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Abstract

There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example,
Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is
not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the
calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for
the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately
prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi
dimension of these 1D signals is calculated using Higuchi’s algorithm, and it is shown that both regions of interests and
directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed
technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital
images, are given. The main result is that Higuchi’s algorithm allows a direction dependent as well as direction independent
analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible.
Moreover, the proposed method is not restricted to Higuchi’s algorithm, as any 1D method of analysis, can be applied.
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Introduction

Digital images are increasingly utilized to represent data in all

kinds of sciences. They can be used for visual or graphical

purposes only or for a closer investigation of an object via image

processing techniques. If the objects in an image are not

geometrically regular—which is often the case for natural objects

such as landscapes, animals or cells—both the interpretation and

the classification can be important. For these tasks, determining

the fractal dimensions of 2D digital images has been very

successful in recent years [1–5]. The methods involved include

the well known Box counting method or the Minkowski dilation

method [3]. It is also possible to use gray value statistics [6],

differential box counting [7], a variation method [8], a blanket

method [9] or frequency analysis [10–12]. Despite the effective-

ness of these methods, they have some serious limitations. Very

often the object of interest does not fill the digital image entirely,

but instead is surrounded by a background, e.g., a light

microscopic image of a single cell surrounded by culture medium,

an electron microscopic image of a cell nucleus surrounded by

stroma or a histological image of a special tissue surrounded by

neighbouring tissue. In all these cases, it would be necessary to

calculate the properties or fractal dimensions only for the regions

of interest, without incorporating any information from the

background. Furthermore, it is not possible to calculate the fractal

dimension of a specific line or curve through an image. Such a line

or curve can be considered to be nothing more than a long region

of interest without a width or with a width of one pixel.

The present work proposes a new method to overcome these

limitations by using 1D signal analysis methods. 2D images are

either projected onto 1D signals or several image rows, columns,

radial lines or spirals are extracted in order to gather a batch of 1D

signals. Projection leads to a loss of information, but has the

advantage of drastically decreased computational requirements.

Extraction of rows and/or columns does not imply a loss of

information, and the fractal dimension of the whole image can be

calculated very precisely.

Theoretically, an extracted 1D signal of an image is an

intersection of the gray value surface with a two dimensional

plane and therefore, the intersection theorem for fractals [13] can

be applied:

D1D§D2DzDPlane{E, ð1Þ

with D1D the fractal dimension of the 1D signal, D2D the fractal

dimension of the gray value surface in a three dimensional

Euclidian space E~3, and a plane with DPlane~2. Usually the

greater than relation can be replaced by equality. Then, the fractal

dimension range D2Dj2vD2Dƒ3f g of the surface yields an

expected fractal dimension range of D1Dj1vD1Dƒ2f g for the 1D

signal or profile. Projection in this context is a data reduction by

summing up the grey values along an axis. For this sort of

projection the projection slice theorem is valid, which is commonly

applied for inverse problems, such as computed tomography. A

single projection integrates the original data, unavoidably yielding

a loss of high frequency components. Nevertheless, it is feasible to

calculate quantitative parameters describing the data set, e.g. the

fractal dimension. It turned out that projection yields in many

cases quite similar, mainly a little lower values compared to

extraction methods, but, in some cases, it can lead to false values,

which is described and elaborated thoroughly in the result and

discussion sections.

One dimensional data is commonly a time series of data points,

which can be examined by a very wide range of excellent linear as
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well as nonlinear methods. While there exist a huge range of

methods concerning 1D signal processing and signal analyses (e.g.

1D filtering algorithms), this study is focused on nonlinear methods

studying fractal dimensions of objects. These 1D nonlinear

analyses are mainly performed in the investigation of nonlinear

dynamical systems [14–16], bifurcations [17] or even critical

transitions [18]. The range of possible methods includes phase

space analysis, attractor analysis, Fourier methods, the Higuchi

method [19] and others.

Despite of the effectiveness of these 1D methods, there have

been only very limited efforts to expand these methods to 2D in

the past. There are a few exceptions [20–22], but because of their

rarity, there is a very high potential for improving and expanding

the classical 2D methods. This work intends to pursue these

promising approaches. The proposed methods include some

generally applicable techniques, which can be adapted very easily

to actual problems.

Methods

Digital images
Several digital gray level images were generated in order to test

the calculations of the images’ Higuchi dimensions. The varying

gray level surface of a 2D image can be interpreted as a 3D

landscape in a three dimensional embedding space. The following

images were constructed (Figure 1A): An image with constant gray

value, an image with a cosine shaped variance of gray levels in the

horizontal direction and a constant gray value in vertical direction,

three images with varying gray levels but predefined fractal

dimensions, and finally an image with random gray values.

The fractal gray level landscapes were constructed using an

inverse Fourier method described in [23]. Briefly, an artificial,

randomly distributed Fourier power spectrum is constructed. The

value of the desired fractal dimension, DF , is taken to calculate the

slope b~8{2DF .Then, b is used to create a corresponding power

spectrum. Applying the inverse Fourier transformation with

arbitrary phase values gives a gray value surface with the desired

fractal dimension DF .

Two artificial regions of interest (ROI) were constructed, one

rectangular and one elliptical, by setting all pixel values outside of

the ROI to zero. These images can be seen in Figure 1B&C. The

actual shapes of the ROIs were chosen with unsymmetrical

distances to the image border in order to simulate an actual case.

All images had an identical resolution of 130061030 pixels,

which is high enough for the calculations intended [24] and

resemble a commonly used image size. The images were saved as 8

bit gray level images in tiff format.

The images were constructed with IDL (Interactive Data

Language, ITT Industries Inc., Boulder, USA).

Construction of 1D data sequences
There is not a standard procedure for constructing 1D data

point series out of 2D digital images. At first glance, a reduction of

order seems to inevitably cause a loss of information. But this loss

does not always occur without exception. The amount of lost

information is strongly dependent on the actual reduction process.

In practice, there exist a huge number of possibilities to extract 1D

signals out of 2D images. Extractions of rows or columns, along

radial lines, spirals or arbitrary curves or stitching together rows or

columns, to name but a few, are possible. In fact, the proposed

method of calculating fractal dimensions is not restricted to any

special type of extraction and therefore, exemplarily the following

extraction algorithms were chosen for this study:

(i) The gray values are projected vertically to the x-axis and

horizontally to the y-axis. This projection resembles the

summing up of gray values, and two 1D signals are

constructed.

(ii) Every horizontal row and every vertical column of the

image is extracted and taken as a separate 1D signal. This

approach leads to (n+m)-many signals, with n the number of

image columns and m the number of image rows.

(iii) Radial lines through the centre of the image with a

subsequent angle difference of 1u are extracted. Therefore,

180 signals cover the range from 0 to 2p.

(iv) An Archimedean spiral starting at the centre of the image

and turning 10 times through the image is extracted.

The evaluation time is considerably low for method (i) and only

marginally higher for (iv). The time for (ii) is (n+m)/2 times and for

(iii) 90 times higher than the time for (i). On a standard PC (for the

images with a resolution of 130061030 pixels), the calculations

(including the display of graphical user interfaces and the display

of every single regression plot) using method (i) took ,0.15 min-

utes, whereas for method (ii) they took about 200 minutes and for

method (iii) about 15 minutes per image. Parallelization of the

Figure 1. Six sample images. A An image with constant gray value, an image with cosine shaped varying gray levels in the horizontal direction
and constant gray value in the vertical direction, three images with varying gray levels but distinct predefined fractal dimensions and finally an image
with random gray values. B Same six images as in A, but with a rectangular region of interest (ROI). C Same six images as in A, but with an elliptical
ROI.
doi:10.1371/journal.pone.0024796.g001
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algorithms, especially for method (ii) and (iii) would be possible,

because the individual 1D signals can be independently processed.

The results of the individual signals can also be grouped

together by calculating mean values. Therefore, it is possible to get

distinct mean values for the x- and/or y-direction or one single

value for the whole image.

All the images were additionally investigated and examined with

two different ROIs: a rectangular and an elliptical shape. Outside

of the ROI, the gray values were set to zero, so each of the 1D

signals showed both leading and tailing zeros. Zero gray values

were interpreted as being the background. Obviously, the fractal

dimension calculations strongly depended on these leading and

tailing zeros, and it was not possible to neglect this influence. In

order to examine this influence, the calculations were carried out

in two ways. First, the calculations were straightforwardly carried

out by including the zeros (inclusive background), and second, the

calculations were carried out after both the leading and the tailing

zeroes were excluded (exclusive background).

Higuchi dimension
The Higuchi dimension, DH , is a measure of irregularity and is

calculated for time series directly in the time domain [19]. The

calculations are carried out without phase space constructions.

Several lengths, L(d), of the signal or curve are calculated, and a

double logarithmic plot, ln L(d)versus ln d , is used to estimate the

actual dimension value. The assumption is that a fractal signal

scales according to the following:

L(d)!dDH ð2Þ

The discrete data point series S : x(1), x(2), x(3),:::::::, x(N),
with N the total number of data points, must consist of values or

observations at regular intervals. From this single data point series,

d new data point series Sm(d), with m~1, 2,::::d , where m is the

initial time and d a time interval, are constructed.

Sm(d) : x(m), x(mzd), x(mz2d),::::::::::x mzt
N{m

d
sd

� �
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ð3Þ
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where m and d are integers and ts denotes the floor function. The

lengths Lm(d) are the normalized sums of the differences of the

values, with a distance of d and a starting point m. For each d, the

mean L(d) is calculated as follows.

L(d)~
1

d

Xd

i~1

Lm(d) ð5Þ

Finally, the slope of a linear regression of a double logarithmic plot

of ln L(d) and ln d gives the Higuchi dimension, DH . The

maximal interval dmax was determined by plotting several

regressions with subsequently increasingdmax. For each individual

regression, the coefficient of determination R2 was calculated. The

saturation point, where R2 did not increase significantly was taken

for the maximal d. Actually, L(d) was calculated for d~1,

2, 3:::::89, and the best linear regression (again by checking R2) in

the double logarithmic plot was gained for the range d~20,
21, 22:::::89. This range of d resulted in the best estimations of the

theoretical dimension values.

The values of the Higuchi dimension, DH , of a 1D curve S always

fall in the closed interval [1,2]. There is one exception, when all the

data point values have a constant value. In that case, all the

differences in the summation of Lm(d) are all zero, resulting in

DH~0: A simple curve, such as a sine or cosine function, has a

dimension DH~1. The other extreme is a randomly distributed

curve with DH~2. The dimension for fractals lies between 1 and 2.

Fourier dimension
Frequency analysis, and in particular the FFT (Fast Fourier

Transformation), is widely applied in image processing, and the

fractal dimension DF , also called the ‘‘Fourier dimension,’’ is

related to the power spectrum of a 2D image. The power spectrum

is given by:

P(kx,ky)~c ~kk
��� ���{b

, ð6Þ

with ~kk
��� ���~ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kx
2zky

2
q

, and c is a constant.

b can be examined by fitting the function in Equation (6) to the

calculated two dimensional power spectrum. By taking the

logarithm, the least squares approximation gives:

b~

N
P
ij

ln jkij j ln Pij{
P
ij

lnjkij j
P
ij

ln Pij

N
P
ij

(lnjkij j)2{
P
ij

lnjkij j
 !2

, ð7Þ

with N the number of data points and i and j the indices in the

horizontal and vertical directions respectively.

The fractal dimension, DF , of 2D images, having a topological

dimension Dt~2, can be estimated with the following equation:

DF ~
8{b

2
: ð8Þ

The range of possible values is between 2 and 3.

The calculations were carried out with IDL (Interactive Data

Language, ITT Industries Inc., Boulder, USA).

Both dimensions, the Fourier dimension as well as the Higuchi

dimension depend on the construction of a power law of distinct

quantities. Although these quantities are not identical, the power

law reflects the intrinsic nonlinear relation of these distinct

quantities. Therefore, the slopes of the linear fits give estimates

rather than exact values for the fractal dimension.

Results

The dimension values of distinct images were examined

according to each of the individual methods. Firstly, projection,

extraction of rows, columns, radial lines or spirals was carried out

to get 1D signals for the calculation of the Higuchi dimension. For

comparison, the images were used to calculate the Fourier

dimension. The slopes of the linear regressions of double

logarithmic plots were determined, and the estimated values of

the fractal dimensions were calculated by linear regressions.

Higuchi Dimension of Digital Images
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Linear regressions

Sample double logarithmic plots and linear regressions can be

seen in Figure 2. The linear regressions of the Higuchi method of

the images in Figure 1A can be seen in Figure 2A. A close

inspection shows a slight tendency for two linear regions, so the

actual linear regression was restricted to the second region for

values between 20 to 89. This restriction gave the best absolute

Figure 2. Double logarithmic plots of the Higuchi and Fourier dimension. The individual ranges of linear regressions are depicted. A The
slopes of the Higuchi dimension show a slight tendency for two linear regions. Thus, the range of linear regression was limited to the second linear
region in order to gain the best absolute dimension values. The linear regression fit the data very well, with coefficients of determination R2 higher
than 0.993. B The plot data of the Fourier dimension are highly dispersed. The coefficients of determination R2 were about 0.332. The highest value
was 0.664.
doi:10.1371/journal.pone.0024796.g002
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values, e.g., a sinusoidal shape should have DH = 1, while a

random shape should have DH = 2. The linear regressions fit the

data very well, with coefficients of determination R2 higher than

0.993.

The linear regressions of the Fourier method can be seen in

Figure 2B. Obviously, compared to the Higuchi method, the plot

data is highly dispersed, and the linear regressions did not fit the

data very well. The coefficients of determination R2 were worse

than for the Higuchi method at approximately 0.332. The highest

value was only 0.664.

Fractal dimensions of fractal shapes
As a first comparison of the Higuchi dimension analysis to the

Fourier dimension analysis, gray value images, featuring a fractal

surface and predefined certain fractal dimensions, were investi-

gated. The predefined fractal dimensions were D = 2.2, D = 2.5

and D = 2.8, representing low, medium and high fractal

dimensions, respectively.

Figure 3 and 4 show the results, and the abscissa values are the

predefined fractal dimensions. For every predefined fractal

dimension, 100 different images were investigated. The error bars

depict the calculated standard deviations. Figure 3 shows the

Higuchi dimension results for methods (i), (ii), (iii) and (iv),

respectively. Figure 4 shows the results for the Fourier dimension

analysis.

The values of the Higuchi dimension analysis show a continuous

increase and very low levels of errors. The values for the projection

method (i) were slightly smaller than for method (ii). Method (ii)

and (iii) yielded quite similar values. Again method (iv) yielded

marginally smaller values but not so much as method (i). As

mentioned in the method section, a single value for an image was

calculated.

In contrast, the values of the Fourier dimension (Figure 4) show

very clearly that there are some very bad estimates. The values for

fractal dimensions from 2.5 and 2.8 are estimated quite well, but

the calculation for the lower value of 2.2 shows a very poor

estimate.

Fractal dimensions of non fractal shapes
The results for an image with a constant gray value, an image

with a cosine shaped gray value course in the x-direction can be

seen on the left side of Figures 3 and 4. The result for an image

with random gray values can be seen on the right side of Figures 3

and 4.

In accordance with the theory, the constant gray value image

has an estimated Higuchi dimension of zero for all four methods

(i), (ii), (iii) and (iv). Furthermore, the cosine shaped varying image

in the x-direction and constant values in y-direction has a Higuchi

dimension of one in the x-direction and a Higuchi dimension of

zero in y-direction. The average value of approximately 0.5 for

methods (i) and (ii) can be seen in Figure 3. Methods (iii) and (iv)

yielded a value around 1, as can be seen in Figure 3, too. Finally,

the Higuchi dimension of the random image correctly shows the

highest values of all.

Contrary to these positive findings for the Higuchi dimension

analysis, the Fourier dimension analysis led to quite erroneous

values for the non fractal images, which can be seen in Figure 4.

The negative values obtained for the constant image and the

cosine image are simply incorrect. The Fourier dimension DF ~4
of the random dimension should instead be 3 and is therefore far

too large.

Influence of ROI
The influence of ROIs on the calculations of fractal dimensions

is evident, because all the pixels outside of the ROI are zero,

representing a black background. If these zeros were included in

the calculations, they would definitely alter the results. Therefore,

the exclusion of these pixels seems to be mandatory. Exclusion

seems to be an easy way of avoiding these problems, but

unfortunately this exclusion is not possible for every ROI. In fact,

Figure 3. Higuchi dimensions of fractal and non-fractal images. Higuchi dimensions for an image with a constant gray value, an image with a
cosine shaped gray value course in the x-direction, three images with predefined fractal dimensions (D = 2.2, 2.5, 2.8) and an image with random gray
values. The legend depicts the distinct 2D to 1D methods (i)–(iv). (i) projection and averaging the values for the x- and y-direction. (ii) examining every
row and column and calculations of averages. (iii) 180 radial lines through the centre of the image and calculations of averages and (iv) spirals
through the image and calculations of averages.
doi:10.1371/journal.pone.0024796.g003

Higuchi Dimension of Digital Images

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24796



exclusion is only possible for a rectangular ROI, because the

image inside the ROI can be extracted as a new image. For all

other arbitrary shaped ROIs, there will always be some zero

pixels. The influence of background effects was not examined for

the Fourier dimension, due to the bad results presented so far. At

this stage of development, it appears to be unnecessary to attempt

to adapt the Fourier method to give reliable results, especially for

ROIs. On the other hand, the Higuchi method offers great

potential to overcome these ROI influences very easily. It is

possible to exclude background (zeroes) prior to the dimension

calculations, and the results thereby gained are shown in Tables 1

and 2 for projection method (i) and extraction method (ii),

respectively. The first two rows show the ‘‘correct’’ values without

ROIs, where an exclusion of background does not alter the results,

due to an absence of zero background values.

The rectangular ROI caused following distortions in case of

including background (third row in the tables) compared to the

‘‘correct’’ values (first/second row in the tables). For the constant

image, projection method (i) (Table 1) showed a far too high

Higuchi dimension DH of approximately 1 instead of DH = 0.

Extraction method (ii) (Table 2) led to a Higuchi dimension value

estimation of 0.74. Almost identical values were gained for the

cosine shaped image. The values for the predefined fractal images

(D = 2.2, 2.5, 2.8) are drastically lowered, which is a clear

consequence of the leading and tailing zeroes. Effectively, the

values represent a mixture of both fractal dimensions (D = 2.2, 2.5,

2.8 and 0). Decreased values can also be seen for the random

image. Overall, the influence of a rectangular ROI is very drastic

and cannot be neglected. On the other hand, exclusion of the

background (fourth row in the tables) compensated the ROI effects

very well. The values for the non-fractal images are now nearly

correct. Only the values for the fractal images and the random

image are marginally higher.

The elliptical ROI caused distortions in case of including

background (fifth row in the tables) compared to the ‘‘correct’’

values (first/second row in the tables), which are quite similar to

the rectangular case. The details are not really of interest, because

an arbitrary ROI would lead to an arbitrary background,

Figure 4. Fourier dimensions of fractal and non-fractal images. Fourier dimensions for an image with a constant gray value, an image with a
cosine shaped gray value course in the x-direction, three images with predefined fractal dimensions (D = 2.2, 2.5, 2.8) and an image with random gray
values. Inaccurate as well as erroneous values are emphasized with arrows.
doi:10.1371/journal.pone.0024796.g004

Table 1. ROI influences on Higuchi Dimension using
projection method (i).

ROI Backgr. Const Cos D = 2.2 D = 2.5 D = 2.8 Random

- Incl. 0 0.59 1.36 1.53 1.73 2.09

- Excl. 0 0.59 1.36 1.53 1.73 2.09

Rect. Incl. 1.09h 1.14h 1.19l 1.32l 1.45l 1.26l

Rect. Excl. 0 0.59 1.40 1.68 1.90 2.16

Ellipse Incl. 1.29h 1.23h 1.37l 1.46l 1.52l 1.37l

Ellipse Excl. 0 1.48h 1.40 1.59 1.74 2.14

hvalue is too low.
lvalue is too high.
doi:10.1371/journal.pone.0024796.t001

Table 2. ROI influences on Higuchi Dimension using every
row and column extraction method (ii).

ROI Backgr. Const Cos D = 2.2 D = 2.5 D = 2.8 Random

- Incl. 0 0.59 1.58 1.80 1.99 2.10

- Excl. 0 0.59 1.58 1.80 1.99 2.10

Rect. Incl. 0.74h 0.75h 0.95l 1.11l 1.22l 1.28l

Rect. Excl. 0 0.59 1.64 1.90 2.07 2.16

Ellipse Incl. 1.14h 1.04h 1.23l 1.41l 1.55l 1.64l

Ellipse Excl. 0 0.56 1.51 1.76 1.97 2.10

hvalue is too low.
lvalue is too high.
doi:10.1371/journal.pone.0024796.t002
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influencing the results in an individual manner. More important is

the question of whether it is possible to restore the values by

eliminating the background. In contrast to a rectangular ROI, the

background influence can not be eliminated in the same manner,

especially for method (i) (sixth row in Table 1). A data point of the

projection is only zero when and where all image pixels along the

projection direction are zero. In fact, this condition holds only for

pixels outside the surrounding rectangle of the ellipse. The areas

inside the corners of the surrounding rectangle have zero values,

and therefore the projection sums include these zero values, which

evidently alter the determinations of the Higuchi dimension.

Again, the elimination of the background resembled, with a high

degree of conformity, the ‘‘correct’’ values.

Finally, using the extracted signals according to method (ii)

(sixth row in Table 2), it was again possible to restore the values for

the Higuchi dimension.

Discussion

There are several accepted methods for determining the fractal

properties of objects represented by digital images. The unavoid-

able drawback of digital images is the limited resolution. A pixel of

an image is the smallest element, while the size of the image is the

largest element of an image. Nevertheless, fractal analysis of digital

images has been very successful in the past and can give reliable

results with a high degree of validity [24,25]. In contrary, this

study showed that the Fourier method, which is commonly well

suited for gray value images, performed rather poorly if solely

regions of interests should be evaluated. The problem of the

Fourier method is that it cannot be restricted to regions of interests

at all. The discrete Fourier transformation of digital images is

calculated with sums of all the elements in the individual rows and

columns. A spatial data restriction is not compatible with discrete

Fourier transformation.

In this study, an extension of the classical methods (e.g. Fourier

dimension) for digital images has been proposed. This extension

includes the use of fractal signal analysis and incorporates a time

series evaluation method, developed for the determination and

investigation of chaotic dynamical systems. The 2D digital images

must be transformed into 1D signals, and the resulting gray level

signal can be treated as if it were a time series signal.

The fractal dimensions of the 1D signals were calculated using

the Higuchi method. Prior investigations included quite complex

methods, such as phase space reconstructions. Especially, Mattfeld

[20] proposed a method of stitching together 10 consecutive

binary images of 5106510 pixels. The fraction of cells within 510

pixel long column perpendicular to the long axis gave the values

for an 1D function. Despite the overall complexity, calculations

were restricted to binary images. Contrary, calculations for the

Higuchi method do not require a very high computational effort

and can be implemented very fast for grey value images, without

the need of image segmentation. Klonowski et al. [21] have

already implemented the projection method according to (i) but

comparisons to other extraction methods or the restriction to

region of interests were not given.

In this study four 2D to 1D transformations have been

thoroughly examined. The projection method (i) yields two 1D

signals, which yield two values for the fractal dimension of one

image: one for the x-axis and another for the y-axis. If the object in

the digital image should be characterized by a single fractal

dimension, an average of both values can be calculated. This

average reflects the fractal dimension of the whole image,

eliminating possible directional dependencies. For radially sym-

metric objects like fractal landscapes, both values are nearly

identical. For other images, such as the image with a cosine shape

in the x-direction and constant shape in y-direction, both values

are different.

Therefore, the calculation of two directionally dependent fractal

dimensions allows the distinguishing of directional dependencies,

which cannot be resolved by classical 2D methods at all. In

addition to this advantage, it is always possible to average the two

different values and get a value identical to the classical methods.

The projection of the images according to method (i) naturally

causes a reduction of information. Hence, only global character-

istics of the object under investigation are examined. The actual

values have been slightly lower than the real values. If fine details

cannot be ignored, it is possible to avoid the projection by

extracting every row and/or column and by calculating the

corresponding means, according to method (ii). The computa-

tional effort is higher, but every individual value of every pixel is

incorporated. Again, the method has the advantage of calculating

directional dependencies, as well as the possibility of getting a

single average value for the whole image. Orientation independent

analyses can be carried out by using the extraction method (iii) or

(iv). The calculation effort is lower than for method (ii), but the

results are quite reliable. Particularly, the spiral extraction method

gives a rotationally independent result without the need of

calculating averages.

Moreover, the proposed methods can be applied to regions of

interests only. By eliminating the leading and tailing zeros, it has

been shown that the proposed 1D method estimates the fractal

dimension very well. For arbitrary shapes of the regions of

interests, it turned out, that the projection method according to

method (i) should be avoided, because there is the possibility of

summing up some zero values that are spatially located outside the

ROI, but inside the surrounding rectangle. In these cases, it is

necessary to use the extraction methods according to (ii) or (iii).

Despite the effectiveness of the proposed 1D extraction method,

especially compared to the Fourier method, the limitation is

obviously the indirect determination of fractal dimensions D2Dof

two dimensional objects. In principle, for any one dimensional

algorithm, D2D could be determined by adding 1 to D1D,

D2D~D1Dz1, ð9Þ

but this may not be valid for every object, fractal or 2D to 1D

extraction method. Considering practical aspects of recalculating

D2D from D1D, the influence of ROIs, especially for the case of

projection, can be investigated by the following generalization:

D2D~D1Dzc, ð10Þ

c being an experimentally derived constant. Since a ROI is a

subset of the whole image, the fractal dimension of a ROI image

(as far as discussed in this study) should be equal to the fractal

dimension of the whole image. If at least one typical test image

without any ROI is available, D2D can be estimated with equation

(9). If several typical test images are available (which is often the

case), the mean could be calculated. Applying several typical ROIs

on this test image or these test images yields c, by using equation

(10). If c is known, the dimension D2D of a single image under

investigation with a ROI can be calculated with equation (10).

Conclusion
The fractal dimensions of objects in a digital image have been

investigated by classical 2D methods, such as Box counting or

Fourier methods, for a long time. Despite providing many reliable

Higuchi Dimension of Digital Images
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results, these methods have several restrictions, such as direction

independence and the impossibility to restrict calculations to

regions of interests. These shortcomings are especially problematic

because the restriction to regions of interests is a very common task

for biomedical images.

To overcome these limitations, this study proposes the

transformation of 2D image data to 1D data series and the

application of time series analyzing methods. The Higuchi

dimension was calculated, and it has been possible to show that

the proposed method is able to overcome the aforementioned

shortcomings of classical 2D methods. It is possible to obtain

directionally dependent fractal dimensions and, moreover, this

approach can handle regions of interests very well.

The transformations to 1D signals have been carried out by four

methods, but could be extended in future studies. Moreover, there

is the great advantage that any conceivable 1D method, initially

developed for time series analyses, can be adapted to investigate

the spatial gray level information of digital images. In particular, it

is intended to apply this method, as an example, to histological

images of intraepithelial neoplasia, where a directional examina-

tion was not possible before. Prior quantitative examinations

included the spatial shape and structure of nuclei [26], but it was

not possible to consider their directional distribution throughout

the epithelium. In addition, the possibility of restriction to regions

of interests will decrease calculation errors and improve classifi-

cation results. This method will certainly help the pathologist solve

a long time diagnosis problem.
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