
Citation: Alam, M.R.; Abdul-Ghafar,

J.; Yim, K.; Thakur, N.; Lee, S.H.; Jang,

H.-J.; Jung, C.K.; Chong, Y. Recent

Applications of Artificial Intelligence

from Histopathologic Image-Based

Prediction of Microsatellite Instability

in Solid Cancers: A Systematic

Review. Cancers 2022, 14, 2590.

https://doi.org/10.3390/

cancers14112590

Academic Editor: Damiano Caruso

Received: 18 April 2022

Accepted: 22 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Systematic Review

Recent Applications of Artificial Intelligence from
Histopathologic Image-Based Prediction of Microsatellite
Instability in Solid Cancers: A Systematic Review
Mohammad Rizwan Alam 1, Jamshid Abdul-Ghafar 1 , Kwangil Yim 1 , Nishant Thakur 1 , Sung Hak Lee 1 ,
Hyun-Jong Jang 2 , Chan Kwon Jung 1 and Yosep Chong 1,*

1 Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
rizwan@catholic.ac.kr (M.R.A.); jamshid@catholic.ac.kr (J.A.-G.); kangse_manse@catholic.ac.kr (K.Y.);
nishantbiotech2014@gmail.com (N.T.); hakjjang@catholic.ac.kr (S.H.L.); ckjung@catholic.ac.kr (C.K.J.)

2 Catholic Big Data Integration Center, Department of Physiology, College of Medicine, The Catholic University
of Korea, Seoul 06591, Korea; hjjang@catholic.ac.kr

* Correspondence: ychong@catholic.ac.kr; Tel.: +82-2-2258-1620; Fax: +82-2-783-6648

Simple Summary: Although the evaluation of microsatellite instability (MSI) is important for im-
munotherapy, it is not feasible to test MSI in all cancers due to the additional cost and time. Recently,
artificial intelligence (AI)-based MSI prediction models from whole slide images (WSIs) are being
developed and have shown promising results. However, these models are still at their elementary
level, with limited data for validation. This study aimed to assess the current status of AI applications
to WSI-based MSI prediction and to suggest a better study design. The performance of the MSI
prediction models were promising, but a small dataset, lack of external validation, and lack of a mul-
tiethnic population dataset were the major limitations. Through a combination with high-sensitivity
tests such as polymerase chain reaction and immunohistochemical stains, AI-based MSI prediction
models with a high performance and appropriate large datasets will reduce the cost and time for MSI
testing and will be able to enhance the immunotherapy treatment process in the near future.

Abstract: Cancers with high microsatellite instability (MSI-H) have a better prognosis and respond
well to immunotherapy. However, MSI is not tested in all cancers because of the additional costs and
time of diagnosis. Therefore, artificial intelligence (AI)-based models have been recently developed
to evaluate MSI from whole slide images (WSIs). Here, we aimed to assess the current state of AI
application to predict MSI based on WSIs analysis in MSI-related cancers and suggest a better study
design for future studies. Studies were searched in online databases and screened by reference type,
and only the full texts of eligible studies were reviewed. The included 14 studies were published
between 2018 and 2021, and most of the publications were from developed countries. The commonly
used dataset is The Cancer Genome Atlas dataset. Colorectal cancer (CRC) was the most common
type of cancer studied, followed by endometrial, gastric, and ovarian cancers. The AI models have
shown the potential to predict MSI with the highest AUC of 0.93 in the case of CRC. The relatively
limited scale of datasets and lack of external validation were the limitations of most studies. Future
studies with larger datasets are required to implicate AI models in routine diagnostic practice for
MSI prediction.

Keywords: artificial intelligence; neoplasm; microsatellite instability; deep learning; systematic
review; whole slide images

1. Introduction

Colorectal cancers (CRCs) with high microsatellite instability (MSI-H) have a better
prognosis and respond very well to immunotherapy [1–3]. MSI-H cancers generally show
certain distinctive clinicopathological features, such as younger age, tumor location in

Cancers 2022, 14, 2590. https://doi.org/10.3390/cancers14112590 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14112590
https://doi.org/10.3390/cancers14112590
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-6575-8870
https://orcid.org/0000-0001-8767-9033
https://orcid.org/0000-0001-8761-0837
https://orcid.org/0000-0003-1020-5838
https://orcid.org/0000-0003-4535-1560
https://orcid.org/0000-0001-6843-3708
https://orcid.org/0000-0001-8615-3064
https://doi.org/10.3390/cancers14112590
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14112590?type=check_update&version=1


Cancers 2022, 14, 2590 2 of 18

the ascending colon, histologic features of mucinous or areas of signet ring cells, and
tumor-infiltrating lymphocytes [4,5]. Microsatellite instability (MSI) is induced by somatic
inactivation of mismatch repair genes, and it is approximately 15% in CRC, including
sporadic (12%) and germline mutations (Lynch syndrome, 3%) [6–9]. CRC carcinogenesis
also follows the chromosomal instability pathway, which is accompanied by the loss of
heterozygosity (LOH) and chromosomal rearrangement [10]. Circulating tumor DNA
(ctDNA) may be detected as LOH in DNA microsatellites, and it is also useful in detecting
molecular heterogeneity [11]. Moreover, MSI-H has been observed in many other solid
cancers, such as endometrial, gastric, breast, prostate, and pancreatic cancers [2,12,13].
The European Society for Medical Oncology (ESMO) also recommended the testing of
the BRCA1/2 gene mutation and MSI-H in patients with metastatic castration-resistant
prostate cancer, as it is related to the predictivity of therapeutic success [14,15].

Recently, immunotherapy has emerged as a promising approach for the treatment of
malignancy, with many tumor-infiltrating lymphocytes such as metastatic melanoma, lung
cancer, and other MSI-H cancers [3,16–18]. As melanoma has high immunogenicity and an
abundance of adjacent immune cells, immunotherapy has been shown to be effective [19,20].
Similarly to melanoma, MSI-H cancers show abundant infiltrating lymphocytes and can
also be a target for immunotherapy [21,22]. Because of this broad clinical importance,
testing for MSI or mismatch repair deficiency (dMMR) has been recommended for more
cancer types [23,24]. Moreover, the guidelines of many scientific societies recommend
testing the MSI/dMMR universally [25].

MSI is not tested unanimously in all cancers due to the additional cost and time
for molecular tests such as polymerase chain reaction (PCR) or immunohistochemistry
(IHC), and sometimes it may also require additional biopsy [26–30]. Moreover, the results
of MSI/dMMR are not fully reliable, as previous studies reported various sensitivity
ranges for IHC and PCR (85–100% and 67–100%, respectively) [31–33]. A recent review
article reported the discordance rate between IHC and PCR to be as high as 1–10% [10].
MSI/dMMR identification using only one method might lead to misinterpretation and
using both methods can raise the cost [34]. In addition, immunotherapy itself is also
costly and shows beneficial effects only in the MSI-H cancers; therefore, the accurate
identification of eligible patients is important [35]. Owing to these limitations, a more
robust and universally applicable method is required to predict the MSI with high accuracy
and low cost.

Recently, artificial intelligence (AI)-based models were developed to predict MSI from
hematoxylin and eosin (H&E) whole-slide images (WSIs), and have shown promising
results [29,30]. AI-based models are emerging in many medical fields, including radiology,
dermatology, ophthalmology, and pathology, with promising results [36–40]. In pathology,
deep learning- (DL) based models have also shown surprising results in cancer detection,
classification, and grading [29,41–44]. More recently, AI models are now being applied,
even to molecular subtyping and treatment response prediction that surpasses human
ability and can change the whole pathology practice in the future [44,45]. Pathologists have
tried to find out the characteristic morphological features of MSI-H cancers such as tumor-
infiltrating lymphocytes and mucinous morphology on H&E stained slides. However, it is
hard to quantify these features manually, and the interpretation can vary widely according
to the observers. To overcome these limitations, researchers started to develop AI models
that can predict MSI status using the WSIs from many cancers [29,46,47]. Currently, AI
technology for MSI prediction is at the basic level and the training data is still insufficient
for validation.

Therefore, we designed a systematic review to assess the current status of AI applica-
tion on the MSI prediction using WSIs analysis and to suggest a better study design for
future studies.
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2. Materials and Methods
2.1. Search Strategy

The protocol of this systematic review follows the standard guidelines for a system-
atic review of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement. A systematic search of online databases including EMBASE, MED-
LINE, and Cochrane was conducted. Articles published in English up to August 2021 were
included. The following queries were used in the search; “deep learning”, “microsatellite
instability”, “gene mutation”, “prognosis prediction”, ”solid cancers”, “whole slide im-
age”, “image analysis”, “artificial intelligence”, and “machine learning”. We also manually
searched the eligible studies, and the included studies were managed using EndNote (ver.
20.0.1, Bld. 15043, Thomson Reuters, New York, NY, USA). The protocol of this system-
atic review is registered with PROSPERO (282422).The Institutional Review Board of the
Catholic University of Korea approved the ethical clearance for this study (UC21ZISI0129).

2.2. Article Selection and Data Extraction and Analysis

The combined search results from online databases were retrieved and transferred
to the EndNote, and duplicates were removed. Original studies with full text on AI and
MSI prediction from WSIs in solid cancers were included. To identify eligible studies,
two independent reviewers (MRA and YC) first screened the studies by title and abstract.
Finally, the full text of each eligible study was reviewed. Any discrepancy between the
authors (MRA and YC) regarding study selection was resolved by consulting a third author
(JAG). Case studies, editorials, conference proceedings, letters to the editor, review articles,
poster presentations, and articles not written in English were excluded.

3. Results
3.1. Characteristics of Eligible Study

The detailed criteria for selecting and reviewing the articles are shown in Figure 1.
The initial search from online databases yielded 13,049 records and six articles identified
through a hand search. After removing duplicates, a total of 11,134 records remained.
Following that, 3646 records were removed owing to an irrelevant reference type, which
was reduced to 7488 records. Next, 6156 records were excluded by title, which was reduced
to 1332 records. After 1305 records were removed by abstract, 27 records were selected for
full-text review. In the process of full-text review, only 14 studies met the inclusion criteria
and were included in the systematic review.

3.2. Yearly and Country-Wise Trend of Publication

The yearly and country-wise trends of publications are illustrated in Figure 2. The
AI models for MSI prediction was first reported in 2018 and slightly increased so far. The
included 14 studies were published from China (n = 5), followed by Germany (n = 4), the
United States (n = 4), and South Korea (n = 1).

3.3. MSI Prediction Models by Cancer Types

The number of publications on MSI models according to cancer types is shown
in Figure 3. Most studies were from CRC (57.9%; n = 11), followed by endometrial
(21.0%; n = 4), gastric (15.9%; n = 3), and ovarian cancers (5.2%; n = 1).
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Figure 1. Flow diagram of the study selection process.

Figure 2. Publication trend of artificial intelligence-based microsatellite instability prediction models,
(A) yearly and (B) country-wise.
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Figure 3. Artificial intelligence-based MSI prediction models according to target organs.

3.4. Prediction of MSI Status in CRC

The key characteristics of the AI models included in the CRC are summarized in
Table 1. Most of the studies used the TCGA dataset for training and validation of their AI
models. The study by Echle et al. used data from a large-scale international collaboration
representing the European population for training, validation, and testing, which includes
6406 patients from Darmkrebs: Chancen der Verhütung durch Screening (DACHS), Quick
and Simple and Reliable (QUASAR), and Netherlands Cohort Study (NLCS) datasets
in addition to the TCGA dataset [30]. DACHS is a dataset of CRC patients with stage
I-IV from the German Cancer Research Center. QUASAR is a clinical trial data of CRC
patients, mainly with stage II tumors, from the United Kingdom. NLCS is a dataset from
the Netherlands that includes patients of any tumor stage. The study by Lee et al. used an
in-house dataset along with the TCGA dataset, and the study by Yamashita et al. used only
an in-house dataset for training, validation, and testing of their AI models [48,49]. A study
by Co et al. and Lee et al. used an Asian dataset for external validation, which is different
from the population dataset used for training and testing their models [48,49].

The comparison of the AUC of their tests is shown in Figure 4. The performance metric
AUC of AI models ranged 0.74–0.93. The highest AUC 0.93 was reported by Yamashita et al.
with a small data set, but a study by Echle et al. with a large international dataset also
showed good AUC 0.92. Kather et al. and Coa et al. trained and tested their models on
frozen section slides (FSS) and compared their model performance with the results of a
formalin-fixed paraffin-embedded (FFPE) slide dataset [29,50]. Their results showed that
AUC is slightly higher in the model trained and tested on FSS in comparison to that trained
and tested on FFPE.

A comparison of the sensitivity and specificity of the AI models of CRC is shown
in Figure 4. Echle et al.’s study with a large-scale international dataset showed a good
sensitivity of 95.0%, although its specificity was slightly low (67.0%) [30]. A study by
Coa et al. showed good sensitivity and a specificity of 91.0% and 77.0%, respectively [50].
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Figure 4. Comparison of the performance metric of microsatellite instability prediction models in
colorectal cancers. (A). Area under the ROC curve. (B). Sensitivity and specificity.

The type of AI models used for MSI prediction in each study is shown in the supple-
mentary Table S1. We also compared the AUCs of AI models that used the same dataset
and that is shown in Supplementary Figure S1A,B. Our data showed that the average
performance of ResNet18 model in CRC was better in FSS (AUC 0.85) compared to FFPE
(AUC 0.79). The next commonly used AI model for CRC was ShuffleNet, which was used
by three studies. However, due to heterogeneity in their data, we were able to compare only
two studies, which showed an average AUC of 0.83. The average AUCs of both ResNet18
and ShuffleNet classifiers were almost similar.
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Table 1. Characteristics of the artificial intelligence models used for microsatellite instability prediction in colorectal cancers.

Author Year Country AI Model

Training and
Validation Data
Set/WSIs/No. of

Patients (n)

Pixel Levels

Additional
Methodology
for Validating

MSI

Performance
Metrics

External
Validation

Dataset/WSIs/No. of
Patients (n)

External
Validation

Result
Ref.

Zhang 2018 USA Inception-V3- TCGA/NC/585 1000 × 1000 NC ACC: 98.3% NS NS [51]

Kather 2019 Germany ResNet18

TCGA-
FFPE/360/NC NC PCR AUC: 0.77 DACHS-FFPE,

n = 378 AUC: 0.84

[29]
TCGA-

FSS/387/NC NC PCR AUC: 0.84 DACHS-FFPE,
n = 378 AUC: 0.61

Echle 2020 Germany ShuffleNet
TCGA, DACHS,

QUASAR,
NLCS/6406/6406

512 × 512 PCR/IHC
AUC: 0.92

Specificity: 67.0%
Sensitivity: 95.0%

YCR-BCIP-RESECT,
n = 771 AUC: 0.95

[30]
YCR-BCIP-BIOPSY,

n = 1531 AUC: 0.78

Cao 2020 China ResNet18 TCGA-
FSS/429/429 224 × 224 NGS/PCR

AUC: 0.88
Specificity: 77.0%
Sensitivity: 91.0%

Asian-CRC-FFPE,
n = 785 AUC: 0.64 [50]

Ke 2020 China AlexNet TCGA/747/NC 224 × 224 NC MSI score: 0.90 NS NS [52]

Kather 2020 Germany ShuffleNet TCGA/NC/426, 512 × 512 PCR NC DACHS, n = 379 AUC: 0.89 [53]

Schmauch 2020 USA ResNet50 TCGA/NC/465 224 × 224 PCR AUC: 0.82 NS NS [54]

Zhu 2020 China ResNet18
TCGA-FFPE: 360 NC NC AUC: 0.81

NS NS [55]
TCGA-FSS: 385 NC NC AUC: 0.84

Yamashita 2021 USA MSINet In-house
sample/100/100 224 × 224 PCR AUC: 0.93 TCGA/484/479 AUC: 0.77 [49]

Krause 2021 Germany ShuffleNet TCGA-FFPE,
n = 398 512 × 512 PCR AUC: 0.74 NS NS [56]

Lee 2021 South Korea Inception-V3- TCGA and
SMH/1920/500 360 × 360 PCR/IHC AUC: 0.89 NC AUC: 0.97 [48]

Abbreviations: AI, artificial intelligence; DL, Deep learning; WSIs, whole slide images; TCGA, The Cancer Genome Atlas; DACHS, Darmkrebs: Chancen der Verhütung durch Screening;
QUASAR, Quick and Simple and Reliable; NLCS, Netherlands Cohort Study; YRC-BCIP-RESECT, Yorkshire Cancer Research Bowel Cancer Improvement Programme-Surgical Resection;
Yorkshire Cancer Research Bowel Cancer Improvement Programme-Endoscopic Biopsy Samples; Asian-CRC, Asian Colorectal Cancer Cohort; SMH, Seoul St. Mary’s Hospital; PCR,
polymerase chain reaction; IHC, immunohistochemistry; NGS, next-generation sequencing; ACC, accuracy; AUC, area under the curve; FFPE, formalin-fixed paraffin-embedded; FSS,
Frozen section slides; NC, not clear; NS, not specified.
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3.5. Prediction of MSI Status in Endometrial, Gastric, and Ovarian Cancers

The key characteristics of the AI model studies on endometrial, gastric, and ovarian
cancers are summarized in Table 2. In endometrial cancer, except for one study, all the
other studies used only the TCGA dataset for the training, testing, and validation of their
models. In addition to the TCGA dataset, Hong et al. used the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) dataset for training and testing [57]. This study also used
the New York Hospital dataset for external validation. The performance metric AUC of the
test ranged from 0.73–0.82. ResNet18 is also a commonly used AI model in endometrial
cancer and comparison of their AUCs is shown in Supplementary Figure S1C.

All the included studies in gastric cancer used only the TCGA dataset for training,
testing, and validation. The performance metric AUC of the test ranged from 0.76–0.81.
Kather et al. reported that their model trained on mainly Western population data per-
formed poorly in an external validation test with a dataset of the Japanese population [29].
ResNet18 is also a commonly used AI model in gastric cancer, and comparison of their
AUCs is shown in the Supplementary Figure S1D.

Ovarian cancer included only one study, and this study used the TCGA dataset for
training and testing for the AI model, with a performance metric of AUC 0.91 [58].

Table 2. Characteristics of the artificial intelligence models in endometrial, gastric, and
ovarian cancers.

Organ
/Cancers Author Year Country AI-Based

Model
Data

Set/WSIs/No. of
Patients (n)

Pixel
Level

Additional
Methodology
for Validating

MSI

Performance
Metrics

External
Validation

Dataset/WSIs/No.
of Patients (n)

External
Valida-

tion
Result

Ref.

Endometrial
cancer

Zhang 2018 USA Inception-V3 TCGA-UCEC and
CRC/1141/NC

1000 ×
1000 NC ACC: 84.2% NS NS [51]

Kather 2019 Germany ResNet18 TCGA-
FFPE/NC/492 NC PCR AUC: 0.75 NS NS [29]

Wang 2020 China ResNet18 TCGA/NC/516 512 × 512 NC AUC: 0.73 NS NS [59]

Hong 2021 USA InceptionResNetVI TCGA,
CPTAC/496/456 299 × 299 PCR/NGS AUC: 0.82 NYU-

H/137/41
AUC:
0.66 [57]

Gastric
cancer

Kather 2019 Germany ResNet18 TCGA-
FFPE/NC/315 NC PCR AUC: 0.81 KCCH-FFPE-

Japan/NC/185
AUC:
0.69 [29]

Zhu 2020 China ResNet18 TCGA-
FFPE/285/NC NC NC AUC: 0.80 NS NS [55]

Schmauch 2020 USA ResNet50 TCGA/323/NC 224 × 224 PCR AUC: 0.76 NS NS [54]

Ovarian
cancer Zeng 2021 China Random forest TCGA/NC/229 1000 ×

1000 NC AUC: 0.91 NS NS [58]

Abbreviations: AI, artificial intelligence; DL, Deep learning; WSIs, whole slide images; TCGA, The Cancer
Genome Atlas; CPTAC, Clinical Proteomic Tumor Analysis Consortium; CRC, Colorectal Cancer; UCEC, Uterine
Corpus Endometrial Carcinoma; NYU-H, New York University-Hospital; KCCH-Japan, Kanagawa Cancer Centre
Hospital-Japan; ACC, accuracy; AUC, area under the ROC curve; NC, not clear; NS, not specified.

4. Discussion

In this study, we found that AI models for MSI prediction have been increasing
recently, mainly focusing on CRC, endometrial, and gastric cancers, and the performance
of these models is quite promising, but there were some limitations. More qualified
data with external validation, including various ethnic groups, should be considered in
future studies.

4.1. Present Status of AI Models
4.1.1. Yearly, Country-Wise, and Organ-Wise Publication Trend

Yearly publication trends related to MSI prediction by AI are increasing, and most
publications were from developed countries. A recent publication also suggested a similar
trend on topics related to AI and oncology, which showed that the United States is the lead-
ing country, followed by South Korea, China, Italy, the UK, and Canada [60]. Publication
trends related to overall AI research in medicine also showed exponential growth since
1998, and most papers were published between 2008 and 2018 [61]. In another report, the
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number of publications in overall AI and machine learning in oncology remained stable
until 2014, but increased enormously from 2017 [60], which is consistent with our results.

Our data showed that the number of publications on MSI models is higher in CRC
compared to endometrial, gastric and ovarian cancers. It may be because the CRC is the
second most lethal cancer worldwide, and approximately 15% of CRC is caused by the
MSI [6–9,62,63]. MSI-high tumors are widely considered to have a large neoantigen burden,
making them especially responsive to immune checkpoint inhibitor therapy [64,65]. In
recent years, MSI has gained much attention because of its involvement in predicting the
response to immunotherapy for many types of tumors [66]. An example of the AI model
for CRC is shown in Figure 5.

Figure 5. Example of an artificial intelligence model for colorectal cancer. Figure 1. Overview of the
Ensemble Patch Likelihood Aggregation (EPLA) model. A whole slide image (WSI) of each patient
was obtained and annotated to highlight the regions of carcinoma (ROIs). Next, patches were tiled
from ROIs, and the MSI likelihood of each patch was predicted by ResNet-18, during which a heat
map was shown to visualize the patch-level prediction. Then, patch likelihood histogram (PALHI)
pipelines and bags of words (BoW) pipelines integrated the multiple patch-level MSI likelihoods into
a WSI-level MSI prediction, respectively. Finally, ensemble learning combined the results of the two
pipelines and made the final prediction of the MS status. Reprinted from Ref. [50].

AI models using WSI showed great potential for prediction of MSI in CRCs, which
can be used as a low-cost screening method for these patients. It also can be used as a
prescreening tool to select MSI-H probability for patients before testing with the current
costly available PCR/IHC methods. However, further validation of these models on a large
dataset is necessary to improve their performance to an acceptable level of clinical usage.
Most of the MSI models for CRC were developed on a dataset of surgical specimens. More
models from endoscopic biopsy samples using more datasets from various ethnic popula-
tions should be developed in the future, which can reduce the possibility of missing MSI-H
cases, particularly in advanced CRCs, where resection is not possible. Another limitation
of these AI modes is that they cannot distinguish between hereditary and sporadic MSI
cases. Therefore, to improve the performance of these models, training and validation with
a large dataset is required in future research studies.

As immunotherapy and MSI testing gets more and more importance in other solid
cancers such as gastric, endometrial, and ovarian cancers, we can see that the AI-based
MSI prediction models have also been applied in these cancers recently. They showed
promising results for a potential application, although the evidence is still insufficient. A
large dataset with external validation should follow in the future.

4.1.2. Performance of AI Models and Their Cost Effectiveness

The sensitivity and specificity of AI models were comparable to that of routinely used
methods such as PCR and IHC. The study by Echle et al. and Coa et al. showed 91.0–95.0%
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of sensitivity and 67.0–77.0% of specificity [30,50]. In the literature, IHC sensitivity ranges
from 85–100% and the specificity ranges from 85–92% [31,32]. MSI PCR showed 85–100%
sensitivity and 85–92% specificity [31]. According to a recent study assessing the cost-
effectiveness of these molecular tests and the AI models, the accuracy of MSI prediction
models was similar to that of commonly used PCR and IHC methods [67]. NGS technology
is useful for the testing of many gene mutations, such as for epithelial ovarian cancer
patients with BRCA mutation or for HR deficiency that might benefit from a therapeutic
option of platinum agents and PARP inhibitors, whereas immune checkpoint inhibitors are
effective in tumors with the MSI-H [68].

In this study, the authors predicted the net medical costs of six different clinical
scenarios using the combination of different MSI testing methods including PCR, IHC, NGS
and AI models and corresponding treatment in the United States. An overview of the cost
effectiveness comparison of their study is shown in Figure 6. They reported that AI models
with high PCR or IHC can save up to $400 million annually [67]. As the cancer burden is
increasing, a precise diagnosis of MSI is essential to identify appropriate candidates for
immunotherapy and to reduce the medical costs.

Figure 6. The cost effectiveness of MSI prediction models. Comparison of total testing and treatment-
related costs by clinical scenario. AI, artificial intelligence; IHC, immunohistochemistry; NGS,
next-generation sequencing; PCR, polymerase chain reaction. Reprinted from Ref. [67].

4.2. Limitation and Challenge of AI Models
4.2.1. Data, Image Quality and CNN Architecture

To obtain the best results from any convolutional neural network (CNN) model, a
large dataset from various ethnic groups is required for training, testing, and validation.
Most studies in this review had a relatively small number of TCGA datasets for appropriate
training and validation. Without a large-scale validation, the performance of these AI
models cannot be generalized, and it is not feasible for routine diagnosis. One study
could not perform further subgroup analysis due to limited clinical information of TCGA
datasets [49]. Another study raised the potential limitation that the TCGA datasets may
not represent the real situation [55]. Another group of researchers raised the potential
limitation of technical artifacts such as blurred images in TCGA datasets [30]. Although the
TCGA dataset includes patients from various institutes/hospitals, but all are the patients
are from similar ethnic group, which is primarily from the North America. A few studies
by Echle et al., Kather et al., Yamashita et al., and Lee et al. used European datasets (DACH)
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and local in-house datasets for training or external validation [29,30,48,49]. However, for
high generalizability, the datasets from various ethnic groups should be explored further.

On a side note, one study reported poor performance with 40× magnification com-
pared to 20× magnification which may be due to differences in the image color met-
rics [49]. Another study reported that the color normalization of images slightly improves
performance of the AI model [30]. Cao et al. recommended to use the images over
20× magnification for a better performance [50]. Interestingly, Krause et al. in 2021 pro-
posed a specialized method to train an AI model when only a limited number of datasets
was available (Figure 7). They synthesized the 10,000 histological images with and without
MSI using a generative adversarial network from 1457 CRC WSIs with MSI information [56].
They reported increased AUROC after adopting this method and an increase in the size of
the training dataset, and this synthetic image approach can be used to for generating large
datasets with rare molecular features.

Figure 7. Overview of the conditional generative adversarial network study design. A conditional
generative adversarial network (CGAN) for histology images with molecular labels. (A) Overview of
the generator network for generation of synthetic histology image patches with 512 × 512 × 3 pixels.
MSI, microsatellite instable; MSS, microsatellite stable; Conv’, transposed convolution 2D layer; BN,
batch normalization layer; ReLu, rectified linear unit layer. (B) Overview of the discriminator network
for classifying images as real or fake (synthetic). Conv, convolution 2D layer; ReLu*, leaky rectified
linear unit layer. (C) Progress of synthetic images from 2000 (2K) to 20,000 (20K) epochs. (D) Final
output of the generator network after 50,000 (50K) epochs. Reprinted from Ref. [56].
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The choice of CNN also affects the performance of the AI models; commonly used
networks such as ResNet18, ShuffleNet, and Inception-V3 have been used in most of the
studies. The ResNet model has many other variations as per the number of layers used,
such as ResNet18, ResNet34, ResNet50, and many others. The ResNet18 model has 72-layer
architecture with 18 deep layers, which may degrade the output result due to multiple deep
layers in the network [69]. However, if the output result is degraded it can be fixed through
back propagation. ShuffleNet has a simple design architecture, and it is also optimized for
mobile devices [53]. Therefore, it can show good performance with a high accuracy at a
low training time [53].

A study observed that lightweight neural network models performed on par with
more complex models [53]. Performance comparison including three to six of these models
is essential for enhancing the performance of the final model.

4.2.2. External Validation and Multi-Institutional Study

In CRC cases, six out of 11 studies included an external validation. The performance
metric AUC for external validation ranged from 0.61–0.97. In endometrial and gastric
cancer cases, only one study for each group performed external validation. AI models
that are trained and tested on a single dataset may overfit and perform well on internal
datasets. However, these models show low performance when tested for external datasets.
Therefore, external validation on different datasets is always necessary in order to have a
well-trained AI model.

Studies also suggested that a large sample size, multiple institutions data, and patients
with different populations are needed to determine the generalization performance of
their AI models. An overview of the multicentric study deign is shown in Figure 8.
AI models trained mainly on data from Western populations performed poorly when
validated on Asian populations [29]. Another study suggested that transfer learning for
model fine-tuning in different ethnic populations may improve the generalizability of their
AI models [50]. Previous researchers argued that datasets from multi-institutional and
multinational models enhanced the generalizability of DL models [70,71].

4.2.3. MSI Prediction on Biopsy Samples

Most studies only use WSIs of surgical specimens for the development of their AI
models. However, MSI prediction on small colonoscopic biopsy samples is more practi-
cally useful in the clinical setting if it is feasible. A recent study observed relatively low
performance on biopsy samples with their surgical specimen trained AI model [30]. Thus,
further research on small biopsy samples is required to increase the performance.

4.2.4. Establishment of Central Facility

AI technology in medical applications is still growing recent study showed increasing
trend of patent related to AI and pathological images [72]. The lack of installed slide
scanners in hospitals can hinder the implementation of DL models. The WSIs are large
files which cannot be stored in a routine hospital setting. The whole slide scanners and the
viewing and archiving system along with an appropriate server is expensive equipment
that cannot be easily established. The establishment of central slide scanner facilities with a
server with a larger data storage capacity can overcome this challenge [45,73].

4.3. Future Direction

Originally, AI applications in the pathology field focused on mimicking or replacing
human pathologists’ tasks, such as segmentation, classification, and grading. The main goal
of these studies was to reduce intra- or inter-observer variability in pathologic interpretation
to support or augment human ability.
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Figure 8. Overview of the multicentric study design. Deep learning workflow and learning curves.
(A) Histologic routine images were collected from four large patient cohorts. All slides were manually
quality checked to ensure the presence of tumor tissue (outlined in black). (B) Tumor regions were
automatically tessellated, and a library of millions of nonnormalized (native) image tiles was created.
(C) The deep learning system was trained on increasing numbers of patients and evaluated on a
random subset (n = 906 patients). Performance initially increased by adding more patients to the
training set but reached a plateau at approximately 5000 patients. (D) Cross validated experiment
on the full international cohort (comprising TCGA, DACHS, QUASAR, and NLCS. The receiver
operating characteristic (ROC) with true positive rate is shown against the false positive rate with the
AUROC shown on top. (E) ROC curve (left) and precision-recall curve (right) of the same classifier
applied to a large external data set. High test performance was maintained in this data set, and
thus, the classifier generalized well beyond the training cohorts. The black line indicates average
performance, the shaded area indicates bootstrapped confidence interval, and the red line indicates
random model (no skill). FPR, false positive rate; TPR, true positive rate. Reprinted from Ref. [30].

AI models trained with small datasets may overfit the target sample and may adversely
affect the performance. For the accuracy of AI models, factors such as class imbalance
and selection bias of the dataset must be considered during the development of the mod-
els. Since labels of the datasets are important for the training of AI models, biased and
low-quality labeled datasets will decrease the performance of AI models. Therefore, collab-
orative research work between pathologists and AI researchers is needed. Furthermore,
most of the studies used the TCGA dataset, which is a collection of representative cases,
and may not efficiently represent the general population. Therefore, their performance
cannot be generalized to the population as it may not contain many rare morphologic
types of samples that exist in the general population. For the future, we suggest collecting
a larger dataset of various ethnic populations, reviewed by experienced pathologists to
minimize the selection bias and enhance the generalizability of AI models. Furthermore,
external validation should be performed with the representative data of various ethnic
populations. Randomized controlled trials are a useful tool to assess the risk and benefit in
medical research studies. There is a need for randomized clinical studies or prospective
clinical trials for AI models before using these models for routine clinical practice. Most of
the AI models were developed using surgical sample datasets. Despite immunotherapy
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being the best treatment choice for CRC patients with stage IV tumors, the endoscopic
biopsy sample is the only available tissue from these patients due to the inability of surgical
resection. Future studies are needed to accurately estimate MSI based on biopsy samples,
which will aid in the selection of immunotherapy for patients with advanced CRC cancer.
Currently available AI models can not specifically differentiate between Lynch syndrome
and MSI-H in sporadic cancer patients. The Development of an AI model for detecting
Lynch syndrome may help in selecting better therapeutic options for these patients. It
is difficult to understand how the AI models arrive at a conclusion. This is because AI
algorithms process data in a “black box”. Therefore, the AI models should be validated
against the currently available quality standards to ensure their efficiency.

However, scientists are increasingly focusing on the “superpower” from AI models
that can surpass human abilities, such as mutation, prognosis, and treatment response
predictions in cancer patients. Our research group has already developed an AI model for
MSI prediction in CRC, and the results is quite promising [48]. These findings motivated
us to initiate a multi-institutional research project for the MSI prediction from CRC WSIs.
Our first aim is to collect a large image dataset of CRC patients and verify the quality of the
image by experienced pathologists. Second, we will develop an AI model using this large
image dataset and test the generalized performance of AI models so that it may be feasible
to use it in routine practice. At present, we are in the process of scanning the H&E slides of
CRC patients in collaboration with 14 hospitals/institutions around the country.

5. Conclusions

This study showed that in the future, AI models can be an alternative and effective
method for the prediction of MSI-H from WSIs. Overall, AI models showed promising
results and have the potential to predict MSI-H in a cost-effective manner. However, the
lack of a large dataset, multiethnic population sample, and lack of external validation were
major limitations of the previous studies. Currently, the AI models are not approved for
clinical use to replace routine molecular tests. As the cancer burden is increasing, there
is need for the precise diagnostic method for predicting MSI-H and identify appropriate
candidates for immunotherapy and to reduce the medical costs. AI models also can be
used as a prescreening tool to select MSI-H probability for patients before testing with
the current costly available PCR/IHC methods. Future studies are needed to accurately
estimate MSI based on biopsy samples, which will aid in the selection of immunotherapy
for patients advance stages of CRC. Moreover, currently available AI models can not
specifically differentiate between Lynch syndrome and MSI-H in sporadic cancer patients.
The development of an AI model for detecting Lynch syndrome may help in selecting
better therapeutic options for these patients. As a result, to ensure efficiency, AI models
should be tested against currently existing quality standards before being used in clinical
practice. Well-designed AI models in the future can improve their performance without
compromising diagnostic accuracy. Training and validation with a larger dataset and
external validation on new datasets may improve the performance of AI models to an
acceptable level.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14112590/s1, Figure S1: Comparison of AUCs of AI
models. (A) Comparison of ResNet18 in colorectal cancer. (B) comparison of ShuffleNet in colorectal
cancer. (C) Comparison of ResNet18 in endometrial cancer. (D) Comparison of ResNet18 in gastric
cancer; Table S1: Artificial intelligence models used for microsatellite.
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