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REVIEW

Are T cells the only HIV‑1 reservoir?
Abraham Joseph Kandathil, Sho Sugawara and Ashwin Balagopal*

Abstract 

Current antiretroviral therapies have improved the duration and quality of life of people living with HIV-1. However, 
viral reservoirs impede complete eradication of the virus. Although there are many strategies to eliminate infectious 
virus, the most actively pursued are latency reversing agents in conjunction with immune modulation. This strategy, 
known as “shock and kill”, has been tested primarily against the most widely recognized HIV-1 latent reservoir found 
in resting memory CD4+ T cells. This is in part because of the dearth of conclusive evidence about the existence of 
non-T cell reservoirs. Studies of non-T cell reservoirs have been difficult to interpret because of technical and biologi-
cal issues that have hampered a better understanding. This review considers the current knowledge of non-T cell 
reservoirs, the challenges encountered in a better understanding of these populations, and their implications for 
HIV-1 cure research.
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Background
In the twenty years since combination antiretroviral ther-
apy (ART) for HIV-1 was first announced, people living 
with HIV-1 (PLWH) have had marked improvements in 
mortality and quality of life. However, whereas ART is 
remarkably effective at preventing new cells from becom-
ing infected, it does not eliminate long-lived cells that are 
already infected prior to ART initiation. Latent reservoirs 
have thwarted attempts to eliminate all replication com-
petent forms of the virus from infected individuals [1–6].

There is reason for balanced optimism in the HIV-1 
cure field. The ‘Berlin’ and ‘Boston’ patients who under-
went bone marrow transplants from donors lacking one 
or both copies of full-length CCR5, a key HIV-1 entry co-
receptor, had prolonged remissions without evidence of 
HIV-1; in the case of the ‘Berlin’ patient, there is still no 
evidence of HIV-1 since his transplant [7, 8]. The ‘Mis-
sissippi Baby’ and results of the VISCONTI study high-
light the possibility of long drug-free remission periods 
if ART is initiated during primary infection [1, 2, 7, 9–
11]. Central to each case of a potential cure or ART-free 
remission has been a reduction in the size of the HIV-1 

reservoir. Therefore, it is critical for cure strategies to tar-
get all potential reservoirs.

Many cells are susceptible to HIV-1 in  vitro, but not 
all potential reservoirs have been studied in vivo during 
ART with the same rigor. Resting memory CD4+ T cells 
are the most widely recognized and best-described HIV-1 
reservoir in research that has been extensively reviewed 
elsewhere [12, 13]. For cells to constitute an HIV-1 res-
ervoir, they have to harbor replication competent forms 
of the virus that persist for years despite long-term ART 
suppression of viremia [14]. Against the standard of the 
T cell reservoir, in this review we consider evidence sug-
gesting the possible long-term persistence of non-T cell 
reservoirs in individuals on ART, and the current chal-
lenges involved in their identification.

Usual and unusual suspects
Viral latency is defined as a reversible nonproductive 
state of infection in individual cells [15]. Reservoirs are 
cells that harbor replicative forms of HIV-1 following 
long periods of ART-suppressed viremia [14, 16]. Resting 
memory CD4+ T cell reservoirs have been estimated to 
have a half-life of 44  months, meaning that their clear-
ance during ART may take as long as 73  years [13, 17, 
18]. Subsequently, distinct populations of CD4+ T cells 
have also been recognized to contribute to the pool of 
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latently infected cells [19–21], although those are outside 
the scope of the present review. The half-life of resting 
memory CD4+ T cell reservoirs corresponds to the long-
phase decay of residual plasma viremia in persons taking 
long-term ART [22]. The phases of plasma HIV-1 RNA 
decline on ART have been attributed to infection of dif-
ferent cell types that are infected by the virus, and much 
has been inferred about the identities of those cells with-
out clear evidence (Fig.  1). Here, we enumerate several 
candidate cell types that could potentially serve as HIV-1 
reservoirs (Table 1).  

Macrophages and myeloid cells
Found primarily in tissues, macrophages are mono-
nuclear leukocytes that are key components of innate 
immunity. For decades, the origin of tissue resident 
macrophages (TRM) was explained by the concept of 
the mononuclear-phagocyte system: monocytes were 
thought to continually replenish TRM that died in tis-
sues [34, 35]. Consistent with this early concept, the 
death of HIV-1 infected macrophages was thought to be 
responsible for the second phase of HIV-1 viral kinetic 
decline during ART. However, recent findings based on 
murine models suggest that the principal origin of TRM 
in steady state is from embryonic haematopoietic pre-
cursors, while monocytes only contribute in the setting 

of inflammation and injury [36]. Similarly, detection of 
TRM even in individuals with monocytopenia suggests 
monocyte-independent maintenance, a long half-life of 
embryonically derived macrophages, or likely a com-
bination of both [37]. Studies in patients who received 
lung transplantation have also shown long-term per-
sistence of donor alveolar macrophages [32]. In paral-
lel, the rapid second phase decline of HIV-1 was found 
not to be attributable to macrophages [38]. Taken 
together, these findings have led to a marked revision in 
our understanding of the maintenance and longevity of 
TRM.

It is well established in animal models and in  vitro 
that macrophages can be productively infected by lab 
strains of HIV-1 [39, 40], although there may be ana-
tomical variation in their susceptibility to HIV-1 infec-
tion. For example, there are reports of HIV-1 and SIV 
in brain macrophages such as microglia [41, 42]. Vagi-
nal macrophages have been shown to support HIV-1 
replication better than intestinal macrophages, which 
may be explained by differential expression of entry co-
receptors [43]. Comparative in situ fluorescence also sug-
gests higher HIV-1 susceptibility of rectal macrophages 
compared to colonic macrophages [44]. Cai et  al. have 
shown that SIV infection of lung macrophages leads to 
preferential destruction of interstitial macrophages, in 

Fig. 1  Phasic decline of viremia due to death of HIV-1 infected cells following ART. The multiphasic decay in plasma viremia following initiation of 
ART has been attributed to the varying half-life of infected cells. Death of productively infected activated CD4+ T cells with a half-life of 1–2 days 
contributes to the first phase of decline. The slower second phase during which viremia becomes undetectable is contributed to by cells with a 
half-life in the order of weeks. The cells contributing to the second phase have not been conclusively identified. This is followed by the third phase 
of decline, characterized by undetectable steady viremia due to infected resting memory CD4+ T cells with a half-life of 44 months
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comparison to alveolar macrophages that experience 
minimal cell death and low turnover [45].

Several reports in the pre-ART era demonstrated 
HIV-1 infection in TRM [46–50]. More recently alveolar 
macrophages from individuals on ART have been shown 
to harbor HIV-1 nucleic acids (both proviral DNA and 
RNA) [51]. Our lab has extended earlier studies of liver 
macrophages (Kupffer cells), the largest population of 
TRM in the body, to show that these cells can harbor 
virus from individuals on ART for as long as 11  years, 
although their functional significance is still unclear [25]. 
Other tissue macrophages that have also been implicated 
as harboring HIV-1 include those in the seminal vesi-
cle, duodenum, urethra, adipose tissue, and liver [25, 46, 
52–55].

The study of HIV-1 infection of macrophages is not 
without controversy. Recent in  vivo data from an SIV 
macaque model has demonstrated the presence of both 
proviral DNA and T cell receptors (TCR) in myeloid cells: 
the authors concluded that the presence of viral DNA in 
macrophages was due to phagocytosis of infected dying 
cell rather than de novo infection of myeloid cells [56]. 
However, a subsequent report by Baxter et  al. showed 
that primary monocyte-derived macrophages could 
selectively capture HIV-1 infected CD4+ T cells, leading 

to macrophage infection along with efficient HIV-1 cell-
to-cell spread [57]. Indeed, others and we have confirmed 
the exclusion of T cells and TCRs in ex  vivo studies 
of TRM reservoirs [25, 58]. Thus it is important to dif-
ferentiate between phagocytosis and actual infection of 
macrophages following detection of nucleic acids in mac-
rophages. In addition, it is clear from in vitro studies that 
HIV-1 replication dynamics differ in myeloid cells com-
pared to CD4+ T cells: virions can be found dwelling for 
prolonged periods in long cytoplasmic channels in mac-
rophages and are not immediately released, in contrast to 
the typical burst that has been described in CD4+ T cells 
[59].

Monocytes, closely related myeloid cells, were initially 
reported as being infected in  vivo; however, it has now 
been shown that monocytes are not susceptible to HIV-1, 
and largely lack proviral HIV-1 DNA in both viremic and 
ART suppressed individuals [24, 60].

Dendritic cells
Dendritic cells (DCs) are a heterogeneous group of anti-
gen-presenting cells that play vital roles in orchestrating 
immune responses [61]. DCs can be broadly divided into 
those of myeloid or lymphoid origin [62], and further 
categorized as plasmacytoid (pDCs), myeloid (mDCs), 

Table 1  Summary data on HIV-1 reservoirs and assays in various cell populations

? Not known, NA not applicable
a  There are discrepant data on the longevity of uninfected memory CD4+ T cells and latent HIV-1 reservoirs therein. However, it is difficult to accurately estimate the 
T½ of HIV-1 infected T cells due to possible clonal proliferation: i.e., the listed T½ describes the duration of the HIV-1 reservoir itself, but does not directly address the T½ 
of the cell that harbors the reservoir
b  In the described experiments, donor alveolar macrophages were found 2–3 years after lung transplantation in human subjects: while we assume that these TRM 
persisted for this duration, it is possible that they underwent proliferation and replacement locally
c  The indicated longevity is for the infectious virions that were found on FDC dendrites, although it is controversial whether this cell type was actually infected

Memory CD4+ T cells Myeloid cells Dendritic cells FDCs Epithelial cells

Monocytes Macrophages pDCs mDCs

Available VOA? Yes (gold standard) [23] Yes [24] Yes [25] No No Yes [26] No

Has VOA been applied to PLWH 
taking long-term ART?

Yes (gold standard) [18] No Yes [25] NA NA Yes [26] No

Has HIV-1 been demonstrated in 
the indicated cell type in PLWH 
taking long-term ART?

Yes (gold standard) [18] No Yes [25] NA NA Yes [26] Yes

Is HIV in this reservoir replication 
competent?

Yes (gold standard) [18] NA No NA NA Yes [26] NA

Available animal models? Yes [27] Yes [24] Yes [24] Yes [24] Yes [24] Yes [27] No

Have animal models been stud-
ied during long-term ART?

Yes [28] No No No No No No

Do animal models with sup-
pressed viremia contain repli-
cation competent HIV-1?

Yes [28] NA NA NA NA NA NA

Longevity or T½ of uninfected 
cells

1–12 months [29, 30]a 2–3 days [31] ≥24–36 months [32]b ? ? ? ?

Longevity or T½ of reservoir in 
this cell type

44 months [18]a NA ? ? ? 9 months [33]c ?
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Langerhans cells (found in the epidermis), and interstitial 
[63].

Although DCs comprise a small proportion of cells in 
various anatomical sites [64], their role as immunologic 
sentries makes them among the first cells that encoun-
ter invading pathogens like HIV-1. Indeed, analyses of 
transmitted/founder viruses have shown that they have 
enhanced binding to mDCs compared to viruses isolated 
from chronic infection, a feature that may facilitate virus 
transport across the mucosa [65, 66].

pDCs and mDCs have been noted to have differential 
susceptibility to HIV-1 infection, although this has largely 
been ascertained in  vitro [67–69]. In  vivo, the presence 
of HIV-1 DNA in DCs has been noted to occur at lower 
frequency compared to CD4+ T cells [70, 71]. There have 
been several reports of productive HIV-1 infection of 
DCs in vitro for as long as 45 days [72–75], but limited 
data in vivo. Langerhans cells have been considered as a 
potential reservoir, but largely based on data in the pre-
ART era [76, 77].

To fulfill their role as a reservoir, DCs have been pos-
ited to transfer infection to T cells, in particular to anti-
gen specific CD4+ T cells, following their encounter with 
HIV-1, whether or not they themselves are infected [78–
80]. This infection in trans is mediated by the formation 
of an infectious/virological synapse [33]. During trans 
infection, compartmentalized HIV-1 has been observed 
to emerge from DCs and fuse with the T cell membrane 
[81]. Envelope specific inhibitors maintain their potency 
against these compartmentalized virions [81]. These are 
tantalizing hypotheses that have been difficult to find evi-
dence for in vivo.

Follicular dendritic cells
Follicular dendritic cells (FDCs) that are found in B cell 
follicles in secondary lymphoid organs are not typical 
DCs, although they are similarly named: FDCs develop 
from perivascular precursors of stromal cell origin and 
are not known to present antigens using MHC-restricted 
pathways [26, 64].

FDCs can potentially serve as viral reservoirs by main-
taining a stable pool of HIV-1 on their surface without 
being infected [82, 83]. In vitro studies have revealed that 
HIV-1 virions adhere on the surface of FDCs through 
interactions with complement receptors mediated via a 
C3-dependent mechanism [84]. The binding of C3 frag-
ments to the virus allows its adherence to complement 
receptors CR1 and CR2, present on FDCs [26]. In addi-
tion, the presence of non-neutralizing antibodies specific 
for HIV-1 in patients may enhance binding to FDCs via 
FcR-mediated binding [26].

HIV-1 has been known to persist on these cells even 
in the presence of neutralizing antibodies, with reports 

suggesting that FDCs can restore the infectivity of neu-
tralized viruses [85, 86]. FDCs transfer antigens in the B 
cell follicles of all secondary lymphoid tissues, and in the 
process may transfer HIV-1 to T follicular helper cells 
that are also present in the B cell follicles [21].

In mice, FDCs have been shown to trap HIV-1 following 
a single exposure, and these virions remained infectious 
for at least 9 months [85]. A recent study reported visu-
alization of HIV-1 in cycling endosomes in FDCs isolated 
from individuals on prolonged ART (median = 8 years) 
[87]. Mathematical models have suggested that FDCs are 
the major contributor to the low-level viremia detected 
during the third phase of viral decay, and have been esti-
mated to have a half-life of 39 months [22].

Epithelial cells
There have been reports suggesting the possible infec-
tion and transmission of infection by epithelial cells even 
though they do not express CD4 and have undetectable 
or low expression of the co-receptors CCR5and CXCR4 
[88, 89]. Renal epithelial cells have been reported to be 
susceptible to HIV-1 in vitro [90]. Cultures of renal tubule 
epithelial cells were productively infected by HIV-1 fol-
lowing co-culture with infected T cells [90]. Transmission 
of infection was observed to occur by formation of viro-
logical synapses [91]. HIV-1 mRNA and DNA have also 
been detected in renal tubular epithelial cells using in situ 
hybridization done on biopsies obtained from individu-
als with HIV-1 associated nephropathy [92]. Phylogenetic 
analyses of sequences obtained from renal epithelial cells 
were found to cluster together within the radiation of 
sequences obtained from peripheral blood mononuclear 
cells [93]. These cells could play a role in persistence of 
HIV-1 infection in individuals on ART based on indirect 
evidence [94, 95].

Mammary epithelial cells have been conjectured to 
harbor a separate compartment of HIV-1: phlyogenetic 
analyses of HIV-1 DNA from paired breast-milk and 
peripheral blood samples from HIV-1 infected women 
have shown the existence of genetically distinct com-
partments [96, 97]. Studies of breast-milk from HIV-1 
infected women on treatment have shown negligible 
impact of ART on cell-associated or HIV-1 proviral DNA 
levels, in contrast with a rapid decline in cell-free HIV-1 
RNA [98, 99].

Similar to DCs, oral keratinocytes have been shown to 
support transmission of virus to susceptible cells without 
supporting replication [100, 101]. However there is no 
evidence that these cells serve as HIV-1 reservoirs, and 
there are no published data on the half-life of epithelial 
cells in vivo in this context.

Kong et al. have reported detection of integrated HIV-1 
DNA and release of infectious virus in liver epithelium 
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following in  vitro infection of hepatocyte cell lines and 
primary hepatocytes [102]. In addition, hepatic stellate 
cells have also been shown to release infectious virus fol-
lowing infection in vitro [103]. However, the translation 
of this research to studies of in vivo reservoirs has been 
more challenging, and data are lacking.

Miscellaneous
There have been isolated reports of other cells that can 
possibly be infected with HIV-1. Fibrocytes, defined as 
CD34+CD45+ collagen I+, have recently been reported 
to have characteristics of cells that can be persistently 
infected [104]. In vitro, infected fibrocytes resisted HIV-1 
induced cell death and stably expressed low levels of 
HIV-1 mRNA for >60  days. However, there are no data 
on whether fibrocytes are HIV-1 infected in vivo [104].

Other cell types that could be explored as HIV-1 reser-
voirs in individuals on ART include astrocytes in the CNS 
and CD56+/CD3− NK cells [105–107]. Hematopoietic 
progenitor cells (HPCs) that were initially reported to 
harbor infectious virus are now not considered to fulfill 
the criteria to be a reservoir following development of 
enhanced techniques to purify HSCs from bone marrow 
[108, 109].

Challenges in studying non‑T cell reservoirs
In ART-suppressed individuals the number of latently 
infected T cell varies from 1 to 10 infectious units per 
million (IUPM) [110]. Estimation of these numbers in 
ART-suppressed individuals requires isolation of mil-
lions of cells from large volume blood draws [111]. Simi-
lar studies on cells from HIV-1 infected people that have 
low or absent numbers in circulation, or that are princi-
pally found in tissues, have been technically challenging 
or unethical [25, 51].

Technical challenges
The gold standard for quantifying the amount of replica-
tion competent HIV-1 in a purified population of cells 
during ART has been the quantitative viral outgrowth 
assay (QVOA), which was initially developed to measure 
the amount of latent HIV-1 infection in resting memory 
CD4+ T cells [23, 112]. The potency of the QVOA is 
that it hinges on the recovery of infectious, replication 
competent HIV-1 that propagates exponentially, plau-
sibly explaining the virological rebound seen in patients 
who discontinue ART. The QVOA is a highly consistent 
assay, but nonetheless poses a number of technical chal-
lenges, including that it is expensive, time-consuming, 
requires large amounts of starting materials, has a limited 
dynamic range, and underestimates the size of the latent 
reservoir [111–113]. Several groups have employed PCR-
based approaches as alternative tools [23]. PCR-based 

assays sensitively detect viral nucleic acid over a large 
dynamic range, and can differentiate between total, inte-
grated, and LTR HIV-1 DNA [114, 115]. Although easier, 
PCR-based approaches do not differentiate between rep-
lication competent and defective viruses, of which the 
latter constitute the majority of viral forms, and do not 
correlate well with the number of cells with replication 
competent virus [13]. PCR-based approaches typically 
yield infected cell frequencies that are 100–1000 times 
higher than what is resulted from the QVOA [23]. More 
recently, an approach called the TILDA (Tat/rev Induced 
Limiting Dilution Assay) that measures multiply spliced 
HIV-1 RNA was developed as an alternative [116]. This 
assay has a quick turnaround time and requires fewer 
than a million cells of starting material. However, the 
TILDA does not measure virus production and does not 
address whether measured RNAs derive from replication 
competent viruses [116, 117]. Moreover, the TILDA cor-
relates poorly with the QVOA when performed on the 
same samples [116].

Therefore, as of now the most accurate measurement 
of the replication competent viral reservoir requires the 
QVOA, limiting the quantification of HIV-1 reservoirs 
in tissues that are poorly accessible. However, an over-
looked challenge of using the QVOA is that it has been 
specifically “tuned” to CD4+ T cells, and may not be sen-
sitive for detecting infection in cells that bear different 
HIV-1 replication dynamics than CD4+ T cells. Recent 
advances in adapting the QVOA to macrophages are 
steps in the right direction for quantifying these HIV-1 
reservoirs [58].

Biologic solutions
To address the challenges posed in isolating a large num-
ber of these cells to study latency, the field has resorted 
to the use of alternate models that complement each 
other—in vitro, animal, and mathematical models [22, 
58, 118, 119]. Although more feasible, these approaches 
have their drawbacks. In vitro models are used frequently 
because of their convenience, but do not fully mimic 
in vivo infections. [64, 120]. Similarly, heterogeneous cell 
phenotypes can be observed in in vitro models, such as 
in monocyte-derived macrophages (MDMs) subpopu-
lations [121–123]. Fundamentally, HIV-1 susceptibil-
ity and longevity in vitro may be quite different than in 
the immunological context of natural infection. Hence, 
in vitro modeling can only be used to complement find-
ings in vivo.

Non-human primates (NHP) and humanized mice 
models have been invaluable for understanding HIV-1 
pathogenesis [24, 27, 58]. NHP are typically infected 
either with simian immunodeficiency virus (SIV) or 
SIV/HIV-1 chimeric viruses (SHIV) [27, 124]. However, 
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SIV and HIV-1 have notable distinctions, sharing only 
approximately 53% sequence homology and differing in 
the organization of their overlapping ORFs [124]. For 
instance, sooty mangabey SIV (SIVsmm) and macaque 
SIV (SIVmac) lack the HIV-1 accessory gene vpu. 
Instead, they encode for vpx, which may be a critical dif-
ference: vpx degrades SAM and HD domain containing 
deoxynucleoside triphosphate triphosphohydrolase 1 
(SAMHD1), a key retroviral restriction factor in mac-
rophages and DCs [125, 126]. Nevertheless, SIV infection 
of NHP remains a key experimental tool, especially for 
in vivo and ex vivo studies of tissues that are inaccessible 
in humans, such as the brain.

Recent advances in humanized mouse technology 
have facilitated their infection with HIV-1 [127–129]. A 
recent humanized model referred to as myeloid-only-
mice (MoM), developed from NOD/SCID mice, has been 
very useful to study infection and persistence in non-T 
cells [24, 130]. These mice lack T cells, and are devel-
oped by adoptive transfer of human CD34+ stem cells, 
enabling reconstitution of the mouse with human mono-
cytes, macrophages, B cells, and dendritic cells [24, 130]. 
However, a major hurdle impeding more widespread use 
of humanized mice is that each experiment requires the 
surgical engraftment of human tissue, since this aspect 
cannot be bred [124]. A promising and creative use of 
humanized mice is in the development of a murine viral 
outgrowth assay where HIV-1 latency is estimated by 
adoptive transfer of human cells into humanized mice 
[131].

Conclusion
Whereas promising improvements to antiretroviral 
therapy have improved the quality of life of PLWH, they 
have not bridged the gap toward an HIV-1 cure [132]. 
Although it has been debated whether resources for 
HIV-1 research should be focused on a cure when there 
are other challenges facing PLWH, we argue that latent 
reservoirs harbor the potential for high-level virologic 
rebound in each of the 37 million HIV-1 infected peo-
ple worldwide, which bears both individual and public 
harm. Indeed, we further argue that without exploring 
the true extent of HIV-1 reservoirs with the same rigor as 
has been used to study peripheral resting memory CD4+ 
T cells, we risk developing incomplete cure strategies 
[18, 110]. The current “shock and kill” strategy hinges 
on the drugs known as latency reversing agents (LRAs) 
that induce viral production in latently-infected cells [13, 
133–135]. Presently, however, latency reversal has been 
developed to be specific for CD4+ T cell biology, and 
does not account for the possibility of persistent reser-
voirs in cells other than T cells [136, 137], reflecting lacu-
nae in our understanding of non-T cell reservoirs [28]. 

Therefore, a dedicated strategy to eliminate HIV-1 reser-
voirs requires a better understanding of the role of non-T 
cell reservoirs using in vivo and ex vivo experimentation.
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