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Objectives: It is necessary to develop a high-performance and biocompatible contrast agent
to accurately diagnose various diseases via in vivo computed tomography (CT) imaging. Here,
we synthesized a small molecular Bi-DOTA complex as a high-performance contrast agent for
in vitro and in vivo CT bioimaging.

Materials and Methods: In our study, Bi-DOTA was fabricated through a facile and one-
pot synthesis strategy. The formed Bi-DOTA complex was characterized via different
techniques. Furthermore, Bi-DOTA was used for in vitro and in vivo CT bioimaging to verify
its X-ray attenuation ability, especially in vivo kidney imaging, gastrointestinal tract CT imaging,
and spectral CT imaging.

Results: A small molecular Bi-DOTA complex with a molecular mass of 0.61 kDa was
synthesized successfully, which exhibited outstanding dispersion, good biocompatibility, and
superior X-ray attenuation ability. Meanwhile, we showed that the obtained contrast agent
was quite biocompatible and safe in the given concentration range as confirmed by in vitro
and in vivo cytotoxicity assay. Also, the proposed contrast agent can be rapidly excreted from
the body via the urinary system, avoiding the potential side effects caused by long-term
retention in vivo. Importantly, Bi-DOTA was successfully used in high-quality in vitro CT
imaging, in vivo kidney imaging, gastrointestinal tract CT imaging, and spectral CT imaging.

Conclusions: These superiorities allowed Bi-DOTA to be used as an efficient CT contrast
agent and laid down a new way of designing high-performance CT contrast agents with
great clinical transformation potential.

Keywords: Bi-DOTA complex, CT imaging, spectral CT imaging, small molecular, CT contrast agent
INTRODUCTION

Computed tomography (CT) is one of the most widely used imaging techniques in diagnostic medicine
due to its high resolution, unlimited tissue penetration, and cost effectiveness (1–5). The emerging
spectral CT is the newest technique in a series of CT imaging advances, which has been used in many
studies and clinical imaging. However, the use of a large amount of contrast agents is often required for
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accurate diagnosis of various diseases because noncontrast CT has
lower sensitivity and soft tissue contrast (6).

Currently, contrast agents can be divided into two major
categories: small molecular agents (iodinated molecules and
lanthanide-chelates) and nanostructures containing high-Z
elements (7), in which iodinated compounds are widely used
as CT contrast agents. Nevertheless, clinically used iodinated
small molecular agents (e.g., iohexol, ioversol, and iopamidol)
suffer from low sensitivity, poor spectral CT, potential allergy,
and renal toxicity (6, 8, 9). In addition, they are rapidly cleared
via kidney, resulting in short circulation lifetime that limits their
applications for CT angiography and CT perfusion imaging.
Recently, it has been reported that the iodinated contrast agent is
incorporated into polymers or polymer nanoparticles to extend
the blood circulation time of the contrast agent, thereby realizing
effective blood pool imaging (10–13). However, it is another
obvious disadvantage that iodine has relatively low K-edge of
(33 keV), which has a higher potential for damaging tissues (14).
Furthermore, many studies indicated that lanthanide-chelates
(such as Gd-DTPA and Nd-DTPA) not only enable enhanced
magnetic resonance imaging (MRI) but also can serve as CT
contrast agents (15–22). Nevertheless, considering the larger
dosage, the toxicity, and the high cost of lanthanide element,
their applications are seriously limited in CT imaging. In the past
decades, nanoparticulate CT contrast agents that comprise high-
Z elements [e.g., gold (23, 24), argentine (25, 26), bismuth (27,
28), hafnia (29, 30), ytterbium (31, 32), tantalum (33, 34),
holmium (35), and rhenium (36)] have been proven to own a
great potential for CT imaging. Despite good imaging effects and
acceptable safety profiles, these nanoparticulate CT contrast
agents still have some disadvantages, including intrinsic long-
term retention, difficulty in biodegradation in vivo, slow
excretion from the body and the accompanying side effects, the
high cost, and complex synthesis techniques (16, 17, 37, 38)
compared with conventional iodine-based contrast agents.
Therefore, it is critical but challenging to find a high-
performance, biocompatible, low-cost, and safe contrast agent
for enhanced CT and spectral CT imaging, as it may assist
accurate diagnosis of various diseases and guide clinical
treatment strategies.

Bismuth (Bi), the 83rd element in the periodic table, is
considered a biosafety element and one of the least expensive
heavy metal elements, which shows a much more sensitive CT
imaging capability because of the higher X-ray attenuation
coefficient than iodine (16, 17, 38, 39) (5.74 vs. 1.94 cm2 g−1,
100 keV). Therefore, Bi is a promising element for developing
high-performance CT contrast agents. Currently, it is reported
that some Bi-based materials, e.g., Bi (27, 40), Bi2S3 (41, 42),
Bi2Se3 (37, 43), Bi-diethylene triamine pentaacetate acid (7), and
Gd-PEG-Bi NPs (40) have been constructed as new CT contrast
agents (43, 44). However, there is still a paucity of Bi-based
contrast agents receiving significant attention for clinical
application. Therefore, there is currently a great need for
developing Bi-based CT contrast agents with great clinical
translation potential.
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At pre sen t , che l a t e l i gands , such as 1 ,4 , 7 , 10 -
tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and its
derivatives, have been explored to fabricate metal-ligand
complexes for biological applications, e.g., Gd-DOTA (45), Gd-
5 -HT -DOTAGA (46 ) , a nd Gd -DO3A (1 , 4 , 7 , 1 0 -
tetraazacyclododecane-1,4,7,-triacetic acid) (47). Here, the aim
of our study was to combine Bi with the derivative of DOTA for
fabricating a high-performance CT and spectral CT bioimaging
contrast agent.
EXPERIMENTAL SECTION

Chemicals and Materials
All chemical reagents were obtained from the commercial supply
and used without further purification. Bi(NO3)3·5H2O, NaOH,
and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
(DOTA) were purchased from Shanghai Macklin Biochemical
Co., Ltd. (Shanghai, China). Roswell Park Memorial Institute-
1640 (RPMI-1640) medium, Dulbecco’s minimum essential
medium (DMEM), high sugar medium, and fetal bovine serum
(FBS) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Penicillin-streptomycin solution, trypsin digestion fluid, and PBS
buffer (pH 7.2–7.4) were purchased from Beyotime (Haimen,
China). The Fourier transform infrared (FT-IR) spectra of Bi-
DOTA were carried out on an IRAffinity-1S spectrometer
(Shimadzu, Japan). The Bi content in the isolated organ was
measured using inductively coupled plasma optical emission
spectrometry (ICP-OES, Agilent, Santa Clara, CA, USA). Test
conditions were as follows: emission power 1.0 kW, plasma gas
flow 15 L/min, auxiliary gas flow 1.5 L/min, argon carrier,
detection mode for axial observation, and linear calibration.
Matrix-assisted laser desorption ionization (MALDI) time of
flight (TOF)-mass spectrometer (MALDI-TOF-MS) of Bi-
DOTA (without the treatment of NaOH) was obtained on
ultraflextreme MALDI-TOF (Bruker, Ettlingen, Germany). 1H
NMR spectra and 13C NMR spectra were measured on a Bruker
Biospin AV400 (400 MHz) instrument. Chemical shifts are
reported in parts per million (ppm) and are referenced
to tetramethylsilane.

Synthesis of Bi-DOTA Complex
For synthesis of the Bi-DOTA complex, Bi(NO3)3·5H2O
(395 mg, 1 mmol) was slowly added to a solution of DOTA
(404 mg, 1 mmol) in deionized water (20 ml) and stirred until
forming a transparent solution (Scheme 1). The solution was
then stirred for 24 h at 85°C; the obtained Bi-DOTA solution was
treated with 0.4 M NaOH to adjust the pH value to 7.2, and the
product of Bi-DOTA was freeze dried to give a bright purple
solid Bi-DOTA. The NMR spectra of Bi-DOTA are given as
follows: 1H NMR (400 MHz, D2O) d 4.17 (s, 4H), 3.85 (s, 4H),
3.34 (s, 12H), 3.17 (s, 4H). 13C NMR (101 MHz, D2O) d 178.35,
58.41, 54.48, 49.91. MALDI-TOF-MS Calcd for: C16H25BiN4O8

+

([M+H]+): 610.15. Found: 615.10. IR (KBr, n): 3,456, 3,398,
2,978, 2,877, 1,658, 1,384, 1,083, 925, 833, and 709 cm−1.
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The Colloidal Stability of Bi-DOTA
To evaluate the colloidal stability of Bi-DOTA, Bi-DOTA was
dissolved in various media including PBS, FBS, and DMEM for
14 days at 37°C.

Cell Culture and Cytotoxicity Assessment
LO2 cells, MCF-10A cells, human intrahepatic biliary epithelial
cells (HIBEC), and human umbilical vein endothelial cells
(HUVEC) were obtained from ATCC (Gaithersburg, MD,
USA). These cells were cultured in DMEM solution
respectively in a cell incubator at 37°C and 5% CO2 condition.
The cell cytotoxicity in vitro was measured by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. Four cells were seeded into a 96-well cell culture plate at
5,000/well and then incubated for 24 h at 37°C and 5% CO2,
respectively. DMEM solutions of Bi-DOTA with different sizes
(concentrations: 0, 25, 50, 100, 200, 400, and 600 mg/L) were
added to the wells. All cells were then incubated for 24 h at 37°C
and 5% CO2, and the cell viability was calculated using a typical
MTT assay.
Toxicity Assessment In Vivo
To investigate the in vivo toxicity of Bi-DOTA, the mice (n = 12)
were sacrificed at different time points postinjection (7 and
14 days, respectively). For comparison, the mice (n = 3)
injected with glucose solution were used as controls and
sacrificed at 14 days. The major organs (heart, spleen, liver,
lung, kidney stomach, intestine, and colon) were carefully
harvested, weighed, and fixed with 4% formalin solution.
Finally, pathological section and hematoxylin and eosin (H&E)
staining analysis were carried out to assess the in vivo toxicity of
Bi-DOTA. In addition, the body weight changes of the mice have
been measured every 2 days.

Some biochemical indicators of these mice including the liver
function indicators are total protein (TP), albumin (ALB),
aspartate alanine aminotransferase (ALT), and total bile acid
(TBA), and typical biomarkers of kidney function are serum
creatinine (CREA) and urea nitrogen (BUN) at different time
points (7 and 14 days, n = 3 for each group) after the injection of
different concentrations of Bi-DOTA (0.1 and 0.2 mol/L)
were measured.

Spectral CT Imaging In Vitro
To compare the X-ray absorbance ability and spectral CT
performance of Bi-DOTA with iohexol, 2 ml of various
concentrations (0, 0.0125, 0.025, 0.05, and 0.1 mol/L) of Bi-
DOTA and iohexol (Yangzijiang Pharmaceutical Group,
Nanjing, China) were added into a tube to achieve the in vitro
CT phantom imaging, which were performed on the spectral CT
(IQON Spectral CT, Philips, Amsterdam, Netherlands). The
parameters were set as follows: field of view 150 × 150 mm,
slice thickness 0.4 mm, tube current 100 mA, and tube voltage
120 kV. Furthermore, monochromatic images and spectral CT
value curves were acquired at the photon energy range of 40–
200 keV with a 5-keV increment using Bi-DOTA and iohexol.
Frontiers in Oncology | www.frontiersin.org 3
Spectral CT Imaging In Vivo
The 6-week-old BABL/C male mice (average body weight: 17 g)
were purchased from Dashuo Animal Technology Limited,
Jianyang, China. All mice were housed at 20°C–25°C and
50% ± 5% humidity with a 12-h light-dark cycle and an access
to food and water. All procedures and animal experiments were
approved by the Animal Ethnical Committee of Southwest
Medical University and conducted in accordance with state
regulations. Furthermore, all CT scanning were performed on
spectral CT (IQON Spectral CT, Philips, Netherlands) in
our study.

After a week, the mice were anaesthetized using a small
animal ventilator with isoflurane (1.5%–2.5%, 0.8 ml/min
oxygen flow rate) and then scanned before and after the
injection of 200 ml Bi-DOTA (0.1 and 0.2 mol/L, respectively)
via the tail vein at different time points (0, 1 min, 5 min, 30 min,
1 h, 1.5 h, 3 h, 6 h, and 12 h). The parameters were set as follows:
field of view 150 × 150 mm, slice thickness 0.4 mm, tube current
100 mA, and tube voltage 120 kV. Subsequently, virtual
monochromatic images of these mice were obtained at the
photon energy range of 40–200 keV with a 10-keV increment.
The 3D reconstruction was carried out on a Philips Intellispace
Portal Workstation. For comparison, the intravenous spectral
imaging of mice was also carried out using iohexol at an
equivalent dose and monochromatic energy.

Moreover, to further confirm the excellent CT imaging ability
of Bi-DOTA, the gastrointestinal tract (GI tract) CT imaging of
mice was performed after the oral administration of Bi-DOTA
(200 ml, 0.1 mol/L, and 0.2 mol/L, respectively) at different time
points (0, 1 min, 5 min, 30 min, 1 h, 1.5 h, 3 h, 6 h, and 12 h). The
scanning parameters were set as follows: field of view
150 × 150 mm, slice thickness 0.4 mm, tube current 100 mA,
and tube voltage 120 kV. Similarly, virtual monochromatic
images of these mice were also acquired at the photon energy
range of 40–200 keV with a 10-keV increment, and the 3D
reconstruction was also performed. As control, the GI tract
imaging of mice was further carried out using iohexol at an
equivalent dose and monochromatic energy.
RESULTS

Synthesis and Characterization
of Bi-DOTA
The Bi-DOTA was synthesized through a chelation of the Bi3+

and DOTA, as presented in Scheme 1. The DOTA and Bi-DOTA
were analyzed by FTIR. As demonstrated in Figure S1, for pure
DOTA, the peak at 1,678 cm-1 is ascribed to the stretching
vibration of C=O (–COOH). While in Bi-DOTA, the stretching
and deformation vibration band of 1,678 cm−1 disappeared and a
new vibration peak at 1,600 cm−1 was observed, validating the
coordination of COO− with Bi3+. To further reveal the formation
of Bi-DOTA, we have performed 1H NMR and 13C NMR
spectroscopic analyses. As shown in Figures S2 and S3, 1H
NMR and 13C NMR result further validates the formation of Bi-
February 2022 | Volume 12 | Article 813955
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DOTA. In addition, we have compared the 1H NMR (400 MHz,
D2O) spectra of DOTA and Bi-DOTA in Figure S4. These
results show significant changes when the –COOH of DOTA is
coordinated with Bi(III) compared with DOTA. The peaks
around 4.17, 3.85, 3.34, and 3.17 ppm for Bi-DOTA can be
attributed to the coordination of the lanthanide center, while the
peaks for DOTA are at 3.63 and 3.16 ppm (Figure S4). The
content of Bi element in Bi-DOTA was quantified by ICP-OES to
be 31.66%, and the peak at m/z 610.10 in MALDI-TOF-MS of
the synthesized chelate (without NaOH) was assigned to Bi-
DOTA structure ([M+H]: calculated for 610.15), further
demonstrating the formation of Bi-DOTA chelate (Figure S5).
Furthermore, stability test showed that Bi-DOTA possessed
excellent solubility and stability in different media, such as
Frontiers in Oncology | www.frontiersin.org 4
PBS, FBS, and DMEM (Figure S6). Their excellent colloidal
stability was further demonstrated by the absence of precipitates
or aggregates in their aqueous solutions during 14 days
of storage.

Cell Culture and Cytotoxicity Assessment
After incubation of LO2 cells, MCF-10A cells, HIBEC, and
HUVEC with Bi-DOTA at concentrations of 0, 25, 50, 100,
200, 400, and 600 mg/L for 24 h, MTT assay was used to evaluate
the cell viability. The results in Figure S7 demonstrated that Bi-
DOTA had good biocompatibility, and no serious cytotoxicity
toward the above four cells was observed in the range of 0–
600 mg/L, in which the cell viability was higher than 80% and
even treated with 600 mg/L of Bi-DOTA. These results
FIGURE 1 | HE staining of main organs (heart, liver, spleen, lung, and kidney) after intravenous administration of 200 ml of different concentrations of Bi-DOTA (0.1
and 0.2 M) after different time points (7 and 14 days) (scale bar: 200 mm).
SCHEME 1 | Schematic representation of the synthesis of Bi-DOTA.
February 2022 | Volume 12 | Article 813955
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demonstrated the low cytotoxicity of Bi-DOTA considering its
rapid renal clearance as a small molecular contrast agent.
Toxicity Assessment In Vivo
The histopathological analysis was employed to evaluate the in
vivo toxicity of Bi-DOTA. No death occurred and no abnormal
activity was found in the mice within 7 days/14 days after they
were injected with Bi-DOTA via the tail vein. For these mice,
H&E staining indicated the microstructures of various organs
including myocardial striation and muscle fibers, hepatic lobules
and the hepatocytes, lymphoid follicles and germinal center,
alveoli, and collecting ducts were all exhibiting normal
morphology and arranged regularly at different time points
(Figure 1). For the mice treated with Bi-DOTA orally, H&E
analysis indicated that the mucosal, submucosal, and muscular
structures of GI tract were all clear and did not show obvious
histopathological damages after the administration of different
concentrations of Bi-DOTA at different time points (Figure 2).
In conclusion, no tissue necrosis and inflammatory response
were observed compared with the control group. Furthermore,
the changes in body weight in different treatment groups were
measured every 2 days (Figure S8). These results indicated that
the small molecule Bi-DOTA complex did not significantly
Frontiers in Oncology | www.frontiersin.org 5
reduce body weight, indicating its lower toxicity to normal
body tissues.

In addition, clinic biochemical indicators were also measured
before and after intravenous injection of different concentrations
of Bi-DOTA at different time points. The vital indicators of liver
function (TP, ALB, ALT, and TBA) and typical biomarkers of
kidney function including CREA and BUN at 7 and 14 days all
demonstrated no significant differences compared with the
control group (Figure S9).

Spectral CT Imaging In Vitro
First, the X-ray attenuation efficiency of Bi-DOTA was assessed
compared with iohexol. As shown in Figures 3A, B, the increase
in CT values showed a linear relationship with the
concentrations of both Bi-DOTA and iohexol. Also, the CT
values of Bi-DOTA were higher than iohexol at equivalent
concentrations at the tube voltage of 120 kV, and the X-ray
attenuation coefficients of Bi-DOTA were more eminent
than iohexol.

To investigate spectral CT performance of Bi-DOTA,
monochromatic images (Figure 3C) and spectral CT value
curves (Figure 3D) were acquired using Bi-DOTA and
iohexol. We can see that the CT values of Bi-DOTA and
iohexol decreased with the increase of X-ray energy (40–
FIGURE 2 | HE staining of GI tract (stomach, small intestine, and colon) after oral administration of 200 ml of different concentrations (0.1 and 0.2 M) of Bi-DOTA
after different time points (7 and 14 days) (scale bar: 200 mm).
February 2022 | Volume 12 | Article 813955

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dai et al. Bi-DOTA for Spectral CT Bioimaging
A

B

C

D

FIGURE 4 | In vivo CT urography imaging using Bi-DOTA and iohexol (blue arrows represent kidney and green arrows represent bladder). CT imaging after
intravenous administration of (A) 0.1 mol/L Bi-DOTA, (B) 0.1 mol/L iohexol, (C) 0.2 mol/L Bi-DOTA, and (D) 0.2 mol/L iohexol.
A B

C D

FIGURE 3 | (A) CT phantom imaging under different concentrations at 120 kV. (B) A linear relationship between CT values and the concentrations of both Bi-DOTA
and iohexol. (C) Spectral CT monochromatic images under different energies using Bi-DOTA and iohexol. (D) Spectral CT value curves of Bi-DOTA and iohexol at
different energies.
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200 kev). Under lower energy level (such as 50–60 kev), it was
difficult to make a discrimination between Bi-DOTA and
iohexol. Nevertheless, the CT values of iohexol declined
sharply with the increase of energy (70–200 kev), while the CT
values of Bi-DOTA only showed a slight decrease due to its
outstanding X-ray attenuation capability (Figure 3D). Such
appealing X-ray attenuation characteristic endues Bi-DOTA
with excellent contrast effect for disease diagnosis compared
with iohexol, especially in a higher monochromatic energy.

Spectral CT Kidney Imaging In Vivo
First, 200 ml of 0.2 mol/L Bi-DOTA were intravenously injected
into the BABL/C male mice and the same dosage of iohexol as a
control. In the Bi-DOTA group, an opacified renal collecting
system could be observed when reaching 1 min and became clear
gradually until 5 min. The enhanced CT signal then decreased
after 5 min and gradually returned to nonenhancement 30 min
later (Figure 4C). Meanwhile, the CT value of the bladder is
gradually augmented, indicating that Bi-DOTA was metabolized
via the urinary system and can be rapidly eliminated from the
body. For the mice which experienced an intravenous injection
of 200 ml of iohexol with equivalent concentration, their
collecting system of kidney and bladder was also lighted up at
the similar time points (Figure 4D). However, CT values in
region of interest (kidney) after administration of Bi-DOTA at 1,
2, 3, 4, and 5 min were higher than those after the treatment with
iohexol (Figure S10B). What this suggested was that the CT
enhancement effect of Bi-DOTA exceeded that of iohexol at the
same concentration.

In order to prove the excellent X-ray attenuation ability, we
further performed CT imaging using Bi-DOTA at a lower
concentration (0.1 mol/L) (Figure 4A). We can see that a renal
collecting system appeared when reaching 5 min and became
clear gradually until 30 min. The enhanced CT signal then
decreased after 30 min and gradual ly returned to
Frontiers in Oncology | www.frontiersin.org 7
nonenhancement 1 h later. In contrast, a renal collecting
system displayed poorly and showed a much lower contrast
enhancement in the control group due to the weaker X-ray
attenuation ability of iohexol (Figure 4B). Although the
performance of the kidney imaging at the lower concentration
(0.1 mol/L) was inferior to that at the higher concentration
(0.2 mol/L), Bi-DOTA at the lower concentration had still more
obvious contrast enhancement compared with iohexol in our
study (Figure S10A), which demonstrated that Bi-DOTA had a
great potential to be employed as a high-performance CT
control agent.

Furthermore, virtual monochromatic images of mice were
also obtained at the photon energy range of 40–200 keV with a
10-keV increment. Figure 5 shows the CT signal of a renal
collecting system by Bi-DOTA (Figure 5A) and iohexol
(Figure 5B) in monochromatic images decreased gradually
with the rise of energies. It can be seen that both signals of Bi-
DOTA and iohexol in the kidney at around 40 keV were the
highest. In addition, the enhanced signals of Bi-DOTA-
delineated kidney were higher than that of iohexol-delineated
kidney at the same energy, which indicated that Bi-DOTA may
have a more outstanding performance of spectral CT imaging
compared with iohexol. Furthermore, compared with iohexol,
Bi-DOTA had lower molecular weight (611.16 kDa vs.
821.13 kDa), which is expected to have the higher renal
clearance rate.

Spectral CT GI Tract Imaging In Vivo
To further confirm the excellent spectral CT imaging ability, the
CT imaging of the upper and lower GI tract was carried out using
Bi-DOTA (0.2 mol/L) (Figure 6C). At 5 min after oral
administration of 200 ml of 0.2 mol/L Bi-DOTA, the stomach,
duodenum, and proximal jejunum were obviously lighted up due
to the filling of the control agent. The signal of the stomach
gradually became weaker and more loops of small intestine were
A

B

FIGURE 5 | In vivo spectral CT urography imaging under different energies using 0.2 mol/L Bi-DOTA (A) and iohexol (B) (blue arrows represent kidney and green
arrows represent bladder).
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A

B

FIGURE 7 | In vivo spectral GI tract CT imaging under different energies using 0.2 mol/L Bi-DOTA (A) and iohexol (B) (green arrows represent stomach and blue
arrows represent small intestine).
A

B

C

D

FIGURE 6 | In vivo GI tract CT imaging after oral administration of (A) 0.1 mol/L Bi-DOTA, (B) 0.1 mol/L iohexol, (C) 0.2 mol/L Bi-DOTA, and (D) 0.2 mol/L iohexol
(blue arrows represent stomach and green arrows represent small intestine).
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delineated 5 min later. At 1 h after oral administration, the whole
jejunum and ileum were bright and the signal of the stomach was
further weakened. Bi-DOTA clearly outlined the morphology
and sequence of the stomach, duodenum, jejunum, and ileum,
which would provide accurate diagnosis of the upper GI tract
disease or malformation. After 12 h, Bi-DOTA was emptied from
the upper GI tract, and then excreted from the body after 24 h.

Indeed, upper and lower GI tract imaging was also performed
using a lower concentration of Bi-DOTA (0.1 mol/L)
(Figure 6A). In a result, we found that the morphology and
arrangement of the stomach, small intestine, and large intestine
were clearly delineated as similar as the CT imaging efficacy of
the high concentration of Bi-DOTA (0.2 mol/L). Namely, it is
sufficient to use the concentration of Bi-DTPA at 0.1 mol/L to
visualize the GI tract. As a control, upper and lower GI tract
imaging of iohexol at a corresponding concentration was also
performed (Figures 6B, D). However, the perfusion effect of
iohexol to image upper GI was inferior to that of Bi-DOTA due
to its lower X-ray absorbance ability.

Meanwhile, the monochromatic images of GI tract at different
energies (40, 60, 80, 100, 120, 140, 160, and 180 keV) and CT
images under conventional tube voltage of 120 kV were further
acquired and reconstructed. The CT signal of GI tract by Bi-
DOTA (Figure 7A) and iohexol (Figure 7B) in monochromatic
images decreased gradually with the rise of energies. We can see
that both signals of Bi-DOTA and iohexol in the GI tract at
around 40 keV were the highest. In addition, the enhanced
signals of Bi-DOTA-delineated GI were higher than adjacent
tissues and bone at any energies of 40–180 keV. Nevertheless, the
CT values of bone and other tissues obviously decreased with the
increase of energy, making Bi-DOTA an excellent CT
contrast agent.

In conclusion, Bi-DOTA was successfully applied in the
upper and lower GI tract in our study, which indicated that it
may serve as an excellent CT contrast agent for various
biomedical applications compared with the clinical
iodinate agent.
DISCUSSION

To our knowledge, this study has produced a new CT control
agent (Bi-DOTA), which owns a simple synthesis process, a low
cost, a good biosafety, and a high X-ray attenuation ability across
the low and high operating voltage settings. We have made a
strong effort to investigate its CT imaging efficacy, finding that it
could serve as an excellent CT contrast agent for biomedical
applications. What this suggests is that Bi-DOTA is a promising
control agent in terms of CT imaging. Accordingly, it may also
assist accurate diagnosis of disease and guide the clinic.

Bi has the biggest atomic number among “nonradioactive
elements,” thus Bi-based materials hold great attraction as novel
contrast agents because of their ultrahigh X-ray attenuation
coefficient (15, 17). Also, good biocompatibility, low cost, and
“Bi therapy” further make Bi-based materials a favorable
candidate for developing CT imaging agents with high
performance (16, 48). Currently, it is reported that various
Frontiers in Oncology | www.frontiersin.org 9
investigators have produced a variety of control agents based
on Bi for CT imaging, e.g., Bi (27, 40), Bi2S3 (41), Bi2Se3 (37, 43),
bi-diethylene triamine pentaacetate acid (7), and Gd-PEG-Bi
NPs (40). These control agents are considered ideal candidates
for disease diagnosis and even treatment. Many studies have
reported that DOTA and its derivatives (such as Gd-DOTA, Gd-
5-HT-DOTAGA, and Gd-DO3A) have been fabricated for
biological applications (46, 47, 49), which offer a unique
opportunity to explore the role of these agents based on
DOTA or its derivatives in the development and progression
of some diseases.

Compared with the above studies, we developed Bi-DOTA to
be utilized for X-ray imaging of urography and GI tract imaging.
Cytotoxicity assessment revealed there was little influence on
LO2, MCF-10A, HIBEC, and HUVEC cell proliferation even
treated with 600 mg/L of Bi-DOTA. Meanwhile, the rapid renal
clearance ability also guaranteed the low cytotoxicity of Bi-
DOTA. In vivo toxicity evaluation (H&E staining of main
organs after administration of Bi-DOTA) further proved the
outstanding biosafety of Bi-DOTA, indicating its potential in
vivo application. In our study, in vitro CT imaging showed that
CT values of Bi-DOTA were higher than iohexol at equivalent
concentrations regardless of the energy due to better X-ray
attenuation ability. Furthermore, in vivo CT imaging also
indicated the low dosage of Bi-DOTA (0.1 mol/L) enabled the
acquirement of more high-quantity CT images compared with
iohexol, demonstrating the superior imaging capability of Bi-
DOTA. For in vivo GI tract, Bi-DOTA-delineated GI lumen
showed remarkably enhanced signals at any energy (40–
180 keV). In a word, our study clearly demonstrated the
tremendous potential of Bi-DOTA as an excellent contrast
agent for CT imaging owing to its promising advantages.

Of course, our study had several limitations. Considering the
primary biotoxicity investigation and simple mice models used
in our study, we will devote great efforts to further evaluate the
long-term toxicity and CT imaging capability of Bi-DOTA in
mammals and primates systematically, and promote the
potential clinical implementation of Bi-DOTA in the future.
Moreover, the imaging capabilities of Bi-DOTA are limited to GI
tract and kidney, whose performance may be inferior to that of
iohexol on other tissues. Therefore, we will develop new Bi-based
small molecular contrast agents to image other tissues such as the
brain, liver, and pancreas in the future. In addition, other new
agents based on Bi will be fabricated and tried for CT imaging
and even magnetic resonance imaging (MRI). Furthermore,
future control agent could combine multiple functions into a
single molecule for CT/MRI imaging and even therapy.
CONCLUSION

In this study, we reported a novel small molecular Bi-DOTA
complex with a facile one-step synthesis approach. The prepared
control agent showed outstanding water solubility, lower
cytotoxicity, and superior X-ray attenuation for in vivo CT
imaging. These results show that Bi-DOTA will have a great
February 2022 | Volume 12 | Article 813955
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potential to be a control agent for spectral CT imaging in the
near future.
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