced “suspended animation” or hypometabolism

should remain in the realm of science fiction (as suggested by Drabek et al. [9]), but it

is also true that potentially therapeutic effects of H2S independent of hypometabolism

[10–12]: anti-inflammatory, antioxidant, organ-specific benefits, regulation of blood

pressure, and glucose metabolism [13–17], are encouraging for the clinical develop-

ment of H2S donors and have not yet been fully explored [18]. After a brief introduc-

tion into the role of H2S in the lung, its role in chronic lung diseases and modes of

exogenous H2S administration, we will review the current literature of exogenous H2S

administration in preclinical models of acute lung injury (ALI, mostly rodents), transla-

tionally more relevant models of lung injury and circulatory shock (resuscitated large

animal models), and finally conclude with the current status of clinical trials of H2S

therapies and an outlook on future clinical development.

The role of H2S in the lung

High levels of H2S gas have been shown to be an environmental hazard, entering the

body through the lung and being further distributed via the bloodstream [17]. H2S as a

byproduct of various industries and pollutant arising from sewers can cause a “knock-

down” effect upon inhalation of > 500 ppm: pulmonary injury, loss of consciousness,

cardiopulmonary arrest, and death [19]. Generally, 10–20 ppm of H2S are considered to

be safe to inhale acutely [17]. The effects of a chronic low-level exposure to H2S on

lung toxicity have not been well characterized, and epidemiological studies are contro-

versial, either reporting no relevant effect [20], or reduced lung function [21]. Bates

et al. investigated the effects of naturally occurring H2S in geothermal areas on pul-

monary health and found no detrimental effect and surprisingly even suggest a poten-

tial benefit on lung function [22].

H2S reportedly plays a role in lung development [23], and a deficiency in the endogenous

H2S enzymes impairs alveolarization [24]. In the adult lung, the expression of the endogen-

ous enzymes has been identified in a variety of pulmonary compartments in different

species: rodents [25–27], bovine [28], and humans [29–32]. An upregulation of the en-

dogenous H2S enzymes has been reported to play a role in the adaptive response to injury

[27, 33]. However, the role of endogenous H2S in the adult lung is not well established.

H2S in chronic lung diseases

Chronic pulmonary diseases have been found to be associated with reduced H2S serum

levels in patients [34] and suppressed pulmonary CSE expression [31]. Even though a
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few preclinical studies report pro-inflammatory effects of H2S in general (e.g., [35, 36]),

it seems well established that the predominant H2S effect in the pathophysiology of

chronic pulmonary diseases is anti-inflammatory [25, 31, 32, 37, 38]. Interestingly, low

expression of the H2S-producing enzymes was shown to compromise the anti-

inflammatory effects of glucocorticoid therapy in asthma [31, 39]. Low levels of CSE ex-

pression and H2S production in early development have been correlated to a higher

susceptibility to allergic asthma in young mice [40]. The protective role of H2S in

chronic inflammatory lung diseases has been thoroughly reviewed by Chen and Wang

([41]: animal models [25, 37, 39, 42] and human studies [34, 43]) and reported more re-

cently (animal models: [38, 44] human: [31], human in vitro: [32]). There are numerous

studies reporting a potential benefit of exogenous H2S administration in chronic lung

diseases [25, 32, 38, 44, 45].

Possible strategies for exogenous administration of H2S

The possible strategies for exogenous administration of H2S have been reviewed re-

cently by Szabo and Papapetropoulos [17] and comprise the following: inhalation of

gaseous H2S and intraperitoneal (i.p.) or intravenous (i.v.) administration of various

H2S-releasing compounds: H2S-releasing salts (e.g., Na2S, NaHS) and slow H2S-releas-

ing donors (GYY4137, AP39, diallyl-trisulfide (DATS)). Regarding the effects of exogen-

ous H2S on inflammation reveals that short-term free sulfide levels as a consequence of

the administration of H2S-releasing salts can have detrimental effects, whereas a slow

continuous H2S release from slow-releasing donors attenuated inflammation (demon-

strated in vitro by [46] and thoroughly reviewed by [13]). An overview of currently

available H2S-releasing compounds is given in Table 1.

Therapeutic potential of H2S during acute lung injury
In the following subsections, 70 articles investigating the effects of exogenous H2S ad-

ministration in various models of acute lung injury are reviewed. These articles were

identified in a literature search on PubMed in August 2019 with the search term

“hydrogen sulfide” in combination with either “acute lung injury” or “ventilator-induced

lung injury” or “shock” and “lung.” Articles that were not available in English or did

not deal with exogenous H2S administration were excluded.

Ventilator-induced lung injury (VILI)

The effects of exogenous H2S in murine models of VILI are mostly reported to be anti-

inflammatory. Only one study reports an acceleration of VILI with 60 ppm of H2S gas

Table 1 Overview of various sulfide donors and their sulfide release

Donor category Compounds Sulfide release

Inhalation Gaseous H2S Rapid, high risk of toxic peak
concentrations

Sulfide-releasing salts Na2S, NaHS, IK-1001 Rapid, high risk of toxic peak
concentrations

Slow-releasing donors GYY4137, AP39, DATS, SG-1002 Slow, toxicity ultimately not clear

Clinically available
compounds

Sodium thiosulfate (STS), Ammonium
tetrathiomolybdate (ATTM), Zofenopril

Slow, good safety profile
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administration as an inhaled gas [47]. However, in the same study, pre-treatment with

an intra-arterial bolus of Na2S (0.55 mg/kg) before starting harmful ventilation could

attenuate lung inflammation and oxidative stress [47]. The latter is well in accordance

with the protective effects of H2S in VILI reported by Aslami et al. and Wang et al.,

who observed reduced inflammation and improved lung function in animals with VILI,

treated with a continuous infusion of 2 mg/kg/h NaHS or DATS, respectively [48, 49].

In contrast to the harmful effects of gaseous H2S administration (60 ppm) [47], four

separate reports from a different group all indicate a beneficial effect of 80 ppm of H2S:

anti-inflammatory and anti-apoptotic effects [11], attenuated lung damage [50], antioxi-

dant effects [51], and prevention of edema formation, even with a reduced H2S admin-

istration time [52]. These contrasting results might be due to the fact that the latter

group used a milder VILI protocol with a tidal volume of 12 ml/kg over a longer time

(6 h) [11, 50–52] rather than 40ml/kg for 4 h as [47]. In conclusion, these results

suggest an overall beneficial effect of H2S in VILI.

Pancreatitis-induced acute lung injury (ALI)

Up to 1/3 of all pancreatitis patients develop ALI or acute respiratory distress syndrome

(ARDS), which accounts for 60% of pancreatitis-related deaths [53]. Inhibition of

cystathionine-γ-lyase (CSE) had anti-inflammatory effects in a murine model of

pancreatitis-induced lung injury [54]. In a follow-up experiment, Bhatia et al. 2006 re-

ported an induction of lung inflammation and histological damage in response to i.p.

injection of 10 mg/kg NaHS in mice [55]. The effects were only present 1 h post-

injection and by 3 and 6 h, the inflammatory state had returned to baseline [55], sug-

gesting that the toxic effects were a transitory consequence of NaHS-induced high peak

sulfide concentrations, which were quickly cleared. Besides Bhatia et al. 2005 [54], three

more studies report a benefit of the inhibition of endogenous H2S production by CSE

(either chemically or genetic deletion) on pancreatitis-induced ALI in murine models

[56–58]. However, as mentioned previously, the effects of H2S on inflammation are

controversial: in other studies, both the administration of ACS15 (H2S-releasing diclo-

fenac) and NaHS pre-treatment (10–15 mg/kg) led to an attenuation of inflammation

in pancreatitis-induced ALI [59, 60]. The context of H2S administration seems to be

crucial: in a healthy animal, 10 mg/kg NaHS induces transient lung inflammation,

whereas this kind of pre-treatment is anti-inflammatory in subsequent pancreatitis-

induced ALI. Furthermore, the role of CBS in the CSE inhibition experiments is not

clear—it could potentially be upregulated in response to CSE inhibition. Neither of the

CSE inhibition experiments report pulmonary H2S levels; thus, no causal conclusions

about the role of H2S itself in inflammation can be drawn from these studies.

Burn and/or smoke-induced lung injury

Acute lung injury is common in burn injury patients and can also be aggravated by the

inhalation of smoke. In a murine model of hot water-induced skin burn, Zhang et al.

observed aggravated lung inflammation and histological damage in animals treated with

NaHS (10 mg/kg) [61], which could be mediated by transient toxic peak sulfide release,

which has to be anticipated with this dose of NaHS. In contrast, in a similar model,

Ahmad et al. report attenuated pulmonary cell infiltration and oxidative stress with the
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administration of AP39 [62]. However, confoundedly, another arm in this study was

treated with AOAA, an inhibitor of endogenous H2S enzymes [63], which had the same

effects as AP39, prompting their conclusion of a “complex pathogenic role of H2S in

burns” [62]. However, the authors neither report H2S levels nor the expression levels of

the endogenous enzymes, which makes it difficult to interpret their data. In the lung,

the upregulation of the endogenous H2S enzymes can represent an adaptive response

to stress [27]. Thus, it is tempting to speculate that their apparently ambivalent results

may be attributed to AOAA and AP39 having a similar regulatory effect on the en-

dogenous H2S enzymes, which has not been investigated or reported yet. In fact, Han

et al. report attenuated lung injury and antioxidant effects of spontaneous breathing of

80 ppm H2S in a rat model of cotton smoke-induced ALI [64]. In a combined model of

smoke- and flame burn-induced lung injury, Esechie et al. were able to demonstrate

attenuated inflammation and improved 5 days survival due to subcutaneous Na2S treat-

ment [65]. They were also able to confirm this protective effect of Na2S in a large ani-

mal (ovine) model of smoke and burn injury, where a 24-h primed continuous i.v.

infusion of Na2S after injury ameliorated pulmonary pathophysiological changes [66].

Overall, H2S seems to mediate protective effects in burn- and/or smoke-induced ALI.

Endotoxin-induced ALI

All studies investigating the effects of exogenous H2S in LPS-induced lung inflamma-

tion were performed in rodents and reported beneficial effects, regardless of the mode

of LPS (locally or systemically) and H2S (salt, slow-releasing donor, inhalation)

administration. Inhalation of 80 ppm H2S after intranasal LPS attenuated lung histo-

logical damage and had anti-inflammatory and antioxidative effects [67, 68]. Pre-

treatment with GYY4137 also attenuated lung injury and cell infiltration after LPS

inhalation [69]. Both GYY4137 and NaHS pre-treatment also attenuated lung injury

and inflammation after intratracheal LPS exposure [70, 71]. A therapeutic administra-

tion of H2S, either sodium thiosulfate (STS) or GYY4137, after intratracheal LPS ame-

liorated pulmonary inflammation as well [72, 73]. GYY4137 also attenuated cell

infiltration in the lung after i.v. injection with LPS. Pre-treatment with GYY4137 had

antioxidant and anti-inflammatory effects in i.p. injection of LPS. NaHS administra-

tion 3 h after i.v. LPS attenuated inflammation and oxidative stress and protected the

mitochondria in the lung [74].

Polymicrobial sepsis-induced ALI

In contrast to studies investigating endotoxin administration, the role of exogenous

H2S in murine models of cecal ligation and puncture (CLP, abdominal sepsis) is contro-

versial: both beneficial and detrimental effects have been reported. In a resuscitated

murine model, 100 ppm of inhaled H2S had minor anti-inflammatory effects, though

not mediating protective effects in CLP [75]. A variety of studies report aggravation of

sepsis-induced lung injury by NaHS [76–82]. However, in all these models, NaHS was

administered as an i.p. bolus and did not comprise any additional resuscitative mea-

sures. The route of administration might also be a confounding factor combined with

the CLP. Furthermore, the dose of H2S that was used in these studies was much higher

than the dose of the previously mentioned LPS experiments (i.e., 10 mg/kg during CLP
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versus 0.78–3.12 mg/kg i.p. NaHS during LPS). In fact, 1 h i.v. administration of

NaHS at a rate of 1 and 3 mg/(kg × h) after CLP attenuated oxidative stress and

cell infiltration in the lung [83]. High peak sulfide levels achieved by the bolus ad-

ministration of a high dose of H2S can exert toxic detrimental effects, whereas

achieving a less pronounced elevation of sulfide levels over a longer period of time

could exert a benefit [13]. In a model of enterocolitis, the slow-releasing H2S

donor GYY4137 attenuated lung inflammation and edema, whereas Na2S (20 mg/kg

3 times daily) had no effect [84].

Oleic acid-induced ALI

ALI is most commonly modeled in mice by an intravenous injection of oleic acid (OA)

[85]. Studies investigating exogenous H2S administration in this model consistently

report beneficial effects: attenuated edema formation, reduced cell infiltration, and anti-

inflammatory and antioxidant effects of NaHS pre-treatment [86–89].

Oxidative lung injury

In models of hyperoxia- or ozone-induced ALI, NaHS administration exerted anti-

inflammatory and antioxidative effects [90–92]. However, hyperoxia cannot only induce

lung damage, depending on the experimental protocol: hyperoxia, as an experimental

therapy in combined fracture healing and blunt chest trauma, exerted lung-protective

effects. Interestingly, these protective effects were associated with an amelioration of

the stress-induced upregulation of endogenous H2S enzymes and thus restoring the

naive state of protein expression [27].

Trauma-induced ALI

Blunt chest trauma induces mechanical and inflammatory injury to the lung [93]. In a

resuscitated, murine model of thoracic trauma, a continuous i.v. infusion of Na2S (0.2

mg/(kg × h)) had no effect on lung mechanics and gas exchange, but reduced apop-

tosis and cytokine production [33]. These effects were even more pronounced in

combination with hypothermia [33]. Inhaled H2S (100 ppm) attenuated inflammation

and cell infiltration in the lung in a non-resuscitated rat model of thoracic trauma

[94]. However, in both these studies, the effects of H2S were rather weak and a clear

benefit could not have been determined [33, 94], in contrast to models of other types

of injury. Interestingly, an upregulation of pulmonary CSE expression in response to

combined acute on chronic lung disease, i.e., thoracic trauma after cigarette smoke

exposure, was suggested to be an adaptive response to injury [27, 95], in that a genetic

deletion of CSE in the same kind of acute on chronic trauma was associated with ag-

gravated ALI [96].

ALI in various types of ischemia/reperfusion injury (I/R)

In a rat model of lung transplantation, NaHS (0.7 mg/kg i.p.) improved lung function

and reduced cell infiltration and oxidative stress [97]. NaHS pre-treatment was benefi-

cial in limb I/R-induced lung injury, due to anti-inflammatory effects and attenuated

edema formation [98]. GYY4137 pre-treatment has been tested in infrarenal aortic

cross clamping, as well as lung I/R, and beneficial effects have been reported in both
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types of lung injury: anti-inflammatory and antioxidant activity, respectively [99, 100].

Results in models of hemorrhagic shock are controversial. One study found a beneficial

effect of an i.p. bolus of NaHS in a rat model: attenuated edema formation, cell

infiltration, and necrosis [101]. Another study of HS in mice determined pulmonary

anti-inflammatory effects of AP39; however, the mortality rate in the treated arm of this

study was very high due to profound vasodilation [102]. Using a lower dose of AP39

yielded no effects at all [102]. These opposite effects of exogenous H2S administration

in these two experiments might be due to the different H2S-releasing compounds used

or resuscitative measures. Chai et al. [101] performed the re-transfusion/resuscitation

only with fluid administration, whereas Wepler et al. [102] used re-transfusion of shed

blood and a full-scale small animal intensive care unit (ICU) setup (see below), which

certainly changes the pathophysiology. In general, the role of H2S in hemorrhagic shock

is controversial, with either a beneficial [103–108], harmful [109, 110], or no impact

[111, 112].

Translational medicine—H2S in large animal models of shock
Animal models with the purpose to identify relevant novel therapeutic strategies for pa-

tient care should reflect the clinical situation as closely as possible. In the context of

ALI and shock research, the clinical practice for patient care in the ICU has to be

reflected in experimental models to facilitate the translation from preclinical research

to the clinical reality, i.e., temperature management, frequent blood gas analysis, lung-

protective mechanical ventilation, hemodynamic monitoring, fluid administration, and

catecholamine support titrated to the mean arterial pressure (MAP) [113]. Metabolic

and organ-specific differences between small and large animals need to be taken into

account [114, 115], as well as the challenge of reproducing the patient’s pathophysi-

ology (e.g., comorbidities and premedication).

In particular for H2S, in a translational scenario, the implementation of intensive care

measures (e.g., maintenance of body temperature, anesthesia, fluid resuscitation) might

interfere with its effects, thus contributing to the lack of a hypometabolic effect in re-

suscitated rodent intensive care models [10, 33, 75, 102]. In large animals, the effects of

H2S administration, in general, have been less robust, not only due to the intensive care

measures, but also due to their large body size and different metabolic and thermo-

regulatory phenotype [114]. Large resuscitated animal studies reflect (i) no or very

limited effects [8, 103, 112, 116–118], (ii) organ-specific effects [66], or (iii) beneficial

effects restricted to a narrow timing and dosing window [119, 120].

As aforementioned, the induction of suspended animation by H2S inhalation was suc-

cessful in small animals [5]; however, the translation to larger animals and eventually

humans has proven to be challenging. Small animals have a much higher metabolic rate

in relation to their body weight than large animals [121]; thus, the induction of a hypo-

metabolic state is much easier to perform in small animals [114]. To induce that same

state in a larger animal, a much higher dose of H2S would be needed, harboring the risk

of toxicity [114]. However, the challenges of measuring H2S/sulfide in biological sam-

ples make it difficult to perform dose-finding studies.

Nonetheless, several studies in large animal models explored the therapeutic potential

in various types of ALI. Na2S in an ovine model of burn reduced mortality and
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improved gas exchange [66]. In porcine models, Na2S was further studied in

hemorrhagic shock, where it attenuated lung damage when administered at the time of

reperfusion, however largely unrelated to hypothermia [120]. Administration of STS in

the acute phase of resuscitation (24 h) after hemorrhagic shock in a porcine comorbid

atherosclerotic model showed only a limited effect by improved gas exchange and lung

mechanics in comparison to vehicle-treated animals (Table 2, [122]). Nußbaum et al.

investigated the effects of GYY4137 during long-term resuscitated septic shock in pigs

with atherosclerosis: GYY4137 treatment led to a preferential utilization of carbohy-

drates; however, they did not observe any major benefit of the treatment, gas exchange

was not affected, and they did not further investigate lung tissue [117]. Unfortunately,

none of the other large animal studies report lung function or lung histopathology. Still,

it seems that exogenous H2S can mediate lung-protective effects in translationally

relevant large animal models, when carefully timed and titrated.

Clinical trials of exogenous H2S administration in ALI
To be able to answer the question posted in the title of this review, the clinical develop-

ment of H2S-releasing compounds has to be taken into consideration as well. As we

shift from large animal preclinical studies to clinical trials, a search on clinicaltrials.gov

(August 2019) for the term “sulfide” revealed a total of 64 clinical trials (see Fig. 1).

Only two trials were found, which focused on a lung pathology (i.e., asthma), falling

into the category “observational” in Fig. 1, investigating the potential use of H2S as a

biomarker. There are no interventional clinical trials addressing the therapeutic poten-

tial of exogenous H2S in lung injury or lung disease. Of the 50 interventional trials

identified, only 20 were evaluating H2S donors, 8 evaluated their intervention based on

H2S as a biomarker, and 5 suggested H2S as a part of the mechanism of their interven-

tion (see Fig. 1). The category “other” in Fig. 1 includes contrast agents, chemothera-

peutics, and dietary supplements with a sulfide moiety. Only 6 of the 20 interventional

Table 2 Lung function in a resuscitated comorbid porcine model of hemorrhagic shock [122]

Timepoint Group assignment Horowitz index (mmHg) PEEP (cmH2O)

Baseline Control 400 (338, 448) 0

Thiosulfate 351 (328, 427) 0

After shock (start of STS infusion) Control 376 (322, 431) 0

Thiosulfate 352 (283, 405) 0

24 h after shock (end of STS infusion) Control 387 (326, 418) 10 (10, 10)

Thiosulfate 385 (355, 417) 10 (10, 10)

48 h after shock Control 230 (195, 270)# 12.5 (12.5, 15)

Thiosulfate 299 (263, 339)* 11.3 (10, 12.5)

72 h after shock Control 289 (106, 323)# 15 (12.5, 15)

Thiosulfate 337 (300, 387) 10 (10, 12.5)*

Atherosclerotic pigs were surgically instrumented and, after a short recovery period, underwent 3 h of hemorrhagic shock
(target mean arterial pressure 40 ± 5mmHg). Seventy-two hours of resuscitation comprised re-transfusion of the shed
blood and fluid and catecholamine administration targeted to the pre-shock mean arterial pressure. Further details about
the experimental protocol can be found in [122]. STS was administered during the first 24 h of resuscitation after
hemorrhagic shock. Effects on lung function were most pronounced at 48 h after hemorrhagic shock. Data shown are
median (lower quartile, upper quartile)
*Significant to control group
#Significant to baseline (p < 0.05 in two-way ANOVA)
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trials with H2S donors are relevant to intensive care (see Fig. 2), excluding skin diseases,

colonoscopy, and arthritis.

IK-1001, a solution generated by bubbling H2S gas into an aqueous solution, was the

first compound, designated to administer H2S, under investigation in clinical trials in

2009. The first trial of IK-1001 targeted “renal impairment” (NCT00879645) and was

terminated prematurely (actual recruitment of 28 participants) because investigators

were unable to determine sulfide levels. The issue of not being able to reliably measure

sulfide is of course critical for clinical approval of a compound: how would one ever be

able to determine the safety of a compound that cannot be measured? One complexity

is the fact that exogenous sulfide is highly volatile and rapidly bound and/or metabo-

lized in vivo [27]. Various sulfide pools are available in biological systems and sulfide

engages in many different chemical reactions [123], suggesting that these endogenous

pools are highly dynamic. Exogenous administration of H2S might change the balance

Fig. 1 Overview of clinical trials found with the search term “sulfide” listed on clinicaltrials.gov

Fig. 2 Clinical trials found with the search term “sulfide” on clinicaltrials.gov and relevant to intensive care.
Excluded: skin diseases, halitosis, dental conditions, colonoscopy, and similar
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of this whole system in ways that we do not fully understand yet. The second trial with

IK-1001 in coronary artery bypass (NCT00858936) was terminated after recruiting 6

participants with reasons not reported. The third trial in ST-elevation myocardial in-

farct (STEMI, NCT01007461) was withdrawn by company decision—non-safety related.

As mentioned above, IK-1001 is an aqueous solution of physically dissolved H2S, thus

resembling the characteristics of the administration of H2S-releasing salts or inhaled

H2S (see also Table 1). Neither administration of H2S via inhalation nor injection of

H2S-releasing salts will likely be ever used in clinical practice, due to airway mucosal

damage and the potential of toxic peak sulfide concentrations, respectively [27]. In fact,

inhalation of 300 ppm H2S, though sub-lethal, is used as a model to study lung injury

[124, 125]. Efforts to avoid the airway irritation of gaseous H2S using extracorporeal

membrane lung ventilation in a preclinical study were successful, but there was no im-

provement on the outcome from cardiopulmonary bypass [126].

SG-1002, a mixture of organic sulfide-releasing compounds and salts, has been under

investigation in heart failure. A phase I trial revealed the compound to be safe and well

tolerated (NCT01989208); a follow-up phase II trial is still in progress with no results

posted yet (NCT02278276).

An interesting perspective for H2S-based therapeutics is the reconsideration of com-

pounds that are already clinically approved and have only recently been identified to be

able to release H2S: (i) sodium thiosulfate (STS) [17, 127], approved for cyanide detoxi-

fication and cisplatin overdosage; (ii) ammonium tetrathiomolybdate (ATTM) [128,

129], approved for Wilson’s disease, a copper metabolism disorder; and (iii) zofenopril

[130], an inhibitor of angiotensin converting enzyme approved for hypertension. These

compounds all have been tested extensively and are known to have good safety profiles

(see also Table 1).

For example, Dyson et al. showed ATTM led to a 50% reduction of infarct size in rat

models of myocardial and cerebral I/R as well as improved survival after hemorrhagic

shock [129]. The good safety profile of STS [131] in particular might be related to the

fact that thiosulfate itself is an endogenous intermediate of oxidative H2S metabolism

[127] and is suggested to be “a circulating ‘carrier’ molecule of beneficial effects of H2S”

[132], in particular under hypoxic conditions [127]. The clinical trial of IK-1001 in

renal impairment even used thiosulfate as an indirect measure of H2S release from their

compound (NCT00879645), although ultimately not successful. STS is currently under

investigation in a phase 2 clinical trial to preserve cardiac function in STEMI

(NCT02899364). With regard to the lung, as mentioned previously, STS was beneficial

in murine models of intratracheal LPS and CLP [72]. Our own group’s findings support

these results from Sakaguchi et al.: we determined a beneficial effect of STS to the lung,

i.e., improved gas exchange and lung mechanics in a translationally relevant large ani-

mal model of hemorrhagic shock (Table 2). Thus, STS is a very promising compound

for the development of therapeutic H2S administration in ALI in a clinical setting.

Conclusions
Exogenous H2S administration has been demonstrated to be beneficial in various pre-

clinical models of lung injury. However, due to the narrow therapeutic window and

width, and potentially toxic effects, the route, dosing, and timing of administration all

have to be balanced out very carefully. The development of methods to determine H2S
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levels and/or the pharmacokinetics and pharmacodynamics of H2S-releasing com-

pounds is absolutely necessary to facilitate the safety of H2S-based therapies. Awaiting

the results of currently ongoing clinical trials and the re-evaluation of already approved

H2S-releasing compounds for novel indications could likely help to prove that H2S is in

fact not a therapeutic dead end [6].
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