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A recent advancement in location-allocation modeling formulates a two-step approach to a new problem of minimizing disparity
of spatial accessibility. Our field work in a health care planning project in a rural county in China indicated that residents valued
distance or travel time from the nearest hospital foremost and then considered quality of care including less waiting time as a
secondary desirability. Based on the case study, this paper further clarifies the sequential decision-making approach, termed “two-
step optimization for spatial accessibility improvement (2SO4SAI).”The first step is to find the best locations to site new facilities by
emphasizing accessibility as proximity to the nearest facilities with several alternative objectives under consideration. The second
step adjusts the capacities of facilities for minimal inequality in accessibility, where the measure of accessibility accounts for the
match ratio of supply and demand and complex spatial interaction between them. The case study illustrates how the two-step
optimization method improves both aspects of spatial accessibility for health care access in rural China.

1. Introduction

Location-allocation analysis seeks the optimal placement of
facilities for a particular objective under various constraints.
As outlined by Church [1], there are several classic location-
allocation problems: the 𝑝-median problem minimizes the
weighted sum of distances between users and facilities, the
location set covering problem (LSCP) minimizes the number
of facilities needed to cover all demand, and the maximum
covering location problem (MCLP) maximizes the demand
covered within a desired distance or time threshold by
locating a given number of facilities, among others. Another
popular model is the minimax problem with an objective
of minimizing the maximum distance between users and
facilities [2]. Most of the studies following this line of work
emphasize efficiency, such as the 𝑝-median problem striving
for cost saving in total travel distance, the LSCP attempting
to cap the total commitment of resource, and the MCLP

intending to max out the benefit of a given resource. Only
theminimax problemmarginally addresses the issue of equity
as it minimizes the distance for the most remote user. Social
scientists have long argued the dual and usually competing
goals of efficiency and equity (e.g., [3–5]). In the rich body
of literature on location-allocation analysis, the paucity of
studies on modeling equity is evident. This is an area that
merits more work especially when it comes to planning for
public resources or services.

There are various principles of equity. For example, in
health care, equity may be defined as equal access to health
care, equal utilization of health care service, or equal health
outcomes among others [6], and most agree that equal
access is the most appropriate principle of equity from a
public policy perspective [7].This research emphasizes spatial
accessibility, which refers to the convenience for residents
at a given location to overcome the spatial impedance to
obtain a service provided at a facility. Over the years, spatial
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accessibility measures have evolved from an emphasis on
“proximity to supply locations” to accounting for complex
interaction between supply and demand ([8]: 94). An early
and simply measure of accessibility is minimum distance or
travel time to the closest facility, which remains popular in
the literature (e.g., [9, 10]). However, this approach assumes
that residents only use the closest facility, and the capacity of
facility is unlimited. One may use cumulative opportunities
within a distance range [11] or a gravity-based potential
model to add up distance-discounted opportunities [12] to
account for multiple facilities valued by residents. When the
scarcity of a service is a concern, recent advancement in
accessibility measure, namely, the “2-step floating catchment
area (2SFCA)” method [13] or its generalized version [14],
considers capacities of facilities, demands of users, travel
cost between them, and their match ratio in complex spatial
interaction. In practice, residents usually value both prox-
imity to the nearest facility and the availability of a service
in terms of accessibility, perhaps with an order of priority.
The methods such as the proximity measure and the 2SFCA
capture different aspects of accessibility.The desire to account
for both travel distance reduction and a reasonable ratio in
supply capacity versus demand level can be also formulated
explicitly in a planning problem. For example, Delmelle et
al. [15] developed a Vintage Flexible Capacitated Location
Problem (ViFCLP) to allow some assignments of demands
to nonclosest facilities in order to gradually accommodate
increasing demands by facilities with limited capacities.

There have been some recent studies modeling equal
accessibility in location-allocation analysis. Based on the
aforementioned 2SFCA-based accessibility index, Wang and
Tang [16] introduced a new objective for planning facilities
toward equal accessibility, defined as minimum inequality of
accessibility for users across geographic areas. They used a
quadratic programming (QP) approach to solve the model
[16]. Similarly, Tao et al. [17] applied the model to planning
senior residential facilities in Beijing and used a particle
swarm optimization (PSO) method to solve the model. The
decision option in both studies was to adjust the capacities
of facilities to minimize the deviation of accessibility indexes.
Wang et al. [18] simulated the decision options of adjusting
capacities of existing facilities or siting new facilities in
analyzing equal accessibility of National Cancer Institute
hospitals and compared the outcomes in the two scenarios.
Lately, Li et al. [19] proposed a two-step method to integrate
location optimization and capacity optimization to fulfill the
single objective of equal accessibility. They argued that a
planning problem often required sequential decisions such as
selecting the sites for new facilities first and then adjusting
their capacities. However, their work fell short as it was
on a simulated problem and calls for real world case study
to support the rationale of the two-step decision process.
Its singular focus on maximizing equality in both steps
may not be completely acceptable to most planners, who
also value other objectives related to optimal efficiency.
More importantly, as both steps share the same objective,
conceptually the results from one step can be fed into another
step. Such an interaction processmaynever converge and lead
to no solution to the problem.

This paper further advances the preliminary work
reported in Li et al. [19] by refining the two-step optimiza-
tion approach in a case study of health care planning in
rural China. Our field work indicated that residents valued
distance or travel time from the nearest hospital foremost
and then considered quality of care including less waiting
time as a secondary desirability. Therefore, we formulate the
method, termed “two-step optimization for spatial accessibility
improvement (2SO4SAI),” to account for both properties
in accessibility measures. In our model, the first step is to
find the best locations to site new facilities by emphasizing
accessibility as proximity to the nearest facilities with several
alternative objectives under consideration. The second step
adjusts the capacities of facilities for minimal inequality in
accessibility, where the measure of accessibility accounts for
the match ratio of supply and demand and complex spatial
interaction between them. By adopting one of the objectives
from the traditional location-allocation problems (e.g., 𝑝-
median, MCLP, minimax), step 1 seeks to site facilities to
improve proximity for as many residents as possible and
addresses the issue of efficiency. By using the popular 2SFCA
to account for availability of service among competition of
residents, step 2 attempts to achieve the maximal equality
through adjustment in resource allocation among newly
sited hospitals. Two steps combined strike a balance of dual
planning objectives of efficiency and equality. The case study
illustrates how the 2SO4SAI method improves both aspects
of spatial accessibility for health care access (proximity and
supply-demand ratio) in rural China.

2. Study Area and Data Preparation

The area for our case study is Xiantao, a rural county (though
named Shi, meaning “City” in Chinese) in the mid-south of
Hubei Province, China. Xiantao is in the heartland of Jiang-
Han Plain, that is, the alluvial plain made by the Chang-Jiang
(Yangtze) River and its largest branch Han-Shui, and has a
flat topography with an area size of 2,538 km2. As the study
focuses on spatial accessibility of health care, this section
outlines data definition for three critical components: the
demand side (residents), the supply side (hospitals), and the
transportation linkage between them.

According to the 2010 census, its total population is about
1.18 million. As shown in Figure 1, all urban settlements
with a population of 114,500 (14% of total population) are
concentrated around the county seat in the mid-north of
the study area and scattered across 12 juweihui (the smallest
administrative unit in urban China, termed “cun (village)”
in a rural area) in three jiedaoban (administrative unit above
juweihui in urban China, termed “zhen (township)” in rural).
In addition, there are 635 villages in 18 townships in rural
areas. This does not include the four water bodies in Figure 1
with no population. In sum, there are a total of 647 village-
level settlements, which define the demand side of our
accessibility analysis.

On the supply side, there are 44 hospitals. As shown in
Figure 1,most of the hospitals (particularly the large andmore
specialized ones) are clustered in the urban area around the
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Table 1: Beds, doctors, and nurses in various hospitals.

Hospital type
(number) Size Minimum Maximum Mean Standard deviation

Public:
County-level
(𝑁 = 9)

Beds 10 1040 276 329
Doctors 5 361 78 117
Nurses 10 601 118 190

Public:
Township-level
(𝑁 = 21)

Beds 20 158 71 29
Doctors 6 38 15 8
Nurses 5 49 24 10

Private
(𝑁 = 14)

Beds 13 120 52 35
Doctors 2 30 10 9
Nurses 2 36 15 9

Hospitals

N Inset: Area around
county seat

Public
Private

Settlements
Rural
Urban

Townships
Survey areas

0 3.75 7.5 15 22.5 30
(km)

Figure 1: Village-level settlements and hospitals in Xiantao.

county seat, and there is at least one hospital in each township.
A recent paper reports that private hospitals in China tend to
concentrate in better-developed areas as they are profit driven
[20]. This is not the case in our study area. Among the 14
private hospitals, 7 are in the central better-developed urban
area and 7 are scattered in surrounding rural areas. Among
the 30 public hospitals, 9 are administered directly by the
county and the rest by townships. As summarized in Table 1,
the county-level public hospitals are generally the largest in
terms of bed size, doctors, and registered nurses, then the
township-level public hospitals are second, and the private
hospitals are the smallest. This echoes the finding from a
recent study [20] that the development of private hospitals
into the health care market, as a result of the health care
reform launched by theChinese government in 2009, remains
on an early stage and plays a supplementary role in the
overall health care market dominated by the public hospitals.
Note that most hospitals in China, as it is the case in this
study, provide a wide spectrum of medical care ranging from
primary care to surgeries and in-patient care. The top five
hospitals, all of which are county-level hospitals in the urban
county seat area with more than 200 beds, provide more
specialized hospital cares than the rest andmay be considered

as hospitals of a higher level. For the purpose of this study, we
emphasize resource planning for general hospital care and do
not differentiate their functions in a hierarchical sense. Our
study does not cover small village-level clinics that often only
have one medical practitioner on staff and no beds.

In order to develop a comprehensivemeasure for hospital
capacity, we collected 14 variables including staff (licensed
physicians, licensed assistant physicians, registered nurses,
pharmacists, lab technicians, image technicians, other med-
ical technicians, and administrators), medical facility (floor
size in m2, bed size, total equipment, and major equip-
ment), and existing patient care volumes (annual patient
visits, annual in-patient discharges). A factor analysis was
conducted to consolidate these 14 variables into two major
independent factors, which accounted for 83% of total
variance. These two factors were then synthesized to a
singular index, termed “comprehensive hospital capacity index
(CHCI).” Specifically, the factors were multiplied by their
corresponding loading weights and then summed up to yield
the CHCI value (Figure 2). See Luo et al. [21] for details.

The paved road network, shown in Figure 2, is used to
calibrate the travel impedance between villages and hospitals.
The dominant transportation mode is electric motorcycles
in the countryside, which travel with a speed of 25 km/h (or
15mph) on all paved roads in the study area. There is a small
segment of interstate highway that passes through the study
area and is not considered for travel for hospital visits within
the county because of its high toll cost and limited access.
Therefore, we do not differentiate the speed on various road
segments and use the shortest-path road network distance to
estimate spatial impedance between villages and hospitals.

3. Measuring Accessibility by Proximity and
2SFCA Methods

In the summer of 2014, the research team conducted a survey
in the study area that covered five townships (shown in
Figure 1). Two of the townships are south of the county
seat at about 10–15 km away, and the other three are on the
west edge of the county at about 30–40 km away. Survey
forms were distributed to 500 residents that were randomly
selected to represent, evenly between males and females,
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Figure 2: Hospital capacity, village population, and road network in Xiantao.

Table 2: Accessibility measures in rural and urban areas.

Measure Urbanicity Number of
village-level units Total population Minimum Maximum Mean Standard

deviation

Distance from the
nearest hospital (km)

Rural 635 696,931 0.02 18.27 6.57 3.91
Urban 12 114,515 0.02 2.15 0.85 0.69
All 647 811,446 0.02 18.27 6.47 3.95

2SFCA accessibility
index

Rural 635 696,931 0.0289 14.4999 0.2477 0.6907
Urban 12 114,515 0.1968 1.5583 0.7961 0.4277
All 647 811,446 0.0289 14.4999 0.2579 0.6900

various age groups (18+) and different income groups. 438
formswere returned, and 356were valid. Among the 356 valid
respondents, the vast majority (91.4%) chose hospital cares
within the county citing reasons such as travel burden and
financial cost (as the public health insurance system favors
within-county medical cares), and the remaining 8.6% chose
hospitals outside of the county (e.g., hospitals in Wuhan, the
capital city of Hubei Province, which is 105 km fromXiantao’s
county seat). For residents choosing hospitals within the
county, the travel tolerance limit was 30 minutes (equivalent
to about 12.5 km) for visiting township-level hospitals for
general purpose and could be stretched to as much as 2 hours
for visiting county-level hospitals for specialized care. The
insignificant out-of-county hospital care behavior, particu-
larly for general (not highly specialized) hospital services,
also helps limit the so-called “edge effect” in our accessibility
measures without considering hospital outlets outside of the
county. Edge effect refers to errors as a result of neglecting
interaction between residents and service providers beyond
a study area, especially those near the edge (borders).

It was evident from the survey that spatial proximity
was a primary concern when it came to accessibility of
hospital care for rural residents in China, consistent with

the finding from Li et al. [10]. This is particularly true for
general cares not specialized cares, and the latter would
require admission to a higher-level hospital. This research
uses the travel distance from the nearest hospital as the first
measure of spatial accessibility for resident at the village
level. Assuming that patients choose the nearest hospital for
service, such a method is also used in delineation of hospital
service areas, termed “proximal area method” ([8]: 70). As
shown in Figure 3, we use the interpolated surface, specifically
based on the inverse distance weighted or IDW method, of
travel distance to display its overall pattern, where darker
color represents shorter distance and thus better accessibility.
Obviously, areas closer to hospitals, especially the urban area
around the county seat, enjoy better access. Based on Table 2,
there is a significant urban-rural disparity: rural residents
travel an average of 6.57 km to their nearest hospitals and
some go as far as 18.27 km, while urban residents on average
are less than 1 km away from their closest hospitals.

However, the proximity measure does not consider that
residents may choose multiple hospitals, nor does it account
for the competition among residents for hospital services.
Based on a review of accessibility measures in the literature,
Wang [14] proposed a refinement of the popular 2-step
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Figure 3: Interpolated surface for travel distance to the nearest hospital in Xiantao.

floating catchment area (2SFCA)method to account for both
aspects. Given m resident locations and n facilities, the
accessibility index is measured such as

𝐴 𝑖 = 𝑛∑
𝑗=1

𝑅𝑗𝑓 (𝑑𝑖𝑗) (1)

𝑅𝑗 = 𝑆𝑗∑𝑚𝑘=1𝐷𝑘𝑓 (𝑑𝑘𝑗) , (2)

where 𝐴 𝑖 is the accessibility index of residents at the ith area,𝑆𝑗 is the supply capacity of the 𝑗th facility, that is, here CHCI
for hospital 𝑗, 𝐷𝑘 is the demand of the kth area, that is,
here population in village 𝑘, 𝑑𝑖𝑗 or 𝑑𝑘𝑗 is the distance from
residential area 𝑖 or 𝑘 to facility 𝑗,𝑓 is the distance decay
function,𝑚 is the number of residential areas, 𝑛 is the number
of facilities, 𝑖 or 𝑘 is the index of residential areas from 1 to𝑚,
and 𝑗 is the index of facilities from 1 to 𝑛.

In essence, the first step in (2) assigns an initial supply-
demand ratio (i.e., supply capacity divided by its surrounding
residents, and the latter discounted by the distance decay
effect) to each facility as a measure of its service availability,
and the second step in (1) sums up these ratios for facilities
around each residential area, and each ratio is also discounted
by the distance decay effect. Therefore, the 2SFCA accessi-
bility index is basically the supply-to-demand ratio, and the
interaction between supply and demand is facilitated by a
distance decay effect.

Note that the distance decay function 𝑓(𝑑) may be
a continuous function such as power, exponential, Gaus-
sian, log-logistic, or a discrete function, or a hybrid be-
tween them [14]. Given the methodological emphasis
of this paper, we employed the popular power func-
tion (or gravity kernel), 𝑓(𝑑𝑖𝑗) = (1/𝑑𝑖𝑗)𝛽, and assumed
the distance friction coefficient 𝛽 = 1. The choice was
made also for lack of patient flow data from residen-
tial areas to hospitals in the study area. When such
data are available, one may derive the best-fitting dis-
tance decay function and its associated parameters [22, 23].

Settlements
Hospitals

Spatial accessibility
High: 14.27
Low: 0.03

Road

0 3.75 7.5 15 22.5 30
(km)

N

Figure 4: Interpolated surface for 2SFCA-based spatial accessibility
to hospitals in Xiantao.

A convenient ArcGIS toolkit can be used to implement the
computation of 2SFCA [24].

The derived accessibility index value can be simply inter-
preted as hospital capacity CHCI per capita, and thus a higher
value corresponds to better accessibility. Similarly, Figure 4
uses the IDW-interpolated surface to display its overall
pattern, where darker color represents higher accessibility
values and thus better accessibility. The pattern is largely
consistent with Figure 3 based on proximity as areas around
hospitals enjoy better accessibility, but not identical. Figure 5
plots the two measures against each other and confirms
that their correlation coefficient is as high as 0.8180 (i.e.,√0.6691). However, the 2SFCA accessibility index shows a
sharper contrast between areas of better and of poor access.
The gradual increase in distance from the proximity method
tells only one side of the story, as the 2SFCA clearly shows that
those areas beyond 4 km away from their nearest hospitals
have their accessibility index almost entirely below 0.2 and
become below 0.1 after 6 km. Both measures reveal three
pockets of poor access: the largest in an area 15–25 km
southeast of the county seat, one at about the same distance
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Figure 5: Correlation of two accessibility measures (proximity
versus 2SFCA index).

range southwest of the county seat, and another small one
about 5 km from the northwest corner.

The consistent patterns between the two measures echo
the finding from Pan et al. 2016 and offer hope that if a
planning strategy is to improve the access for these areas for
one measure (e.g., reducing travel distances from hospitals),
it will also improve the other measure (e.g., alleviating the
stress or crowdedness in hospital services). Some recent
studies on health care accessibility in China emphasize the
advantages and benefits of combining the proximity and
2SFCA methods, especially when a study area is composed
of both urban and rural areas [20, 25].

Based on Table 2, the urban-rural disparity in access is
also revealed by the 2SFCA accessibility index: the average
hospital resource per capita in urban areas (0.7961) is more
than three times of that in rural areas (0.2477). Such a gap is a
result of health care financing inequality inChina and calls for

major adjustment for policy makers to shift the investment
focus toward rural and poor residents [26].

4. Location Optimization for Site Selection

As stated previously, we propose a method, termed “two-step
optimization for spatial accessibility improvement (2SO4SAI),”
to improve accessibility for hospital care in our study area
in both measures. This section discusses the first step to
find the best locations to site new facilities by emphasizing
accessibility as proximity to the nearest facilities.

In 2014, the county’s Bureau of Health Administration
commissioned the “2020–2030 Xiantao Regional Health
Statistical Plan.” One of recommendations of the plan is to
close three hospitals for various reasons such as duplication of
service coverage, market saturation, and subpar performance
evaluation. As shown in Figure 6, two of the three hospitals
are in the county seat area and the other one is at the south-
west corner of the county. This research is part of the follow-
up study to propose planning scenarios of replacing with
three new hospitals. As discussed previously, site selection for
the three hospitals is the first step in this sequential decision-
making process. As revealed in the survey, travel distance
is valued by residents foremost in access to hospital care.
In addition, our interviews with local government officials
also expressed a strong desire to reduce the travel time
for residents in remote villages, especially for improving
the response time for medical emergency. This leads us to
seek solutions from three classic location-allocation models:
the 𝑝-median problem, the location set covering problem
(LSCP), and the minimax problem.

In our case, the 𝑝-median problem is to locate a given
number of facilities among a set of candidate facility sites
(say, among the 647 villages) so that the total travel distance
from the villages to their nearest facilities is minimized. The𝑝-median model formulation is

Minimize: 𝑍 = ∑∑𝐷𝑖𝑑𝑖𝑗𝑥𝑖𝑗
Subject to: 𝑥𝑖𝑗 ≤ 𝑥𝑗𝑗 ∀𝑖, 𝑗, 𝑖 ̸= 𝑗 (each village assignment is restricted to what has been located)

𝑚∑
𝑗=1

𝑥𝑖𝑗 = 1 ∀𝑖 (each village must be assigned to a facility)
𝑚∑
𝑗=1

𝑥𝑗𝑗 = 𝑝 ∀𝑗 (exactly 𝑝 facilities are located)
𝑥𝑖𝑗 = 1, 0 ∀𝑖, 𝑗 (a village is either assigned or not to a facility) ,

(3)

where 𝑖 indexes villages (𝑖 = 1, 2, . . . , 𝑛), 𝑗 indexes can-
didate facility sites (𝑗 = 1, 2, . . . , 𝑚), 𝑝 is the number
of facilities to be located, 𝐷𝑖 is the number of residents
at village 𝑖, 𝑑𝑖𝑗 is the distance between village 𝑖 and facil-
ity 𝑗, 𝑥𝑖𝑗 is 1 if village 𝑖 is assigned to facility 𝑗 or 0
otherwise.

Note that 𝑝 = 44 is the total number of hospitals, and 𝑥𝑖𝑗
is preset as 1 for 𝑗 = 1, 2, . . . , 41 (i.e., the 41 existing hospitals
that will remain open) and 𝑥𝑖𝑗 is a 0-1 binary variable to be
solved for 𝑗 = 42, 43, and 44 (i.e., the three new hospitals
to be allocated). This also applies to the MCLP and minimax
planning problems.
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Figure 6: Planning scenarios for hospital site selection in Xiantao.

Table 3: Results of planning scenarios for hospital site selection in Xiantao.

Number of villages Population Max distance
(km)

Mean distance
(km)≤5 km (%) ≤10 km (%) ≤15 km (%) ≤5 km (%) ≤10 km (%) ≤15 km (%)

Existing 258 (39.9) 523 (80.8) 636 (98.3) 453,984 (56.0) 710,373 (87.5) 802,052 (98.8) 18.3 6.5𝑝-median 276 (42.7) 552 (85.3) 642 (99.2) 472,262 (58.2) 731,384 (90.1) 807,080 (99.5) 18.3 6.0
MCLP 270 (41.7) 557 (86.1) 641 (99.1) 464,771 (57.3) 738,270 (91.0) 807,834 (99.6) 17.6 6.1
Minimax 263 (40.7) 548 (84.7) 643 (99.4) 455,836 (56.2) 730,910 (90.1) 809,422 (99.8) 16.1 6.2
Note. The best solution is highlighted in bold.

The second is the maximum covering location problem
(MCLP). Here it maximizes the number of residents covered
within a desired distance threshold (i.e., 10 km in our case

as 87.5% of population can be covered by the existing
hospitals, shown in Table 3) by locating 𝑝 facilities and is
formulated as

Minimize: 𝑍 = 𝑛∑
𝑖=1

𝐷𝑖𝑦𝑖
Subject to:

𝑁𝑖∑
𝑗=1

𝑥𝑗 + 𝑦𝑖 ≥ 1
∀𝑖 (a village must be within the critical distance of at least one open facility site or it is not covered)

𝑚∑
𝑗=1

𝑥𝑗 = 𝑝 (exactly 𝑝 facilities are located)
𝑥𝑗 = 1, 0 ∀𝑗 (a candidate facility is either open or closed)
𝑦𝑖 = 1, 0 ∀𝑖 (a village is either not covered or covered) ,

(4)

where 𝑖, 𝑗, 𝑚, 𝑛, 𝑝, and 𝐷𝑖 are the same as in the 𝑝-median
model formulation and 𝑁𝑖 is the set of facilities where the
distance between village 𝑖 and facility 𝑗 is less than the critical
distance or time 𝑑0; that is, 𝑑𝑖𝑗 ≤ 𝑑0.

Note 𝑦𝑖 is 1 if a demand area 𝑖 is not covered or
0 otherwise; thus the objective function is structured to
minimize the amount of demand not covered, equivalent to
maximizing the amount covered.
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The third is the minimax problem. Here it minimizes
the maximum distance between villages and facilities and is
formulated as

Minimize: 𝑍 = max {𝑑𝑖 | (1 < 𝑖 < 𝑛)} , (5)

where 𝑛 is the number of villages, 𝑑𝑖 is the distance between
village 𝑖 and the nearest facility to it, and max is a function to
find the maximum value of a set.

To solve the three problems, given the small number(3) of hospitals to be allocated, we enumerated all possible
combinations of three new hospitals out of 647 villages;
that is, C647

3 = 4,4930,915. We calculated the objective func-
tion value for each combination and found the optimal
combination.

The results for the three planning scenarios are shown
in Figure 6. There are overlaps and/or convergences for the
optimal solutions, all of which fall in the three pockets of poor
access areas. In the largest pocket in the southeast region, two
of the𝑝-median solutions are very close (1.5 km) to two of the
MCLP ones (𝐴2 and 𝐵2,𝐴3 and 𝐵3), and one of the minimax
solutions is even identical to that of the MCLP (𝐶3 and 𝐵3).
In the second pocket southwest of the county seat, a MCLP
solution is next to a minimax one (𝐵1 and 𝐶2). In the third
pocket toward the northwest corner, a𝑝-median solution and
a minimax solution (𝐴1 and 𝐶1) are about 8 km apart from
each other.

As the three optimization problems focus on distance,
Table 3 summarizes the results in comparison to the exist-
ing condition. All the three planning scenarios improve
the access over the current state by all accounts: covering
more villages and population in various distance ranges
and reducing the mean and maximum distances from the
nearest hospitals. Among the three scenarios, the 𝑝-median
solution outperforms the others in the short-range (5 km)
coverage, the MCLP wins in the middle-range coverage
(10 km), and the minimax is the best model in the long-
range coverage (15 km). As the minimax is to minimize the
distance for themost remote village, its solution indeed yields
the shortest maximum distance. The 𝑝-median yields the
best solution in the mean distance to fulfill its optimization
objective.

There are at least three lessons to be learned from the
results:

(1) All three classic location-allocation models seek to
site facilities to alleviate poor accessibility in remote
rural areas and thus yield some overlapping results.

(2) There is some comparative advantage for each model
as they have different objectives. Clearly the 𝑝-
median model is best for generating the shortest
mean distance, and the minimax is best for yielding
the shortest maximum distance. The MCLP strikes a
middle-ground result if one seeks a balance between
the two (overall reduction in total distance ver-
sus maximum distance saving for the most distant
clients).

(3) In our case, the 𝑝-median, MCLP, and minimax
models enjoy the advantage of coverage in the short,
middle, and long range, respectively. Such a result is
likely but not necessarily always to be applicable to
other studies.

The three scenarios seem to suggest possibly five areas
for new hospital sites while there are only resources for
three. Following the degree of overlapping/convergence by
the three models, we recommend an order of priority such as𝐴3/𝐵3/𝐶3 > 𝐶2/𝐵1 > 𝐴2/𝐵2 > 𝐴1 > 𝐶1. The area of 𝐶2/𝐵1
is placed ahead of 𝐴2/𝐵2 as it is much farther away from the
first site around 𝐴3/𝐵3/𝐶3 and may influence a completely
separate region.𝐴1 is ranked ahead of 𝐶1 as it is more inland
than 𝐶1 on the border and thus potentially affects more
surrounding villages. If we choose the first three asmandated,
there will be the three clusters𝐴3/𝐵3/𝐶3,𝐶2/𝐵1, and𝐴2/𝐵2.
Given the closeness of sites within each cluster, the MCLP
solution (𝐵3, 𝐵1, and 𝐵2) fits the bill and makes the most
sense.

In summary, by relocating three hospitals, the recom-
mended MCLP planning scenario will cut the average dis-
tance between village residents and their nearest hospitals
from 6.5 km to 6.1 km, a 6.2% overall saving, and improve the
coverage at various distance ranges.

5. Capacity Optimization for Hospitals at
the Selected Sites

As explained previously, many allocation decisions are made
sequentially by first deciding the sites and then determining
the capacities of selected sites. As recommended above, the
three hospital sites are selected by the MCLP (𝐵1, 𝐵2, and𝐵3 in Figure 6). This section discusses the second step on
how to plan for their capacities to max out their benefits.
Since the previous measure of accessibility by proximity does
not consider hospital capacity, we use the 2SFCA accessibility
measure here to account for the intensity of competition for
service (i.e., hospital capacity per capita), which subsequently
affects quality of care and also outcome (e.g., [27, 28]). In
addition to the rationale outlined in the Introduction (e.g.,
dual goals of efficiency and equality, an obligation for its
source of funding from the public), there are at least twomore
reasons to use an equity principle to guide the design of this
planning problem for resource allocation. From a practical
viewpoint, a hospital in a more needy area (e.g., areas of
poorer accessibility according to the 2SFCA method) needs
to be provided with more resource so that it would not be
too crowded to defeat its very purpose of serving. On the
other side, residents in a poorer access area are likely to have
poorer health, and investment of resource in the area is likely
to improve their health more effectively and harness better
payoff.

Here the planning problem is to find the optimal values
of 𝑆𝑗 for the three sited facilities (in our case, 𝑗 = 42, 43, 44
to index the three new hospitals, following the 41 existing
hospitals after eliminating the three recommended to be
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closed) so that the disparity in accessibility across villages is
minimized.

Note that one important property of the 2SFCA acces-
sibility index is that the weighted average of 𝐴 𝑖 (using the
demand amount𝐷𝑖 as weight) equals the ratio of total supply
capacities to total demand in the study area ([8]: 110-111). In
other words, the mean (𝐴) of accessibility is

𝐴 = ∑𝑛𝑗=1 𝑆𝑗∑𝑚𝑖=1𝐷𝑖 . (6)

The standard deviation (�̂�) is
�̂� = √∑𝑚𝑖=1 (𝐴 𝑖 − 𝐴)2𝐷𝑖∑𝑚𝑖=1𝐷𝑖 (7)

which captures the total deviation of accessibility at each
demand location weighted by the amount of demand there.
The objective function is operationalized as minimizing �̂�.

In (7), ∑𝑚𝑖=1𝐷𝑖 = 𝐷 is a constant. Therefore, the objective
function is equivalent to

min (�̂�) ⇒ min
𝑚∑
𝑖=1

(𝐴 𝑖 − 𝐴)2𝐷𝑖 ⇒ min
𝑚∑
𝑖=1

( 𝑛∑
𝑗=1

𝑆𝑗𝐹𝑖𝑗 − 𝐴)
2𝐷𝑖 (8)

subject to
𝑛∑
𝑗=1

𝑆𝑗 = 𝑆, (9)

where 𝑆𝑗 is the capacity for facility j, 𝑆, 𝐷 are the total
facility capacities (CHCI) and total demand (residents),
respectively, and 𝑖, 𝑗, 𝑚, 𝑛, and 𝐷𝑖 are as previously
defined.

In the objective function (8), 𝐹𝑖𝑗 = 𝑓(𝑑𝑖𝑗)/∑𝑚𝑘=1𝐷𝑘𝑓(𝑑𝑘𝑗)
is determined since the distance matrix (its elements 𝑑𝑖𝑗 or𝑑𝑘𝑗) and village population 𝐷𝑘 are known. 𝐴 = 𝑆/𝐷 is also a
constant. The only variable is 𝑆𝑗 for the three new hospitals
(𝑗 = 42, 43, 44), and other 𝑆𝑗’s (𝑗 = 1, 2, . . . , 41) are the
capacities of existing hospitals.

In matrix notation, the objective function (8) is

(FS − A)𝑇 (DFS −DA)
= S𝑇F𝑇DFS − A𝑇DFS − S𝑇F𝑇DA + A𝑇DA, (10)

where

S = [𝑆1 𝑆2 ⋅ ⋅ ⋅ 𝑆𝑝]𝑇

F = [[[[[

𝐹11 ⋅ ⋅ ⋅ 𝐹11... d
...𝐹𝑚1 ⋅ ⋅ ⋅ 𝐹𝑚𝑝
]]]]]

A = [𝐴 𝐴 ⋅ ⋅ ⋅ 𝐴]𝑇 , |A| = 𝑚

D = [[[[[

𝐷1 ⋅ ⋅ ⋅ 0... d
...0 ⋅ ⋅ ⋅ 𝐷𝑚
]]]]]
.

(11)

Dropping some constant terms, it is further transformed into
a quadratic programming (QP) as follows:

Minimize (x𝑇Hx2 + f𝑇x)
subject to Cx ≤ b

Ex = d,
(12)

where

x = S

H = F𝑇DF

f = (−A𝑇DF)𝑇 = −F𝑇DA.
(13)

C = −1 × I, and I is a 𝑝 × 𝑝 identity matrix.

b = [0 0 ⋅ ⋅ ⋅ 0]𝑇 , |b| = 𝑝
E = [1 1 ⋅ ⋅ ⋅ 1] , |E| = 𝑝
d = 𝑆.

(14)

There are various open-source programs for solving the
QP problem (http://www.numerical.rl.ac.uk/qp/qp.html).
This study used Matlab, in particular its “quadprog” routine,
to implement QP because of its flexibility in coding large
matrices and its reliability (http://www.mathworks.com/pro-
ducts/matlab). See Wang and Tang [16] and Li et al. [19] for
more discussion.

Here, we assume that the available resource for allocating
among the three new hospitals is the total CHCI value from
the three hospitals to be closed (7,237.8). In other words,

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
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Table 4: Result of capacity optimization by quadratic programming (QP).

Resource evenly allocated scenario Resource optimally allocated scenario
Total allocated capacity 7,237.8 7,237.8
Hospital B1 capacity∗ 2,412.6 2,194.3
Hospital B2 capacity∗ 2,412.6 3,760.3
Hospital B3 capacity∗ 2,412.6 1,283.2
Mean of accessibility index 0.3911 0.3911
Standard deviation of accessibility index 0.5695 0.5656
Note. ∗See locations in Figure 6.

our planning problem is to redistribute the resource saved
from the closure of three existing hospitals to the three
new hospitals. The capacity measure CHCI not only is more
comprehensive than a singular measure such as number of
doctors or bed size, but also offers some flexibility in the
solutions for hospital administrators to reach the best combi-
nation of personnel, equipment, and facility parameters. One
may interpret it as a total financial commitment.

Table 4 presents the optimization results in comparison
to an arbitrary scenario, say evenly dividing the resource
among the three hospitals. In terms of capacity, the planning
result suggests an allocation ratio of about 1.7 : 3.0 : 1.0 for𝐵1 :𝐵2 :𝐵3, which once again highlights the lack of hospital
service in the region about 15–25 km southeast of the county
seat. It calls for not only building two hospitals (𝐵2 and 𝐵3),
but also building at adequate capacities with a much larger
one on the west site (𝐵2). Since the total capacity of the 44
hospitals remains the same, the average accessibility index
(weighted by village population) across the county is identical
as 0.3911. The optimal allocation of resource (via capacity
optimization) yields a slightly lower standard deviation and
thus less disparity for accessibility. As stated previously, the
comprehensive capacity measure, CHCI, is a linear combina-
tion of consolidated factor scores and therefore also a linear
summation of the original 14 variables. The derived optimal
CHCI values give the local policy makers some flexibility of
various combinations of staff versus medical facility.

Using the updated capacities, a new map of 2SFCA-
based accessibility was developed but not presented here as
its difference from the existing pattern was visually difficult
to be noted (Figure 4). The small improvement in equality
is understandable since the capacity available for allocation
(7,237.8) is only about 2% of the total hospital capacity in
the county (317,371.8). We also experimented with different
distance friction coefficients such as 𝛽 = 1.5, 1.8, 2.0 in
implementing the 2SFCA method. The allocation of capacity
differed slightly from the aforementioned ratio among the
three hospitals when 𝛽 = 1, but the order of their CHCI values
was consistent such as 𝐵2 > 𝐵1 > 𝐵3.
6. Conclusion

Based on the literature review, there are two popular mea-
sures of spatial accessibility: the proximity method uses the
distance or travel time from the nearest facility, and the
more recent 2SFCA accounts the complex spatial interaction

between supply and demand and captures the availability of
a service. Our field work suggests that both properties are
valued by residents. A recent location-allocation model by
Li et al. [19] formulates the concept of a two-step approach
that first sites facilities and then determines their capacities.
However, the model suffers from several technical and con-
ceptual loopholes as stated in the Introduction and calls for
refinements and more importantly a practical case study to
validate it.

This paper further clarifies the sequential decision-
making approach, termed “two-step optimization for spa-
tial accessibility improvement (2SO4SAI).” The first step is
location optimization but differs from the previous two-
step approach in using proximity to facilities to measure
accessibility and adopting the objective function from the
traditional 𝑝-median, MCLP, or minimax problem. The
second step adjusts the capacities of facilities for minimal
inequality in accessibility, where the measure of accessibility
is switched to 2SFCA. By adopting one of the objectives
from the traditional location-allocation problems, step 1
emphasizes the efficiency principle. Step 2 strives to reduce
disparity through adjustment in resource allocation among
newly sited hospitals. Two steps are combined for a true
hybrid optimization model that balances the dual goals of
efficiency and equality. In addition, spatial proximity to
facilities and a match ratio of supply and demand are two
distinctive properties of accessibility. The former emphasizes
the ability of reaching a service provider in the shortest time,
and the latter underlines the importance of its availability
as consumers compete for limited resource (captured by
2SCFA). It was our field survey that suggested the priority
of proximity over availability by residents, and thus the
study incorporated proximity in the first step and availability
in the second step in the sequential optimization process.
Simulations reported in Li et al. [19] suggest a simultaneous
solution to both site selection and capacity adjustment to be
very unlikely. Therefore, the sequential two-step optimiza-
tion approach is both empirically justified and technically
feasible.

There are several other conceivable planning scenarios:
an equality objective that is based on a 2SFCA measure for
accessibility and then an efficiency objective that adopts a
proximity measure for accessibility, the equality objective for
both steps, or the efficiency objective for both steps, and so
on. Readers may develop their own case studies that truly
reflect the practical challenges in a complex real world.
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Our involvement in a project on planning hospitals in a
rural county in central China provided us with an excellent
case study to implement this method. In the case study, the
planning problem is to site three new hospitals to replace
soon-to-be-closed ones and make recommendation on their
sizes. In this study, the spatial patterns of accessibility mea-
sured by the proximity and the 2SFCA methods are largely
consistent with someminor discrepancies (e.g., more gradual
change in rural areas by the proximity method than by the
2SFCAmethod) and reveal a significant rural-urban disparity
with three pockets of poor access (all in rural areas). Based
on distance from the closest hospitals, the three location
optimization methods (𝑝-median, MCLP, or minimax) yield
results with some overlaps or convergences, and all of the
selected optimal sites fall in the three pockets of poor access
areas. We recommend the result by the MCLP model as
its solutions overlap most with the results by the other two
models and also attain a balance of desirable outcomes. The
capacity optimization allocates a given amount of capacity to
the three new sited hospitals. The case study demonstrated
that the 2SO4SAI method improves two aspects of spatial
accessibility: the location optimization reduces the average
travel distance to hospitals, and the capacity optimization
narrows the disparity gap in accessibility that captures hos-
pital resource per capita.

There are some limitations for this study. As mentioned
briefly in the paper, patients’ behaviors in seeking hospital
care are more diverse and complex than we modeled. For
instance, people often bypass choices near their home for one
of better reputation (e.g., a county-level instead of a township-
level hospital in our case). We will need to collect and
analyze the patient flow data to better model their behaviors.
Such an analysis will also help us design better measures of
accessibility (e.g., the choice of distance decay function and
its associated parameters). Conceivably a decision problem
may follow the same sequential process of siting the facility
locations and then deliberating their sizes as our model but
need to construct a different objective function for either
step. The balance of efficiency and equality may also be
approached sequentially as in this research or concurrently by
a biobjective model. Even if the issue of interest remains on
spatial accessibility, the specific definitions or measures may
differ from the ones adopted for our study. Any combination
of these extensions or adaptions will lead to a different
formulation of the optimization problem and help enrich and
advance the state of location-allocation analysis.
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