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Abstract: As outlined in the 3Gpp Release 16, 5G satellite access is important for 5G network
development in the future. A terrestrial-satellite network integrated with 5G has the characteristics
of low delay, high bandwidth, and ubiquitous coverage. A few researchers have proposed integrated
schemes for such a network; however, these schemes do not consider the possibility of achieving
optimization of the delay characteristic by changing the computing mode of the 5G satellite network.
We propose a 5G satellite edge computing framework (5GsatEC), which aims to reduce delay and
expand network coverage. This framework consists of embedded hardware platforms and edge
computing microservices in satellites. To increase the flexibility of the framework in complex scenarios,
we unify the resource management of the central processing unit (CPU), graphics processing unit
(GPU), and field-programmable gate array (FPGA); we divide the services into three types: system
services, basic services, and user services. In order to verify the performance of the framework, we
carried out a series of experiments. The results show that 5GsatEC has a broader coverage than the
ground 5G network. The results also show that 5GsatEC has lower delay, a lower packet loss rate,
and lower bandwidth consumption than the 5G satellite network.

Keywords: edge computing; on-board data processing; microservices; Integrated Terrestrial-Satellite
Networks

1. Introduction

Fifth-generation (5G) Next Generation Communication Networks will be a global game changer
from technological, economic, societal, and environmental perspectives [1]. In the future, 5G networks
will be mainly used to meet the needs of enhanced mobile broadband services of approximately
two billion users worldwide, as well as providing high reliability and low latency services in key
communication scenarios [2]. The requirements of 5G networks for global coverage and low latency
will have a great impact on the existing mobile network architecture of mobile operators.

The IMT-2020 (5G) Promotion Group defines “seamless wide-area coverage” as one of the four
technical scenarios of 5G networks [3]. Terrestrial 5G communication requires ground base station
support. Limited by economic costs, technology, and other factors, ground base stations cover only
~20% of the total land area. In desert, polar, and ocean regions, and other geographical locations where
it is difficult to build the base stations, there are no communication networks. The wide-area coverage
of a satellite radio access network could solve the coverage problem in 5G networks [4–8]. In recent
years, advances in radar and laser communication technologies have made satellite communications
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more bandwidth, less cost, and lower latency [9]. O3b [10], OneWeb, SpaceX Starlink [11], and other
low-orbit satellite constellations combine satellite communication services with Internet services,
making it easier for users to connect to satellite networks.

However, in the development of traditional satellite communication, there is no unified framework
and service interface, resource utilization is low, and computing power is poor. To provide services,
satellites need to access ground computing centers to transmit data, which takes up a large amount
of bandwidth and causes a high delay. In order to solve the delay problems, the ground 5G network
uses Mobile Edge Computing (MEC) to place part of the computing resources at the edge of the
network, which can effectively save bandwidth and reduce delay [12–16]. Considering the low latency
requirements of 5G networks and the limited bandwidth resources of satellite networks, in this paper
we propose a 5G Satellite edge computing framework (5GsatEC). In terrestrial 5G communication,
edge computing already exists, but the concept of edge computing on satellites is rarely mentioned. In
the past, the resources of computing, storage, and network in satellites were all developed for specific
applications, rather than the universal edge computing that supports multiple applications.

There are three main contributions of our work. This paper presents the system framework of the
5GsatEC and its resource platform. The hardware of 5GsatEC is based on an embedded platform, and
the software is decomposed into microservices. By using an embedded platform, 5GsatEC provides
resources with low power consumption. Moreover, the platform has a wide variety of resources, and
the optimal resource combination can be used to realize different services. Microservices will shield
the underlying interface and provide available resources in the form of basic services [17,18]. Finally,
the system characteristics of the ground network, satellite network, and 5GsatEC are simulated by
MATLAB, which proves that the SatEC framework is highly feasible and can effectively guide the
construction of practical applications.

This paper is organized as follows. Section 2 introduces the related research regarding satellite
communication with 5G and satellite on-board computing. Section 3 introduces the SatEC system
framework structure in terms of hardware and software. Section 4 reflects the system characteristics
through a typical service for SatEC on the 5G satellite. Finally, Section 5 presents a conclusion based
on the advantages and limitations of the SatEC system and offers a suggestion for future research.

2. Related Work

2.1. Satellite Communication with 5G

The satellite will be an important part of the next generation 5G communication network. Future
satellite communication and terrestrial mobile communication systems will share the use of frequency
resources and build a unified resource coordination platform [19,20]. In terms of hardware devices,
5G uses the development experience and results of Phased Array Antenna and Space Division
Multiplexing (SDM) technologies in the field of satellite communications and the satellite industry
to take advantage of 5G standardization, scale, and chip to reduce the high-frequency phased array
antenna and improve reliability and integration. In addition, in terms of network control, the satellite
network can be merged with the 5G virtualized core network through software gradual upgrade, and
finally integrated into the 5G network control cloud in the form of satellite communication dedicated
network element software and plug-ins [21].

The 5G context offers a promising opportunity to offer an integrated satellite/cellular service
to 5G user equipment [1]. Earlier papers combined 5G and satellite communication through the
Software Defined Network (SDN) technology [22–24]. Al-Zaidi and R et al. applied 5G base station
nodes equipped with MEC capabilities to a marine data acquisition and cartography system over Ship
Ad-hoc Networks (SANET) [25]. Z. Zhang et al. presented satellite network architecture based on
mobile edge computing, which integrates network resources through a dynamic network virtualization
technology and further designs a collaborative computing offload (CCO) model [26]. However, this
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work is more focused on the performance of task scheduling models, while our work specifies the
design of the architecture.

2.2. Satellite On-Board Computing

With increasing satellite communication performance requirements, the satellite on-board data
will depend more and more on the capability of the edge computing platform. Reconfigurable
on-board processing using Field-Programmable Gate Array (FPGA) has been used in a flexible satellite
communication system [27]. Additionally, some researchers have begun to study the application of
advanced design concepts being used in on-board systems. OBC-NG is a reconfigurable on-board
computing architecture for spacecraft [28]. It is based on a distributed heterogeneous network
which incorporates Commercial Off-The-Shelf (COTS)-based processors and FPGAs. However, the
above-mentioned system only considers the on-board application of devices or platforms. There is
no consideration of how create the hardware and software resources of 5G satellite nodes in order
to provide services to users. Therefore, it is necessary to design a framework for 5G Satellite edge
computing and provide various kinds of specific services based on on-board computing resources and
storage resources.

2.3. Drone Communications with 5G

In addition to satellites, drones are also considered as an important complement to ground 5G
networks. Due to their flexibility and inherent ability for line-of-sight (LoS) communications, drone
base stations (drone-BSs) can provide broadband, wide-scale, and reliable wireless connectivity during
disasters and temporary events. Drone-BSs offer a promising solution for ultraflexible deployment
and cost-effective wireless services [29]. Lagum et al. proposed a framework for strategic placement
of multiple drone-BSs that provides wireless connectivity for a large-scale ground network [30].
M. Mozaffari et al. presented a delay-optimal cell association scheme in an unmanned aerial
vehicle (UAV)-assisted terrestrial wireless network [31]. Mozaffari et al. proposed a concept of
three-dimensional (3D) cellular networks and a framework for network planning for drone-BSs as well
as latency-minimal cell association for drone user equipment [29]. Bor-Yaliniz et al. investigated both
the mobile-enabled drones (MED) and wireless infrastructure drones (WID) cases within the realistic
constraints of 5G and discussed potential solutions for highlighted open issues, either via application
of current standards, or by providing suggestions towards further enhancements [32].

3. System Framework

3.1. System Design

The design of the SatEC framework needs to consider the characteristics of the satellite system,
such as power consumption, reliability, scalability, and security. A specially designed hardware
resource platform based on embedded computing platforms will be the best choice. Energy source
limitation and heat dissipation of space-based systems limit the power consumption of on-orbit devices.
Paolucci, P.S. et al. compared the power of nonembedded platform with that of embedded platform,
the power consumption ratio is 14.375 [33]. Based on this result, we can conclude that the power
consumption of SatEC is much lower than that of terrestrial edge computing platform. At the same
time, compared with terrestrial 5G, services on satellite nodes are very different. It is necessary to
design a new service system for 5GsatEC. The core idea of the system is the embedded high reliability
hardware platform and the software architecture based on microservices. Furthermore, lightweight
virtual mechanisms will be key to minimize the resources that the infrastructure requires.

The proposed design described in Figure 1 can be divided into two layers: the hardware platform
and the software framework. The hardware platform, which is the infrastructure of the system,
provides computing resource, storage resource, and network resource for services and users. The
software framework is based on microservice architecture [18,34–37]. Using resource virtualization
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technology (virtual machine (VM), container, etc.), this layer shields the bottom hardware information
and provides a uniform interface for users [38,39]. All the functions will be provided in the form of
microservices. User’s services will be comprised by basic services.
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3.2. Hardware Platform

All nodes in the hardware platform are built in an embedded platform. A typical choice is
Xilinx Zynq UltraScale+™ MPSoC. The nodes in the hardware platform can be divided into two
types: management nodes and resource nodes. Figure 2 shows the framework of the hardware
resource platform. The management node is responsible for the user access, resource management and
scheduling, service deployment and management, network scheduling, and security strategy, among
other functions. It is the core of the whole system. Under management node control, the resource nodes
support multiple types of device access. Basic resource nodes include central processing unit (CPU)
nodes, graphics processing unit (GPU) nodes, FPGA nodes, storage nodes, and network resource.
Meanwhile, the resource management interface is open to the user, and users can create resource nodes
of new types easily. This framework not only improves the scalability of systems significantly, but also
provides a friendly interaction for users.

1. Master node: The master node is the core of the system, so it is designed with high reliability
systems. Multiple control nodes are deployed in the system, and the data consistency is
guaranteed by a high availability database based on the paxos protocol [40]. There is only
one leader node at a time. When the leader node is unavailable for some reason, the system
automatically selects a new leader from the following nodes, allowing the system to keep running.

2. Common resource node: The common resource source nodes provide common resources such as
CPU, memory, and storage to the SetEC system. Considering the power consumption constraints
of on-board devices, the hardware system of these nodes is made of ARM CPU, which is based
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on the Reduced Instruction Set Computer (RISC) architecture. Compared with the Intel X86
processor, the ARM process has small instruction sets: the hardware logic is relatively simple.
Therefore, it has fewer transistors than the X86 processor. The power consumption is consequently
relatively low. Using container-based virtual technologies (such as Docker), common resource
nodes can easily be used for virtualization.
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3. GPU resource node: This kind of nodes provide GPU computing resources, which are mainly
used in image processing, deep learning computation, and other compute-intensive applications.
GPU resource nodes are based on GPU NVIDIA jetson chips. This series of chips contains several
GPU cores and several ARM CPU cores. Using container virtual machines installed in the ARM
CPU, the master node can control and schedule GPU resources.

4. FPGA resource nodes: This node provides FPGA computing resources for the system [41]. It
is used for hardware acceleration in the fields of video/image processing, deep learning, gene
detection, financial data analysis, and so on. The FPGA resource node is built on the Xilinx
Zynq UltraScale + MPSoC FPGA platform, which contains multiple CPU cores and FPGA
programmable logic (PL) resources. The PL logic can be dynamically reconfigured. Using
container virtual machines installed in the ARM CPU, the master node can control and schedule
FPGA programmable logical resources.

5. Storage resource nodes: The storage resources of SatEC are distributed in each node, and hard
disks in all resource nodes can be used as storage resources in the SatEC resource platform.
However, other types of resource nodes have limited storage capability. Their storage resource
is mainly for their own use. The storage resource node is composed of ARM CPU and a large
capacity solid-state hard disk, which is mainly used for the storage of massive data. Storage
resource nodes support a variety of storage protocols: they can provide data access interfaces
for files, objects, and data blocks. Database system can also be deployed in the storage resource
nodes, and the database access interface is provided to the users.

6. Network resource nodes: The software defined network (SDN) is used in the management of
the network resources, and the master node uses the OpenFlow protocol to manage network
resource nodes. Based on the status of the network, a flow table is generated in the master node,
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and is sent to network resource nodes. The packets passing through the nodes will be routed
according to rules in the flow table. Master nodes and other resource nodes are all connected
to the network resource node. Data exchange between master nodes and resource nodes occurs
through network resource nodes. Except for network resource nodes, a Representational State
Transfer (REST) interface is used in resource management.

3.3. Software Framework

We built a 5G satellite edge computing service architecture based on microservices for SatEC.
According to the concept of “Software as a service” (SaaS), we built all the applications of the system
on “service” [42]. SatEC services can be divided into three categories: system services, basic services,
and user services. A system service is used for system management. It can provide services such
as external/internal interface, resource/service management, resource/service scheduling, high
availability database, and security management, and is the foundation of all other services. Basic
services include some general functions that are open to external users. A user service is based on core
services and basic services. It summarizes the common services of 5G satellite nodes at a higher level.
Figure 3 shows the service architecture and typical services of 5GsatEC. End-users can use all services
by way of the IP address: port number.
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(1) System services: System services are consists of many components. These components are
deployed in management nodes and different resource nodes. Components that will be deployed on
the master node include: user management (including user registration and management services,
user privilege management, etc.), interface management (API server, including the inside and outside
interface), system management (resource node management/service management/service-resource
mapping table/system log, etc.), resource scheduling, security management, network management,
a high availability database, and so forth. The system service components that will be deployed in
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resource nodes are interface management (resource node API), container management components,
and so on.

(2) Basic services: Typical basic services include message transmission services, data distribution
services, Consultative Committee for Space Data Systems (CCSDS) services, database services, object
storage services, Map-Reduce services, and TensorFlow services, among others. Basic services of
the 5GsatEC are deployed by the system service through service images. Service images are stored
in the image repository. Basic services are maintained by the system manager, and ordinary users
only have the authority to use these services. Basic services can be extended, and also can be added
or deleted when the system requirements change or the technology is upgraded. Basic services are
always running.

Message transport service: Provides distributed messaging services based on a publish/subscribe
mechanism. Messages can be divided into different topics. The producer releases messages, and the
consumer reads messages by subscribing to topics.

Database services: Providing database services for massive data storage.
CCSDS services: Providing CCSDS protocol conversion, parsing CCSDS packets, and package

data in the CCSDS protocol format.
Map-Reduce services: Services for big data computing, and also for networks resource control.
Spark services: A computing framework for data analysis.
TensorFlow services: Providing deep neural network services for video, image processing, and

so on.
(3) User services: Typical user services include map services, disaster alarm services, unmanned

aerial vehicle (UAV) control services, pipeline monitoring services, and global container tracking
services. Most of the user services are developed by third party developers for specific applications of
end-users. Service images are saved in the image repertory. When the user needs to use a service, it is
deployed immediately with the service image, and when the user stops using the service, it will be
deleted from the system.

Map services: Provide map services in remote areas that cannot be covered by 5G terrestrial base
stations, such as mountains, oceans, and other areas. User information can also be collected at the
same time.

Disaster warning services: release disaster alarm information to users in specific areas when
disaster events are detected. Disaster messages can be sent by ground disaster warning agencies, and
also can be identified automatically.

In 5GsatEC, the IP addresses of services change dynamically. In the process of system service
expansion, failure recovery, and online upgrading, the running instances number of services is also
dynamic. The user needs to obtain the available services and their invocation style through the service
discovery mechanism. SatEC uses a highly reliable database to establish a service registry center
at the master node to maintain the services list. The service registry provides service registration
and query services through the REST API. POST\DELETE\GET are operations of REST API. The
newly deployed services register their IP addresses and ports to the service registry through the POST
operation. Services can be cancelled through a DELETE request. Through the GET operation, users
can obtain information relating to available services.

4. Analysis, Comparisons, and Future Plans

4.1. Simulation Environment

In order to validate the proposed 5GsatEC framework, a test environment was built on the ground.
The full architecture, including hardware, software and services, will be verified in a prototype

system in the future. The test platform will include eight nodes (Table 1). All these nodes will be
developed in the embedded platform.
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Table 1. Resources in the test platform.

Nodes Quantity Remarks

Master node 3 Also used as common resource
nodes

Common resource node 1 —–
FPGA resource nodes 1 —–
GPU resource node 1 —–

Storage resource node 1 —–
Network resource nodes 1 —–

The key of the hardware platform in the 5GsatEC framework is the combination of heterogeneous
embedded resources. Through the above demonstrated system, software based on microservices can
shield the underlying hardware information, which can promote deployment of the framework in the
5G network.

The advantages of the 5G satellite network over the ground 5G satellite network and existing
satellite network are illustrated by two specific examples. The experimental simulation scenario is
shown in Figure 4. Users in remote areas are not covered by the ground 5G communication network.
Space networks are divided into the 5GsatEC network and satellite network, based on edge computing
capabilities. In the simulation experiment, the satellite’s characterization parameters include the
number of satellites, satellite height, processing power (calculation and storage), and number of
supported users. The characterization parameters of the 5G communication network include coverage,
number of nodes available, and number of supported users. The meaning of each time cost is explained
in Table 2.
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Table 2. The meaning of each time cost.

Time Cost Meaning

T1 The time cost of moving to the coverage of communication networks
T2 The time cost of forwarding data in terrestrial 5G network
T3 The time cost of processing data in terrestrial 5G network
T4 The time cost of uploading data
T5 The time cost of forwarding data among intersatellite links
T6 The time cost of downloading result
T7 The time cost of forwarding data to data center

4.2. Simulation Results

Example 1: The user is located in an extremely remote area and wants to communicate with
another user. Using the 5G ground network, users need to walk to point A at least because of the
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physical requirements for connecting to the ground base station, so the time delay of users’ access to
the network is walking time T1+propagation time T2. However, if the 5GsatEC network is used, the
total time delay is only T4, without needing to consider user movement. Although T4 may be larger
than T2, it remains basically the at the same time scale as T2, and much less than T1.

According to the following settings, the time delays of the 5G satellite network and 5GsatEC
network are compared. 5G satellite altitude: 500 km–1200 km [21]; ground 5G base station coverage:
300 m [43]; electromagnetic wave velocity: 3.0 × 108 m/s; distance from user to point A: 100 m;
walking speed: 2 m/s. The delay between the ground 5G network and 5GsatEC is shown in Table 3.
Although we compare the time delay, it actually shows the difference in the coverage performance of
the ground 5G network and 5GsatEC networks. This is because timeliness is one of the characteristics
of communication. When the delay exceeds a certain range, it is considered that the network cannot
cover the area. Otherwise, when the delay was acceptable, the network was considered to have covered
the area. In this experiment, the user can connect to the ground base station by his own movement,
but the walking time is much longer than the ordinary communication time. It has bad timeliness. In
fact, the ground network has no coverage for this user. We illustrate network coverage performance
through the comparison of delay. It is a conversion from qualitative problem to quantitative problem.

Table 3. Delay between ground 5G network and 5GsatEC.

Network Type Ground 5G Network 5GsatEC

Delay (s) 50.0000 0.0016

In addition, we refer to the constellation model of the Iridium communication system [44] and
test the satellite communication coverage through the (Satellite Tool Kit) STK simulation software, as
shown in Figures 5–7. Figure 5 shows a plan view of the global coverage of satellite networks.
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Figures 6 and 7 are obtained by calculation of STK’s coverage analysis tool. Figure 6 shows that at
each moment, the accumulative coverage of the satellite to the global region is 100%. Figure 7 shows
that at different latitudes, the satellite coverage time ratio is 100%. Through the simulation of satellite
coverage performance, it can be found that setting a reasonable satellite constellation can make up for
the shortcomings that the network is difficult to cover in remote areas.

Example 2: Users are located in extremely remote areas and want to achieve cloud processing of
application data (suppose there is a lot of data to be processed, but the amount of data returned is very
small, so the transmission delay of the return can be neglected). If traditional satellite communication is
used, the data need to be sent to the remote data center. The total delay for the user to obtain the result
is T4+T5+T6+T7+data processing delay. However, if the 5GsatEC network is used, the user data can
be processed in the edge data center. The total delay to obtain the user’s results is T4+data processing
delay, which is obviously better than the network framework without edge computing [5,45,46].

According to the following settings, the delay of the 5G ground network and 5GsatEC network is
compared. 5G satellite base station upstream rate: 10 Mbps; downstream rate: 100 Mbps [3]; user data
quantity: 400 M; ground data processing time: 4 s; on-board data processing time: 7 s; transmission
delay of intersatellite link: 2 s; transmission delay of ground network: 0.1 s. The packet loss rate per
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hop in the network transmission is 1/1000, and the packets will be retransmitted until they reach
the destination.

According to the above parameters, we built a model in MATLAB. In this paper, we focus on
analysis of the computation capacity and the storage capacity of the proposed framework. The delay
varies with the number of users, as depicted in Figure 8. We assume each process mode has no storage
resource in this case. Each user occupies a part of the computation resource. When the on-board
computing resources are fully occupied, the data will be unloaded to the ground computing centers,
which is the same as in the traditional satellite communication mode.
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Figure 8. Delay between the satellite network and 5GsatEC with no storage.

The results show that when the framework computes with one core, it can provide a low latency
service within 100 users. Even if there are more than 100 users, the average delay is still smaller than
when using the satellite network. 5GsatEC optimizes the calculation delay in the edge area, and the
number of users reducing latency is positively correlated with the on-board computing capacity.

Figure 9 shows the relationship between end-to-end latency and storage. In the 5GsatEC
framework, when computing resources are fully occupied, the computing tasks will be stored at
first and then computed later. Task queuing duration is related to computing capacity.

In Figure 9a, we set the 5GsatEC computing resource as two cores. When storing 500 M bit tasks,
the total queuing and processing time is longer than the processing time through the satellite network,
and the performance of storing 1 T bit tasks is lower than that of storing 500 M bit tasks. However, the
average end-to-end delay of 5GsatEC is still lower than that of the satellite network.

In Figure 9b, the 5GsatEC computing resource is set to three cores, and the stronger computing
capacity reduces the queuing delay, so that the delay decreases with the increase of storage capacity.
Figure 9 shows that the optimal value of the cache task is related to the computing capacity. When the
average queue time lower than the time difference between the processing time of the satellite network
and that of 5GsatEC, the delay decreases as the storage capacity increases.
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Figure 10 shows the relationship between the packet loss rate and storage resource in the condition
of increasing users. In this case, we set the 5GsatEC computing resource as one core. In the satellite
network, when the number of users exceeds the system forwarding capability, the satellite network
will discard excess packets, causing the packet loss rate to increase rapidly. In the 5GsatEC framework,
when the rate of receiving data packets is greater than its processing capacity, 5GsatEC will store the
redundant data packets and process them later to reduce the packet loss rate.
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Figure 10. Packet loss rate between the satellite network and 5GsatEC.

As shown in Figure 10, the packet loss rate decreases with the increase of storage capacity in the
5GsatEC framework, and the performance with a decreasing packet loss rate is significantly better
than the performance achieved by the satellite network.

Figure 11 depicts the relationship between upload bandwidth occupancy and download
bandwidth occupancy. The satellite network simply forwards data packets, so the upload bandwidth
occupancy is the same as the download bandwidth occupancy. However, the packets will be processed
before they are forwarded in 5GsatEC. Different data types have different degrees of compressibility.
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Figure 11 shows the downstream bandwidth occupancy of the satellite network and 5GsatEC
when they deal with different data packets. The 5GsatEC saves a significant amount of download
bandwidth compared to the satellite network.

5GsatEC has the characteristic of broader coverage, like the satellite network; meanwhile, on-board
data processing and storage make up the long end-to-end delay. Service performance in 5GsatEC is
related to storage and computing resources. More storage and computing resources can be placed on
board as weight and power consumption permit.
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5. Conclusions

In this article, we have presented a novel framework—SatEC—for providing services using 5G
satellites. In this framework, all resource nodes are embedded, and they are virtualized into a resource
platform for deploying services. All functions of this framework are decomposed into services. There
are three kinds of services: system services, basic services, and user services, and they play different
roles in the framework. Basic services and user services can be deployed to resource platforms by
the system service. Compared to other frameworks, the SatEC framework has the characteristics of
broader coverage, lower user latency, a lower packet loss rate, and lower bandwidth consumption.

In the future, we will build a prototype system with eight embedded resource nodes. Lightweight
platform software and a specially designed resource allocation algorithm will be developed to improve
service performance. We will also explore the possibility of using more kinds of high-performance
embedded platforms in the resource nodes. Finally, more services for 5G satellite users will be deployed
on this platform.

Author Contributions: Conceptualization, L.Y. and S.C.; Methodology, L.Y.; Validation, H.H. and Y.Z.;
Investigation, S.Y. and J.W.; Writing—Original Draft Preparation, L.Y.; Writing—Review and Editing, H.H.,
Y.Z., S.Y., and J.W.; Visualization, H.H. and J.W.; Supervision, L.Y., Y.G., and S.C.; Project Administration, L.Y.

Funding: The project was supported by the National Natural Science Foundation of China (No. 617011484), the
Open Fund of IPOC (BUPT), and the National Defense Science and Technology Innovation Zone Project of China.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Mueck, M.; Strinati, E.C.; Kim, I.G.; Clemente, A.; Dore, J.B.; De Domenico, A.; Kim, T.; Choi, T.; Chung, H.K.;
Destino, G.; et al. 5g champion—Rolling out 5g in 2018. In Proceedings of the 2016 IEEE Globecom
Workshops (Gc Wkshps), Washington, DC, USA, 4–8 December 2016; Volume 6.

2. 5GPPP. 5g-Vision-Brochure-v1. In 5GPPP White Paper; 5GPPP: Heidelberg, Germany, 2015.
3. Alliance, N. 5g White Paper; White Paper; Next Generation Mobile Networks: Frankfurt am Main, Germany,

2015; pp. 1–125.
4. 3GPP. Study on Scenarios and Requirements for Next Generation Access Technologies (Release 14): Tr38.913; 3GPP:

Valbonne, France, 2017.
5. Giambene, G.; Kota, S.; Pillai, P. Satellite-5g integration: A network perspective. IEEE Netw. 2018, 32, 25–31.

[CrossRef]
6. Evans, B.G. The Role of Satellites in 5g. In Proceedings of the 2014 7th Advanced Satellite Multimedia

Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC),
Livorno, Italy, 8–10 September 2014; pp. 197–202.

7. Di, B.; Zhang, H.; Song, L.; Li, Y.; Li, G.Y. Ultra-dense leo: Integrating terrestrial-satellite networks into 5g
and beyond for data offloading. arXiv 2018, arXiv:1811.05101. [CrossRef]

8. Choi, J.P.; Joo, C. Challenges for efficient and seamless space-terrestrial heterogeneous networks. IEEE
Commun. Mag. 2015, 53, 156–162. [CrossRef]

9. Gregory, M.; Heine, F.; Kämpfner, H.; Meyer, R.; Fields, R.; Lunde, C. Tesat laser communication terminal
performance results on 5.6gbit coherent inter satellite and satellite to ground links. In Proceedings of the
International Conference on Space Optics (ICSO 2010), Rhodes Island, Greece, 4–8 October 2010; p. 37.

10. Wood, L.; Lou, Y.; Olusola, O. Revisiting elliptical satellite orbits to enhance the o3b constellation. J. Br.
Interplanet. Soc. 2014, 67, 110–118.

11. Foreman, V.; Siddiqi, A.; de Weck, O. Large satellite constellation orbital debris impacts: Case studies of
oneweb and spacex proposals. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition,
Orlando, FL, USA, 12–14 September 2017.

12. Luan, T.H.; Gao, L.; Li, Z.; Xiang, Y.; Wei, G.; Sun, L. Fog computing: Focusing on mobile users at the edge.
arXiv 2015, arXiv:1502.01815.

13. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE
Commun. Surv. Tutor. 2017, 19, 1628–1656. [CrossRef]

http://dx.doi.org/10.1109/MNET.2018.1800037
http://dx.doi.org/10.1109/TWC.2018.2875980
http://dx.doi.org/10.1109/MCOM.2015.7105655
http://dx.doi.org/10.1109/COMST.2017.2682318


Sensors 2019, 19, 831 15 of 16

14. Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing—A key technology towards
5g. ETSI White Pap. 2015, 11, 1–16.

15. Feng, Y.; Wang, W.; Liu, S.; Cui, G.; Zhang, Y. Research on cooperative caching strategy in 5g-satellite
backhaul network. In Proceedings of the 2nd International Conference on Space Information Networks,
SINC 2017, Yinchuan, China, 10–11 August 2017; Springer: Yinchuan, China, 2018; pp. 236–248.

16. Hsieh, H.C.; Lee, C.S.; Chen, J.L. Mobile edge computing platform with container-based virtualization
technology for iot applications. Wirel. Pers. Commun. 2018, 102, 527–542. [CrossRef]

17. Balalaie, A.; Heydarnoori, A.; Jamshidi, P. Microservices architecture enables devops: Migration to a
cloud-native architecture. IEEE Softw. 2016, 33, 42–52. [CrossRef]

18. Alam, M.; Rufino, J.; Ferreira, J.; Ahmed, S.H.; Shah, N.; Chen, Y. Orchestration of microservices for iot using
docker and edge computing. IEEE Commun. Mag. 2018, 56, 118–123. [CrossRef]

19. Wang, N.; Nouwell, N.; Ge, C.; Evans, B.G.; Rahulan, Y.; Boutin, M.; Desmauts, J.; Liolis, K.P.; Politis, C.;
Votts, S.; et al. Satellite support for enhanced mobile broadband content delivery in 5g. In Proceedings of the
2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia,
Spain, 6–8 June 2018; pp. 1–6.

20. Kalantari, A.; Fittipaldi, M.; Chatzinotas, S.; Vu, T.X.; Ottersten, B. Cache-assisted hybrid satellite-terrestrial
backhauling for 5g cellular networks. In Proceedings of the Globecom 2017 IEEE Global Communications
Conference, Singapore, 4–8 December 2017; IEEE: New York, NY, USA, 2017.

21. Guidotti, A.; Vanelli-Coralli, A.; Caus, M.; Bas, J.; Colavolpe, G.; Foggi, T.; Cioni, S.; Modenini, A.; Tarchi, D.
Satellite-Enabled Lte Systems in leo Constellations. In Proceedings of the 2017 IEEE International Conference
on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 876–881.

22. Boero, L.; Bruschi, R.; Davoli, F.; Marchese, M.; Patrone, F. Satellite networking integration in the 5g
ecosystem: Research trends and open challenges. IEEE Netw. 2018, 32, 9–15. [CrossRef]

23. Mendoza, F.; Ferrus, R.; Sallent, O. Sdn-based traffic engineering for improved resilience in integrated
satellite-terrestrial backhaul networks. In Proceedings of the 2017 4th International Conference on
Information and Communication Technologies for Disaster Management (Ict-Dm), Münster, Germany,
11–13 December 2017.

24. Yang, L.; Yu, X.; Zhu, H.; Chen, W.; Cao, Y.; Zhao, Y.; Li, H.; Zhang, J.; Yi, L. Resource allocation in software
defined hybrid satellite-terrestrial communication networks toward 5g. In Proceedings of the 6th IEEE
International Conference on Network Infrastructure and Digital Content (IC-NIDC 2018), Guiyang, China,
22–24 August 2018; pp. 300–303.

25. Al-Zaidi, R.; Woods, J.; Al-Khalidi, M.; Alheeti, K.M.A.; McDonald-Maier, K. Next generation marine data
networks in an iot environment. In Proceedings of the 2017 Second International Conference on Fog and
Mobile Edge Computing (Fmec), Valencia, Spain, 8–11 May 2017; pp. 50–55.

26. Zhang, Z.; Zhang, W.; Tseng, F. Satellite mobile edge computing: Improving QoS of high-speed
satellite-terrestrial networks using edge computing techniques. IEEE Netw. 2019, 33, 70–76. [CrossRef]

27. Hofmann, A.; Glein, R.; Frank, L.; Wansch, R.; Heuberger, A. Reconfigurable on-board processing for flexible
satellite communication systems using fpgas. In Proceedings of the 2017 Topical Workshop on Internet of
Space (Twios), Phoenix, AZ, USA, 15–18 January 2017; pp. 9–12.

28. Ludtke, D.; Westerdorff, K.; Stohlmann, K.; Borner, A.; Maibaum, O.; Peng, T.; Weps, B.; Fey, G.; Gerndt, A.
Obc-ng: Towards a reconfigurable on-board computing architecture for spacecraft. In Proceedings of the
2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014.

29. Mozaffari, M.; Kasgari, A.T.Z.; Saad, W.; Bennis, M.; Debbah, M. Beyond 5g with uavs: Foundations of a 3d
wireless cellular network. IEEE Trans. Wirel. Commun. 2019, 18, 357–372. [CrossRef]

30. Lagum, F.; Bor-Yaliniz, I.; Yanikomeroglu, H. Strategic densification with uav-bss in cellular networks. IEEE
Wirel. Commun. Lett. 2018, 7, 384–387. [CrossRef]

31. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Optimal transport theory for cell association in uav-enabled
cellular networks. IEEE Commun. Lett. 2017, 21, 2053–2056. [CrossRef]

32. Bor-Yaliniz, I.; Salem, M.; Senerath, G.; Yanikomeroglu, H. Is 5G Ready for Drones: A Look into
Contemporary and Prospective Wireless Networks from a Standardization Perspective. IEEE Wirel. Commun.
2019, 26, 18–27. [CrossRef]

http://dx.doi.org/10.1007/s11277-018-5856-5
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1109/MCOM.2018.1701233
http://dx.doi.org/10.1109/MNET.2018.1800052
http://dx.doi.org/10.1109/MNET.2018.1800172
http://dx.doi.org/10.1109/TWC.2018.2879940
http://dx.doi.org/10.1109/LWC.2017.2779483
http://dx.doi.org/10.1109/LCOMM.2017.2710306
http://dx.doi.org/10.1109/MWC.2018.1800229


Sensors 2019, 19, 831 16 of 16

33. Paolucci, P.S.; Ammendola, R.; Biagioni, A.; Frezza, O.; Cicero, F.L.; Lonardo, A.; Martinelli, M.; Pastorelli, E.;
Simula, F.; Vicini, P. Power, energy and speed of embedded and server multi-cores applied to distributed
simulation of spiking neural networks: Arm in nvidia tegra vs intel xeon quad-cores. arXiv 2015,
arXiv:1505.03015.

34. Thones, J. Microservices. IEEE Softw. 2015, 32, 113–116. [CrossRef]
35. Di Francesco, P.; Malavolta, I.; Lago, P. Research on architecting microservices: Trends, focus, and potential

for industrial adoption. In Proceedings of the 2017 IEEE International Conference on Software Architecture
(ICSA 2017), Gothenburg, Sweden, 3–7 April 2017; pp. 21–30.

36. Villari, M.; Celesti, A.; Tricomi, G.; Galletta, A.; Fazio, M. Deployment orchestration of microservices with
geographical constraints for edge computing. In Proceedings of the 2017 IEEE Symposium on Computers
and Communications (ISCC 2017), Heraklion, Greece, 3–7 July 2017; pp. 633–638.

37. Smet, P.; Dhoedt, B.; Simoens, P. Docker layer placement for on-demand provisioning of services on edge
clouds. IEEE Trans. Netw. Serv. Mang. 2018, 15, 1161–1174. [CrossRef]

38. Mavridis, I.; Karatza, H. Combining containers and virtual machines to enhance isolation and extend
functionality on cloud computing. Future Gener. Comput. Syst. 2019, 94, 674–696. [CrossRef]

39. Ding, W.; Ghansah, B.; Wu, Y. Research on the virtualization technology in cloud computing environment.
Int. J. Eng. Res. Afr. 2016, 21, 191–196. [CrossRef]

40. Pease, C.; Shostak, M.E.; Lamport, R.L. Reaching agreement in the presence of faults. J. ACM 1980, 27,
228–234. [CrossRef]

41. Ricart-Sanchez, R.; Malagon, P.; Salva-Garcia, P.; Perez, E.C.; Wang, Q.; Calero, J.M.A. Towards an
fpga-accelerated programmable data path for edge-to-core communications in 5g networks. J. Netw. Comput.
Appl. 2018, 124, 80–93. [CrossRef]

42. Aulbach, S.; Grust, T.; Jacobs, D.; Kemper, A.; Rittinger, J. Multi-tenant databases for software as a service. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC,
Canada, 9–12 June 2008; pp. 1195–1206.

43. Valenzuela-Valdés, J.F.; González-Macías, Á.P.; Valenzuela-Valdés, J.C.; Padilla, A.; Luna-Valero, P.F. On
the ultra-dense small cell deployment for 5g networks. In Proceedings of the 2018 IEEE 5G World Forum
(5GWF), Silicon Valley, CA, USA, 9–11 July 2018; pp. 369–372.

44. Jia, Y.; Peng, Z. The analysis and simulation of communication network in iridium system based on opnet.
In Proceedings of the 2010 2nd IEEE International Conference on Information Management and Engineering,
Chengdu, China, 16–18 April 2010; pp. 68–72.

45. Kodheli, O.; Guidotti, A.; Vanelli-Coralli, A. Integration of satellites in 5g through leo constellations. In
Proceedings of the GLOBECOM 2017—IEEE Global Communications Conference, Singapore, 4–8 December
2017; pp. 1–6.

46. Artiga, X.; Nunez-Martinez, J.; Perez-Neira, A.; Vela, G.J.L.; Garcia, J.M.F.; Ziaragkas, G. Terrestrial-satellite
integration in dynamic 5g backhaul networks. In Proceedings of the 2016 8th Advanced Satellite Multimedia
Systems Conference and the 14th Signal Processing for Space Communications Workshop (ASMS/SPSC),
Palma de Mallorca, Spain, 5–7 September 2016; pp. 1–6.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MS.2015.11
http://dx.doi.org/10.1109/TNSM.2018.2844187
http://dx.doi.org/10.1016/j.future.2018.12.035
http://dx.doi.org/10.4028/www.scientific.net/JERA.21.191
http://dx.doi.org/10.1145/322186.322188
http://dx.doi.org/10.1016/j.jnca.2018.09.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Satellite Communication with 5G 
	Satellite On-Board Computing 
	Drone Communications with 5G 

	System Framework 
	System Design 
	Hardware Platform 
	Software Framework 

	Analysis, Comparisons, and Future Plans 
	Simulation Environment 
	Simulation Results 

	Conclusions 
	References

