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Abstract

Protein-energy wasting, which involves loss of fat and muscle mass, is prevalent and is

associated with mortality in hemodialysis (HD) patients. We investigated the associations of

fat tissue and muscle mass indices with all-cause mortality in HD patients. The study

included 162 patients undergoing HD. The fat tissue index (FTI) and skeletal muscle mass

index (SMI), which represent respective tissue masses normalized to height squared, were

measured by bioimpedance analysis after dialysis. Patients were divided into the following

four groups according to the medians of FTI and SMI values: group 1 (G1), lower FTI and

lower SMI; G2, higher FTI and lower SMI; G3, lower FTI and higher SMI; and G4, higher FTI

and higher SMI. The associations of the FTI, SMI, and body mass index (BMI) with all-cause

mortality were evaluated. During a median follow-up of 2.5 years, 29 patients died. The 5-

year survival rates were 48.6%, 76.1%, 95.7%, and 87.4% in the G1, G2, G3, and G4

groups, respectively (P = 0.0002). The adjusted hazard ratio values were 0.34 (95% confi-

dence interval [CI] 0.10–0.95, P = 0.040) for G2 vs. G1, 0.13 (95%CI 0.01–0.69, P = 0.013)

for G3 vs. G1, and 0.25 (95%CI 0.07–0.72, P = 0.0092) for G4 vs. G1, respectively. With

regard to model discrimination, on adding both FTI and SMI to a model with established risk

factors, the C-index increased significantly when compared with the value for a model with

BMI (0.763 vs. 0.740, P = 0.016). Higher FTI and/or higher SMI values were independently

associated with reduced risks of all-cause mortality in HD patients. Moreover, the combina-

tion of the FTI and SMI may more accurately predict all-cause mortality when compared

with BMI. Therefore, these body composition indicators should be evaluated simultaneously

in this population.

Introduction

Protein-energy wasting (PEW), defined as the loss of body protein mass and fuel reserves,

is a common complication of chronic kidney disease and is an important predictor of mortal-

ity in patients with end-stage renal disease undergoing hemodialysis (HD) [1, 2]. Many
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epidemiologic studies have reported that a high body mass index (BMI) is associated with bet-

ter survival in this population, and this phenomenon is referred to as the “obesity paradox” [3,

4]. However, BMI does not discriminate between body fat mass and muscle mass [5, 6]. We

have recently reported that abdominal fat levels measured by computed tomography were neg-

atively associated with risks for all-cause mortality in HD patients [7]. As a limitation of the

study, muscle mass, another component of PEW, could not be evaluated at the same time. On

the other hand, bioelectrical impedance analysis (BIA), which is commonly used in the area of

nephrology to evaluate not only dry weight but also nutritional status in HD patients, enables

the estimation of body composition [8,9]. The fat tissue index (FTI) and skeletal muscle mass

index (SMI), which represent respective tissue masses adjusted for height squared, have been

used to evaluate fat mass and muscle mass, respectively, and the SMI is used for the diagnosis

of sarcopenia when muscle mass is measured by BIA [10–12]. Different results have been

reported with regard to the relationship between body composition and mortality [13–16],

and few studies have evaluated the associations between both fat mass and muscle mass and

all-cause mortality simultaneously [10,17]. Furthermore, it is unknown whether mortality can

be more accurately predicted with body composition indicators, such as the FTI and SMI, than

with BMI.

The present study aimed to investigate the associations of the FTI and SMI with all-cause

mortality and determine whether mortality can be more accurately predicted with these body

composition indicators than with BMI in patients undergoing HD.

Materials and methods

Patients and assessments

A total of 162 patients undergoing HD for more than 6 months, and who had undergone BIA

as part of a monthly examination at the outpatient clinic of Matsunami General Hospital, were

enrolled between April 2012 and March 2018, and were followed up. In this retrospective

study, all patient data were fully anonymized before we accessed them and ethics committee

waived the requirement for informed consent. This study adhered to the principles of the Dec-

laration of Helsinki, and the study protocol was approved by the ethics committee of Matsu-

nami General Hospital (No. 381).

The following patient data were collected from medical records: age; sex; duration of HD;

previous histories of diabetes, hypertension, and cardiovascular disease (CVD); dry weight;

and height. In this study, CVD was defined as heart failure, angina pectoris, myocardial infarc-

tion, and stroke. Blood samples were collected with the patient in the supine position before

the initiation of the HD session on a Monday or Tuesday, and laboratory data of the month in

which BIA was performed were used. Body composition was assessed using a body composi-

tion analyzer (MLT-550N, SK Medical, Japan) after a HD session. Multifrequency (2.5–350

kHz) BIA was performed using the wrist–ankle method. This approach provides information

on fat mass, total body water, intracellular water (ICW), and extracellular water (ECW). Skele-

tal muscle mass was estimated using the following formula: skeletal muscle mass (kg) = 9.52

+ 0.331 × ICW (L) + 2.77 (if male) + 0.180 × post-dialysis weight (kg) − 0.133 × age (years)

[18]. Then, the FTI and SMI were calculated. BMI was calculated from dry weight and height

using the following formula: dry weight (kg) / height squared (m2).

Follow-up study

The study endpoint was all-cause mortality. Patients were divided into groups according to the

median values of the FTI and SMI in each sex group, and thereafter, patients with higher and

lower FTI/SMI values were combined into higher and lower FTI/SMI groups, respectively, as
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the distributions of the FTI and SMI values differ according to sex. Moreover, patients were

divided into the following four groups according to the medians of both FTI and SMI values:

group 1 (G1), lower FTI and lower SMI; G2, higher FTI and lower SMI; G3, lower FTI and

higher SMI; and G4, higher FTI and higher SMI. The patients were followed up for as long as 5

years until March 2018.

Statistical analysis

Normally distributed variables are expressed as mean ± standard deviation, and non-normally

distributed variables are expressed as median and interquartile range. With regard to compari-

sons of differences among the four groups divided according to the medians of both FTI and

SMI values, continuous variables were analyzed using one-way analysis of variance or the

Kruskal–Wallis test, whereas categorical variables were analyzed using the chi-squared test.

Multivariate regression analysis was performed to determine the factors correlated with the

FTI or SMI. The Kaplan–Meier method was used to estimate survival, which was analyzed

using the log-rank test. And, for multiple comparison of each group, Bonferroni correction

was performed. Hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause mortality

were assessed using Cox proportional hazard regression analysis. The multiple regression

model included classical risk factors such as diabetes, hypertension, and history of CVD.

To assess whether the accuracy of predicting mortality would improve after the addition of

the FTI and/or SMI to a baseline model with covariates that were significant at P< 0.05 in the

univariate analysis, the C-index, net reclassification improvement (NRI), and integrated dis-

crimination improvement (IDI) were calculated. The C-index was defined as the area under

the ROC curves between individual predictive probabilities for mortality and the incidence of

mortality, and it was compared between a model including BMI and a model including FTI

and SMI [19]. NRI is a relative indicator of the number of patients for whom the predicted

probabilities for mortality improve, whereas IDI represents the average improvement in pre-

dicted probabilities for mortality after the addition of variables to the baseline model [20].

All statistical analyses were performed using SPSS version 21 (IBM Corp., Armonk, NY,

USA). A P-value <0.05 was considered statistically significant.

Results

Baseline characteristics

The baseline characteristics of the study patients are shown in Table 1. The median duration of

HD was 1.9 (range, 0.7–8.2) years. The mean BMI, FTI, and SMI were 21.9 ± 3.5 kg/m2, 6.22 ±
3.09 kg/m2, and 7.64 ± 1.23 kg/m2, respectively. The FTI and SMI showed significant correlations

with BMI (r = 0.897, P< 0.0001 and r = 0.743, P< 0.0001, respectively). And, there was a signifi-

cant correlation between FTI and SMI (r = 0.488, P<0.0001). Multivariate regression analysis

revealed that the FTI was independently correlated with male sex (β = −0.260, P< 0.0001) and

BMI (β = 0.925, P< 0.0001) and that the SMI was independently correlated with age (β = −0.466,

P< 0.0001), male sex (β = 0.392, P< 0.0001), and BMI (β = 0.610, P< 0.0001).

Relationship of the FTI and/or SMI determined by BIA with mortality

During the follow-up period (median, 2.5 [range, 1.0–4.5] years), 29 patients died (infection,

11 [37.9%]; CVD, 6 [20.7%]; malignancy, 4 [13.8%]; and others, 8 [27.6%]). In the univariate

Cox proportional hazards analysis, BMI, FTI, and SMI were significant predictors for all-cause

mortality (HR 0.87, 95%CI 0.76–0.98, P = 0.022; HR 0.86, 95%CI 0.74–0.98, P = 0.021; and HR

0.60, 95%CI 0.43–0.82, P = 0.0012, respectively). The median FTI was 5.88 kg/m2 in males and
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6.28 kg/m2 in females, and the median SMI was 7.93 kg/m2 in males and 6.86 kg/m2 in females.

After 5 years of follow-up, the Kaplan–Meier survival rates were 66.0% and 83.7% in the lower

FTI and higher FTI groups (P = 0.033) and were 56.3% and 90.6% in the lower SMI and higher

SMI groups (P = 0.0001), respectively (Fig 1). In the multivariate Cox proportional hazards

analysis after adjusting for age, sex, albumin, diabetes, hypertension, and history of CVD, the

adjusted HR values were 0.40 (95%CI 0.17–0.90, P = 0.027) for higher FTI and 0.28 (95%CI

0.09–0.76, P = 0.011) for higher SMI (Table 2).

In G1, G2, G3, and G4, the 5-year survival rates were 48.6%, 76.1%, 95.7%, and 87.4%,

respectively (P = 0.0002) (Fig 2). The survival rates of G3 and G4 were significantly higher

than that of G1 (p = 0.0078 and p = 0.001, respectively). However, there was no significant dif-

ferences in the survival rate between G3 and G4 (p = 0.35, even without Bonferroni correc-

tion). The adjusted HR values were 0.34 (95%CI 0.10–0.95, P = 0.040) for G2 vs. G1, 0.13 (95%

CI 0.01–0.69, P = 0.013) for G3 vs. G1, and 0.25 (95%CI 0.07–0.72, P = 0.0092) for G4 vs. G1,

respectively.

With regard to model discrimination, when compared with the addition of BMI to estab-

lished risk factors for mortality prediction (C-index: 0.740), the addition of FTI did not

improve mortality prediction (C-index: 0.740, P = 0.98; NRI: 0.1047, P = 0.70; IDI: 0.0037,

P = 0.30) and the addition of SMI tended to improve mortality prediction (C-index: 0.761,

P = 0.094; NRI: 0.2313, P = 0.13; IDI: 0.0149, P = 0.023). However, the addition of both FTI

Table 1. Baseline patient characteristics.

All patients (N = 162) G1 (N = 55) G2 (N = 26) G3 (N = 26) G4 (N = 55) P-value

Age (years) 65.1 ± 12.6 71.1 ± 8.3 74.0 ± 7.8 54.2 ± 14.3 60.1 ± 11.4 <0.0001

Male (%) 68.5 65.5 73.1 73.1 67.3 0.85

Duration of HD (years) 1.9 (0.7–8.2) 1.3 (0.7–9.3) 1.6 (0.7–4.6) 6.9 (1.0–9.7) 2.3 (0.7–8.4) 0.40

Diabetes (%) 54.2 45.5 50.0 34.6 76.4 0.0006

Hypertension (%) 92.6 90.9 88.5 96.2 94.5 0.64

Smoking (%) 24.7 20.0 34.6 26.9 23.6 0.56

History of CVD (%) 46.9 43.6 53.8 34.6 52.7 0.38

BMI (kg/m2) 21.9 ± 3.5 18.9 ± 1.6 22.1 ± 1.4 20.8 ± 1.6 25.4 ± 2.9 <0.0001

BUN (mg/dL) 55.7 ± 14.3 53.7 ± 16.0 55.5 ± 15.1 58.7 ± 14.3 56.5 ± 12.0 0.50

Creatinine (mg/dL) 9.2 ± 2.9 8.4 ± 2.5 8.1 ± 2.7 11.1 ± 3.3 9.6 ± 2.8 0.0001

Albumin (g/dL) 3.7 ± 0.3 3.6 ± 0.4 3.6 ± 0.3 3.8 ± 0.4 3.8 ± 0.2 0.0002

Hemoglobin (g/dL) 10.9 ± 1.1 10.9 ± 1.2 10.5 ± 1.2 10.9 ± 0.8 11.0 ± 1.1 0.23

T-Cho (mg/dL) 156 ± 35 156 ± 33 144 ± 33 165 ± 36 159 ± 37 0.17

Uric acid (mg/dL) 7.2 ± 1.7 7.0 ± 2.0 6.5 ± 2.0 7.6 ± 1.3 7.5 ± 1.3 0.050

Ca (mg/dL) 8.8 ± 0.8 8.8 ± 0.9 8.6 ± 0.7 9.0 ± 1.0 8.8 ± 0.7 0.26

P (mg/dL) 5.0 ± 1.3 4.9 ± 1.3 4.7 ± 1.3 5.1 ± 1.3 5.1 ± 1.2 0.61

Glucose (mg/dL) 127 ± 40 126 ± 39 133 ± 38 107 ± 31 134 ± 44 0.031

CRP (mg/dL) 0.15 (0.05–0.35) 0.11 (0.04–0.46) 0.21 (0.06–0.34) 0.09 (0.04–0.23) 0.18 (0.10–0.40) 0.96

FTI (kg/m2) 6.22 ± 3.09 3.81 ± 1.65 7.25 ± 1.16 4.05 ± 0.93 9.16 ± 2.67 <0.0001

male (kg/m2) (N) 5.84 ± 2.92 (111) 3.38 ± 1.67 (36) 7.08 ± 1.12 (19) 3.80 ± 0.87 (19) 8.65 ± 2.28 (37) <0.0001

female (kg/m2) (N) 7.03 ± 3.30 (51) 4.62 ± 1.31 (19) 7.72 ± 1.22 (7) 4.74 ± 0.76 (7) 10.20 ± 3.16 (18) <0.0001

SMI (kg/m2) 7.64 ± 1.23 6.64 ± 0.74 7.02 ± 0.68 8.27 ± 0.88 8.62 ± 1.01 <0.0001

male (kg/m2) (N) 7.99 ± 1.13 (111) 6.99 ± 0.52 (36) 7.31 ± 0.54 (19) 8.67 ± 0.67 (19) 8.98 ± 0.86 (37) <0.0001

female (kg/m2) (N) 6.86 ± 1.09 (51) 5.99 ± 0.66 (19) 6.25 ± 0.36 (7) 7.21 ± 0.27 (7) 7.87 ± 0.90 (18) <0.0001

HD: hemodialysis, CVD: cardiovascular disease, BMI: body mass index, BUN: blood urea nitrogen, T-Cho: total cholesterol, CRP: C-reactive protein, FTI: fat tissue

index, SMI: skeletal muscle mass index, G1: lower FTI and lower SMI, G2: higher FTI and lower SMI, G3: lower FTI and higher SMI, G4: higher FTI and higher SMI.

https://doi.org/10.1371/journal.pone.0211988.t001
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and SMI significantly improved mortality prediction (C-index: 0.763, P = 0.016; NRI: 0.4055,

P = 0.024; IDI: 0.0158, P = 0.0070) (Table 3).

Discussion/Conclusion

In patients with end-stage renal disease undergoing HD, the concept of the “obesity paradox”

(higher BMI is paradoxically associated with better survival) is well-known. The obesity para-

dox in HD patients may be partly explained by PEW, which refers to the loss of body protein

and other nutritional factors leading to reduced muscle mass and fat mass. The pathophysiol-

ogy of PEW is complex and can be related to a variety of factors such as malnutrition, uremia,

and inflammation [1]. In the situation of inflammatory conditions or malnutrition, the stor-

ages of body protein are diverted to defend against inflammation and to repair injury. Thus,

the increased body mass of overweight HD patients offers protection against or resources for

responding to inflammation, infection, and subsequent CVD [4]. Moreover, given a high

short-term mortality in incident hemodialysis patients, obesity–or high BMI–may be

Table 2. Cox proportional hazards analysis of the risk of all-cause mortality in patients undergoing hemodialysis.

Univariate Multivariate

HR (95% CI) P-value HR (95% CI) P-value

Higher FTI 0.44 (0.19−0.93) 0.031 0.40 (0.17–0.90) 0.027

Higher SMI 0.21 (0.08−0.47) 0.0001 0.28 (0.09–0.76) 0.011

Cross-classified with the medians of FTI and SMI (vs. G1) 0.0002 0.011

G2 0.41 (0.12–1.08) 0.074 0.34 (0.10–0.95) 0.040

G3 0.08 (0.01–0.37) 0.0002 0.13 (0.01–0.69) 0.013

G4 0.21 (0.07–0.53) 0.0006 0.25 (0.07–0.72) 0.0092

FTI: fat tissue index, SMI: skeletal muscle mass index, G1: lower FTI and lower SMI, G2: higher FTI and lower SMI,

G3: lower FTI and higher SMI, G4: higher FTI and higher SMI. The multivariate model included age, sex, albumin,

diabetes, hypertension, and history of CVD.

https://doi.org/10.1371/journal.pone.0211988.t002

Fig 1. Kaplan–Meier survival curves of all-cause mortality for lower FTI vs. higher FTI and lower SMI vs. higher SMI. FTI: fat tissue index, SMI:

skeletal muscle mass index.

https://doi.org/10.1371/journal.pone.0211988.g001
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associated with better survival due to better nutritional status or larger muscle mass particu-

larly in a short period [2].

However, BMI is not always an indicator of obesity or nutritional status, because it does not

differentiate between fat mass and muscle mass [5, 6]. Thus, the limitation of BMI and the

importance of measuring body composition have been recently recognized. BIA is now widely

used for evaluating body composition in HD patients [9]. BIA allows not only the evaluation

of the hydration status but also the differentiation of the distribution of body components,

such as fat mass and muscle mass [8,9]. However, different results have been reported for the

association between body composition and survival.

In the present study, a higher FTI was independently associated with a reduced risk for all-

cause mortality when compared with a lower FTI. Kalantar-Zadeh et al. reported that a low

Fig 2. Kaplan–Meier survival curves of all-cause mortality among the four groups divided according to the

medians of both FTI and SMI values. FTI: fat tissue index, SMI: skeletal muscle mass index, G1: lower FTI and

lower SMI, G2: higher FTI and lower SMI, G3: lower FTI and higher SMI, G4: higher FTI and higher SM.

https://doi.org/10.1371/journal.pone.0211988.g002

Table 3. Predictive values of FTI and SMI for all-cause mortality according to the C-index, net reclassification improvement (NRI), and integrated discrimination

improvement (IDI).

Variable C-Index P-value NRI P-value IDI P-value

Established risk factors + BMI 0.740 (0.636–0.844) Reference Reference Reference

+ FTI 0.740 (0.632–0.847) 0.98 0.1047 0.70 0.0037 0.30

+ SMI 0.761 (0.664–0.859) 0.094 0.2313 0.13 0.0149 0.023

+ both FTI and SMI 0.763 (0.664–0.862) 0.016 0.4055 0.024 0.0158 0.0070

FTI: fat tissue index, SMI: skeletal muscle mass index, BMI: body mass index. Established risk factors included age, male sex, and all variables that were significant at

P < 0.05 in the univariate analysis (total cholesterol and albumin).

https://doi.org/10.1371/journal.pone.0211988.t003
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body fat percentage and fat loss over time, as assessed by near-infrared interactance on the

upper arm, were independently associated with high mortality in HD patients [13]. Caetano

et al. reported that a lower FTI, as determined by BIA, was independently associated with a

low survival rate [14]. Although high body fat is a risk factor for CVD and mortality in the gen-

eral population [21,22], excess fat mass appears to be protective in HD patients [13,14]. How-

ever, it is not clear why fat possibly plays a protective role in HD patients. Fat mass is divided

into visceral fat and subcutaneous fat. Visceral fat produces higher levels of inflammatory cyto-

kines when compared with subcutaneous adipose tissue [23], and it is associated with insulin

resistance and markers of oxidative stress and inflammation [24,25], which may predict the

development of PEW [26,27]. On the other hand, subcutaneous fat may reflect the overall

nutritional status as energy storage and may have beneficial metabolic effects, such as protec-

tion against insulin resistance [28], as observed in the general population. Additionally, it may

be protective against wasting and catabolism in the setting of end-stage renal disease, particu-

larly when intercurrent illnesses occur [29]. We have recently investigated the association

between computed-tomography-measured abdominal fat levels including visceral fat and sub-

cutaneous fat and all-cause mortality in patients undergoing HD [7]. Although the effect of

subcutaneous fat on all-cause mortality is controversial in the general population, our study

showed that higher subcutaneous fat, regardless of visceral fat, was independently associated

with a reduced risk for all-cause mortality in HD patients [7]. In most HD patients, a high

BMI likely reflects a high body fat percentage rather than muscle mass, and the fat is more

likely to be non-visceral fat [30]. Thus, the positive effect of subcutaneous fat might overwhelm

the negative effect of visceral fat. Therefore, a higher FTI, which reflects whole-body fat mass,

may be protective with regard to survival in HD patients.

Our study also found that a higher SMI was independently associated with a reduced risk

for mortality when compared with a lower SMI. Sarcopenia, which is defined as the presence

of decreased muscle mass and function, is a well-known complication of PEW in HD patients

[1]. However, different controversial results for the association between muscle mass and mor-

tality have been reported. Rosenberger et al. reported that malnutrition, diagnosed as a lean tis-

sue index (LTI: lean tissue mass adjusted by height squared; surrogate marker of muscle and

determined by BIA) less than 10% of the normal value, was an independent predictor of mor-

tality [31]. Kim et al. reported that sarcopenia, defined as both a low LTI determined by BIA

(LTI of�2 standard deviations [SDs] below the normal sex-specific mean for young people)

and low handgrip strength, was independently associated with mortality in the HD population

[15]. On the other hand, Kittiskulnam et al. reported that only functional limitations, such as

slow gait speed and weak handgrip strength, but not sarcopenia or low muscle mass, were pre-

dictors of mortality [16]. In their study, sarcopenia was defined as low muscle mass deter-

mined by BIA in a pre-dialysis setting (muscle mass of�2 SDs below the sex -specific mean

for healthy young adults [18–49 years of age]) combined with weakness or slowness. There are

several reasons why low muscle mass may be associated with poor survival. Low muscle mass

may reflect poor nutritional status and some level of inflammation [32, 33]. It has been

reported that HD patients with low muscle mass may have high levels of uremic toxins [34].

Although we could not measure gait speed or handgrip strength owing to the retrospective

nature of this study, a higher SMI was significantly associated with a reduced risk of all-cause

mortality in this study. Our results are similar to those of the studies by Rosenberger et al. [31]

and Kim et al. [15] but are different from those of the study by Kittiskulnam et al. [16]. The dif-

ference in results between our study and the study by Kittiskulnam et al. can be explained by

several factors. First, patient backgrounds differed between the studies, and the mean patient

age was greater in our study (65.1 vs. 56.7 years). Second, the timing of body composition mea-

surement differed between the studies. Body composition was measured after dialysis in our
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study but was measured before dialysis in the study by Kittiskulnam et al. Extracellular water is

often increased in the pre-dialysis setting, and the hydration status can overestimate muscle

mass [35]. Third, in the study by Kittiskulnam et al., the thresholds of muscle mass for the

diagnosis of sarcopenia were determined in healthy young populations, and this might be

inappropriate in HD patients.

Few studies have evaluated the association between the combination of fat mass and muscle

mass and all-cause mortality, and it remains unclear whether body composition variables,

such as fat mass and muscle mass, can improve mortality prediction when compared with

BMI. Noori et al. reported that survival was better in individuals with a higher triceps skin-fold

(TSF) thickness (an anthropometric surrogate marker of fat mass), a higher mid-arm muscle

circumference (MAMC; a marker of muscle mass), and both a higher TSF and higher MAMC

than in those with a lower TSF and lower MAMC [17]. On the other hand, Marcelli et al.

reported that a LTI and FTI within the 10th to 90th percentile of an age and sex-matched

healthy population were associated with the best survival, whereas a low FTI, low LTI, and

especially the combination of both were associated with high mortality [10]. In the present

study, higher FTI and/or higher SMI values were independently associated with reduced risks

of all-cause mortality when compared with both lower FTI and lower SMI values. However,

the inclusion of both FTI and SMI, but not FTI or SMI alone, significantly improved the pre-

dictive accuracy for all-cause mortality when compared with the inclusion of BMI. Therefore,

these body composition indicators should be assessed simultaneously. The FTI and SMI esti-

mated by body composition measurements may be better surrogate markers of PEW when

compared with BMI, and they can explain the “obesity paradox” beyond BMI.

The present study had several limitations. First, this retrospective single-center study

enrolled a relatively small number of patients. And, the number of event was very small, there-

fore, we could not discuss on causes of death. Second, we did not measure handgrip strength,

which is important for the diagnosis of sarcopenia. Third, the duration of HD at the time of

enrollment varied. Further large-scale studies are needed to validate our results.

In conclusion, higher FTI and/or higher SMI values are independently associated with

reduced risks of all-cause mortality in HD patients. Moreover, the combination of the FTI and

SMI can be used to stratify the risk of mortality and may more accurately predict all-cause

mortality when compared with BMI. Therefore, these body composition indicators should be

evaluated simultaneously in this population.
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