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Inflammatory response is a host-protective mechanism against tissue injury or infections,
but also has the potential to cause extensive immunopathology and tissue damage, as
seen in many diseases, such as cardiovascular diseases, neurodegenerative diseases,
metabolic syndrome and many other infectious diseases with public health concerns,
such as Coronavirus Disease 2019 (COVID-19), if failure to resolve in a timely manner.
Recent studies have uncovered a superfamily of endogenous chemical molecules that
tend to resolve inflammatory responses and re-establish homeostasis without causing
excessive damage to healthy cells and tissues. Among these, the monocyte
chemoattractant protein-induced protein (MCPIP) family consisting of four members
(MCPIP-1, -2, -3, and -4) has emerged as a group of evolutionarily conserved
molecules participating in the resolution of inflammation. The focus of this review
highlights the biological functions of MCPIP-1 (also known as Regnase-1), the best-
studied member of this family, in the resolution of inflammatory response. As outlined in
this review, MCPIP-1 acts on specific signaling pathways, in particular NFkB, to blunt
production of inflammatory mediators, while also acts as an endonuclease controlling the
stability of mRNA and microRNA (miRNA), leading to the resolution of inflammation,
clearance of virus and dead cells, and promotion of tissue regeneration via its pleiotropic
effects. Evidence from transgenic and knock-out mouse models revealed an involvement
of MCPIP-1 expression in immune functions and in the physiology of the cardiovascular
system, indicating that MCPIP-1 is a key endogenous molecule that governs normal
resolution of acute inflammation and infection. In this review, we also discuss the current
evidence underlying the roles of other members of the MCPIP family in the regulation of
inflammatory processes. Further understanding of the proteins from this family will provide
new insights into the identification of novel targets for both host effectors and microbial
factors and will lead to new therapeutic treatments for infections and other
inflammatory diseases.
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INTRODUCTION

Inflammatory response is an immunological defense mechanism
of the host to infections and tissue damage (e.g., ischemic insults)
or stress (1). Damaged or stressed cells are thought to release
danger-associated molecular patterns (DAMPs) that can trigger
the innate immune system in the same manner as microbial
components, the so-called pathogen-associated molecular
patterns (PAMPs), by binding to host pattern-recognition
receptors (PRRs) presented on various cells, including immune
cells (T-cells, B-cells and NK cells) and the tissue cells such as
endothelial cells, cardiomyocytes, and even neurons (1). This
recognition triggers a series of signaling cascades that initiate the
activation of transcriptional factor nuclear factor-kB (NFkB) and
NLRP3 inflammasome, leading to the release of inflammatory
mediators, like tumor necrosis factor-alpha (TNFa), monocyte
chemoattractant protein-1 (MCP-1), interleukin-1 (IL-1) and
IL-6 (2, 3). The inflammatory response is beneficial to the host by
eliminating the harmful agents (PAMPs or DAMPs) and is
usually resolved in a timely manner; however, failure to resolve
can cause excessive or persistent inflammation that is often
disruptive and can cause marked tissue damage (4).

The resolution of inflammation is a programmed active process
that involves the biosynthesis of a variety of active molecules that
act on key events of inflammatory response to terminate the
production of pro-inflammatory mediators and restore tissue
homeostasis (5). There is an increasing body of evidence that
many pro-inflammatory mediators produced during the
inflammatory phase can simultaneously initiate a program for
active resolution (6). For example, TNFa can effectively induce
A20 (also known as tumor necrosis factor-a-induced protein 3 or
TNFAIP3), an ubiquitin editing enzyme that negatively regulates
the inflammatory response by interfering with NFkB signaling
pathway, leading to the resolution of inflammation (7). The newly
synthesizedmolecules not only act as signals for the termination of
the inflammatory response, but also promote the clearance of dead
cells to accelerate the resolution of inflammation (4, 8).

A major contribution of our group to the field was the
discovery of the novel zinc-finger protein, named MCP-1–
induced protein (MCPIP), which was originally detected in
MCP-1 treated human peripheral blood monocytes (9, 10).
Subsequent studies demonstrated that MCPIP belongs to a new
Zc3h12 family consisting of four members (MCPIP-1, -2, -3,
and -4) that are encoded by Zc3h12a, Zc3h12b, Zc3h12c, and
Zc3h12d, respectively (11). MCPIP-1 is the most-studied
protein that contains an N-terminal domain, a PilT N-terminus
like (PIN) domain, a zinc finger domain, and a C-terminal domain
(12). Emerging evidence indicates that MCPIP-1 plays an essential
role in the regulation of inflammatory response, with additional
roles in defense against viruses and various stresses, cellular
differentiation, and apoptosis (13, 14), all of these are key
cellular and molecular components that contribute to the
successful resolution of inflammation (9, 10, 15–18). The focus
of this review is to present evidence illustrating that the role played
by MCPIP-1 is important in the resolution of inflammation
initiated by virus infections or ischemic injuries and highlight
recent advances on the actions of this protein and its potential
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clinical significance. We also discuss the available evidence
regarding the role of other members (MCPIP-2, -3, and -4)
from this family in the regulation of inflammatory processes.
EXPRESSION AND DYNAMIC
REGULATION OF MCPIP-1

MCPIP-1 was originally identified in human peripheral blood
monocytes stimulated with MCP-1 (9). Subsequent studies
demonstrated that MCPIP-1 is produced in many other cell
types, either constitutively or after induction by a wide range of
stimuli, such as inflammatory cytokines (e.g., IL-1b, IL-17 and
TNFa) and oxidative stress (13, 19, 20). Further studies
demonstreated that the expression of MCPIP-1 can be induced
by ischemia in the heart and the brain (21, 22). Infections by
virus such as hepatitis C virus (HCV), hepatitis B virus (HBV),
influenza A virus (IAV), Japanese encephalitis virus (JEV) and
Dengue virus as well as by bacteria and fungal increase the
expression of MCPIP-1 (23–25). The extracellular high mobility
group box 1 (HMGB1), a non-histone DNA-binding protein
released from dying cells in response to tissue injuries, also
increases microglium expression of MCPIP-1 that negatively
regulates HMGB-1-mediated neuroinflammation and neuronal
toxicity (26). Minocycline, a member of tetracycline antibiotics
with anti-inflammatory properties, also induces MCPIP-1
expression in the heart and the brain (27, 28).

Although the molecular mechanisms responsible for MCPIP-1
expression are still poorly understood, MCP-1 binding to its
cognate receptor CCR2 was thought to activate ERK or AKT
pathways, leading to the expression of MCPIP-1 (9). Activation of
NFkB signaling was suggested to induce the expresion ofMCPIP-1
by inflammatory cytokines such as IL-1b (29). Transcription
factors Elk-1 and SRF were also reported to mediate IL-1-
dependent expression of MCPIP-1 by binding to the promoter
region of MCPIP-1 (30). Activation of JAK/STAT3 signaling was
also reported to mediate MCPIP-1 expression in epithelial cells
(31). At the post-transcriptional level, MCPIP-1 mRNAwas found
to be downregulated by miR-9 in LPS-activated microglial cells
(32). MCPIP-1 also cleaves its own transcript (33, 34). Moreover,
the translated MCPIP-1 protein can be phosphorylated by IkB
kinase (IKK) b and then undergoes ubiquitination and
degradation (35) or cleaved by the paracaspase Malt-1 (33, 36).
These data indicate that MCPIP-1expression is tightly controlled
by an autoregulatory feedback mechanism, which ensures an
appropriate level of MCPIP-1 aimed to minimize any disruption
of immune homeostasis.
FUNCTIONAL FEATURES OF MCPIP-1

MCPIP-1 was first described as a transcriptional activator owing
to the structural feature of a potential DNA binding zinc
finger domain (9). Subsequent studies indicate that MCPIP is
localized to both the cytoplasmic and nuclear compartments,
depending on the distinct functions it plays in different cell types
October 2021 | Volume 12 | Article 727861
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(11, 37, 38). Mutational analysis of MCPIP-1 has identified the
two regions of the primary structure that are critical for its
biological activity (12, 39–41). The first region consists of the
ubiquitin-associated domain from 43-89, which is associated
with the control of protein ubiquitination; whereas the second
region consists of PIN domain from 133–270, which is associated
with RNA-cleaving function and is why it was later renamed as
Regnase-1 (regulatory RNase-1) (40, 42). In addition to these two
regions, the C-terminal region of the NYN domain is crucial for
suppressing microRNA (miRNA) biogenesis via cleavage of the
terminal loops of precursor miRNAs (16, 40–44).

MCPIP-1 Regulates Protein Ubiquitination
Ubiquitination has emerged as a crucial mechanism that regulates
signal transduction in the inflammatory response (3, 45). The use
of MCPIP-1-deficient mice has revealed the crucial role of
MCPIP-1 in the regulation of inflammatory cytokine signaling
pathways. Mice lacking MCPIP-1 are normal at birth but suffer
growth retardation and die prematurely due to massive multi-organ
inflammation, indicative of a key role for MCPIP in immune
homeostasis of the host (41). Macrophages from MCPIP-1-
deficient mice showed up-regulation of pro-inflammatory
mediators together with a greatly increased ubiquitination of
TRAFs (TNF receptor–associated factors) and the receptor-
interacting protein (RIP) kinases, both of which play a central
role in the LPS-, IL-1b- and TNF-induced activation of NFkB
signaling pathway (46). The purified MCPIP-1 protein was shown
Frontiers in Immunology | www.frontiersin.org 3
to cleave K48- or K63-linked polyubiquitin chain, while this action
of MCPIP-1 was inhibited by N-ethyl maleimide, a known
inhibitor of cysteine proteinases (41). Consistent with this finding,
treatment of high-molecular-weight K63-linked polyubiquitin with
purifiedMCPIP-1 caused hydrolysis of the polyubiquitin, leading to
the inhibition of phosphorylation of TAK1 (47), a critical factor for
activation of the downstream kinase IKK, thereby mediating IkBa
phosphorylation and NFkB activation (48). Accordingly, deletion
of the ubiquitin association domain of MCPIP-1 resulted in the
loss of inhibition of TNFa-induced NFkB activation (41). These
results indicate that MCPIP-1 can act as a deubiquitinase to
hydrolyze K63-, K48-linked polyubiquitin chains and inhibits
NFkB transcriptional activity, thus contributing to suppression
of the pro-inflammatory response (Figure 1). MCPIP-1 has
also been reported to stabilize NFkB essential modulator by
promoting deubiquitination, resulting in subsequent inhibition
of NFkB activation induced by DNA damage (49). MCPIP-1 was
also shown to stabilize the hypoxia-inducible factor 1alpha protein
that is required for macrophage maturation under hypoxic
conditions, in which deubiquitination plays a key regulatory
role (50).

MCPIP-1 Regulates Inflammatory
mRNA Stability
MCPIP-1 can also act as an RNase to regulate mRNA stability (19,
33, 40, 51). MCPIP-1 can directly bind the 3′-untranslated region
(UTR) of IL-6 mRNA and manifested RNase activity to degrade
FIGURE 1 | Schematic representation of anti-inflammatory activity of MCPIP-1. Binding of molecules (DAMPs) derived from tissue damage or pathogens (PAMPs) to
PRRs triggers interactions between the cytoplasmic adaptor proteins and the kinases IRAK. This engages the ubiquitin ligase TRAF6 to make polyubiquitin chains
that activate the IKK complex, leading to phosphorylation and subsequent ubiquitination IKBa. This releases P50/p65 dimer for entry into the nucleus to cause
transcriptional activation of NFkB-dependent genes encoding inflammatory cytokines. Ubiquitylation of RIP1, and potentially other components of the complex,
recruits IKKg and TAK1 for NFkB and MAPK activation (not shown). MCPIP-1 hydrolyzes all of these K48- and K63-linked polyubiquitins to block NFkB activation.
The RNase activity of MCPIP-1 also degrades viral RNA and some mRNAs encoding for inflammatory cytokines, leading to dampening of protein expression of the
inflammatory cytokines. The anti-Dicer activity of MCPIP-1 can cleave the terminal loops of pre-miRNAs leading to destabilization of pre-miRNAs and suppression of
the miRNA biogenesis.
October 2021 | Volume 12 | Article 727861

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jin et al. MCPIP-1 Modulates Host Immune Responses
IL-6 transcripts (40). A similar finding was demonstrated in the
expression of IL-1b mRNA that was degraded by the increased
level of MCPIP-1 in HepG2 and U937 cells (19). Genome-wide
association studies showed that the PIN domain of MCPIP-1
contains the RNase catalytic center that requires an interaction
with the N-terminus for its full RNase activity and the zinc-finger
domain is responsible for the recognition and direct binding of the
mRNAs (12, 39, 51). With the cooperation of its domains,
MCPIP-1 recognizes and degrades target mRNAs by recognizing
stem-loop structures at the 3′-UTRs of these genes (40, 51). In T
cells, MCPIP-1 downregulates a set of genes by cooperating with
roquin, another CCCH type zinc finger protein (36, 51). However,
a recent study in other type of cells indicates that, although roquin
and MCPIP-1 control shared mRNAs, they do so in different
mechanisms within different subcellular compartments (51).
Thus, the co-operation between MCPIP-1 and roquin remains
incompletely understood. In different cell types, MCPIP-1
recognizes and degrades target mRNAs may be cell-specific.

To date, MCPIP-1-dependent degradation of inflammatory
mRNAs has been increasingly identified. In addition to IL-6 and
IL-1b, mRNAs encoding for IL-2, IL-12 and IL-17 have been
identified as direct targets of MCPIP-1 (51, 52). Both CXCL1 and
CXCL2, two important chemokines contributing to early stage
neutrophil recruitment during tissue inflammation (53), are also
direct targets of MCPIP-1 (51). MCPIP-1 also degrades mRNAs
encoding T-cell co-stimulatory receptors such as ICOS, TNFR2
and OX40 as well as T-cell activation marker CD44 (33), all of
which play a key role in permitting T cell mature and activation.
Importantly, MCPIP-1 degrades mRNA encoding for the
anti-apoptotic immediate early response 3 (IER3) protein (54),
resulting in apoptosis of macrophages that contributes to resolution
of inflammation. Thus, MCPIP-1 controls inflammatory response
not only by preventing the transcription of the inflammatory
cytokines, but also by dampening of the protein expression of the
inflammatory cytokines at the post-transcriptional level as
well (Figure 1).

MCPIP-1 Regulates miRNA Processing
Emerging studies have shown that miRNAs modulate many
aspects of the immune responses such as proliferation,
differentiation, cell fate determination, immune cell function,
and cytokine responses (55, 56). when miRNAs are aberrantly
expressed they contributes to the pathogenesis of inflammatory
and autoimmune diseases by regulating their cellular and
molecular targets (55). Besides targeting mRNA, MCPIP-1 was
shown to regulate miRNA biogenesis by counteracting Dicer, a
central ribonuclease in miRNA biosynthesis (42, 57). MCPIP-1
can cleave the terminal loop of pre-miRNAs, thereby inhibiting
their maturation (41). Studies have shown that miRNA-146a and
miRNA-155 are specifically down-regulated by MCPIP-1 (42,
58). Both miR-146a and miR-155 have been proposed to regulate
the macrophage activation by forming a combined negative and
positive regulatory loop that alters NFkB activity (59). miR-155
is highly transcribed upon an inflammatory stimulus, which can
amplify NFkB activity, while as an inflammatory response
develops, miR-146a levels accumulate, which causes suppression
of IRAK1 and TRAF6, leading to the inhibition of NFkB activation
Frontiers in Immunology | www.frontiersin.org 4
(59). However, a study by Mino et al. indicated that expression of
both miR-155 and miR-146 was not altered in mouse embryonic
fibroblasts from MCPIP-1-deficient mice (51). Therefore,
MCPIP appears to utilize distinct mechanisms to keep the
inflammatory signaling suppressed and to re-establish immune
hemostasis (Figure 1).

The Pro-Apoptotic Activity of MCPIP-1
Apoptosis is an evolutionarily conserved cell death program that is
tightly regulated by the Bcl-2 family of proteins, which contains
both pro-apoptotic and pro-survival members that balance the
decision between cellular life and death (60). Microarray analysis
revealed that MCPIP-1 upregulates the pro-apoptotic genes and
downregulates the anti-apoptotic genes in the myocardium (9).
Along this line, MCPIP-1 was found to mediate endothelial cell
apoptosis and dysfunction upon MCP-1 treatment (61). The pro-
apoptotic activity of MCPIP-1 was further documented in vitro
assays in HEK 293 cells (9), H9c2 cardiomyoblasts (62), neonatal rat
cardiomyocytes (63), macrophages (64, 65), neutrophils (66), T cells
(67), and even cancer cells (68). Mechanistically, MCPIP-1
selectively binds and cleaves the mRNAs of anti-apoptotic genes,
such as Bcl-2A1, Bcl-2L1, and RELB, leading to down-regulation of
anti-apoptotic proteins and upregulation of pro-apoptotic proteins
(66, 68). The inhibition of miRNA biogenesis by MCPIP-1 is also
linked to its pro-apoptotic activity. MCPIP-1 has been shown to
downregulate miR-3613-3p expression in neuroblastoma cells,
which in turn upregulates apoptotic protease activating factor 1,
causing apoptosis by caspase-9 proteolysis (69). The pro-apoptotic
activity of MCPIP-1 was found to be associated with its influence
on the formation of stress granules (SGs), one kind of
non-membranous ribonucleoprotein complexes containing
untranslated mRNA formed in response to stress exposure (70).
MCPIP-1 can completely block SG formation and promote
macrophage apoptosis (71).

It is well documented that the amount of reactive oxygen
species (ROS) produced and the extent of oxidative stress in a cell
determine the fate of the cell to die or survive (72). The pro-
apoptotic activity of MCPIP-1 was strongly correlated with its
ability to induce intracellular ROS that cause endoplasmic
reticulum (ER) stress, resulting in autophagy and apoptosis in
cardiomyocytes (62, 63), macrophages (64, 73), endothelial cells
(74, 75), and in renal cell carcinoma (76). Deubiquitination of
RIP1 by CYLD or A20 has been suggested to facilitate cell death
(77, 78). As a new member of the deubiquitinase family, however,
the role of the deubiquitinating activity of MCPIP-1 in cell death
remains to be determined. While it has been reported that
MG-132, a proteasome inhibitor, effectively upregulates
MCPIP-1 expression, potently activating the apoptosis of cancer
cells (79). Further research is needed to fully understand its
significance in regulating cell death.
ROLES OF MCPIP-1 IN THE RESOLUTION
OF INFLAMMATION

Resolution of inflammation is a coordinated and active process
that involves the suppression of pro-inflammatory reaction,
October 2021 | Volume 12 | Article 727861
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apoptosis and subsequent clearance of activated inflammatory
cells, and repolarization of macrophages towards a resolving
phenotype aimed at restoration of tissue integrity and function
(5, 6). As mentioned above, the functions of MCPIP-1 support the
notion that MCPIP-1 has critical roles in restricting inflammation
(Figure 2). In the following we present the experimental
findings to provide an overview of MCPIP-1 that drives these
resolution processes.

MCPIP-1 Restricts Virus Replication
and Inflammation
Acute inflammation occurs in response to pathogen infection.
This process involves the activation of innate responses that
enhance innate microbial killing and clearance to protect organ
structure and function (80). MCPIP-1 has been evident in cells
infected with various viruses and exerts antiviral activity (23–25,
81, 82). MCPIP-1 can distinguish mRNAs from the host genome
and can selectively degrade foreign mRNAs through its RNase
activity (83). Indeed, MCPIP-1 is activated upon viral infections
and has been shown to restrict virus replication by directly
binding and subsequently degrading viral RNAs, such as JEV,
IAV, DEN, coxsackievirus B3, encephalomyocarditis virus, and
HIV (23, 81, 84). The deubiquitinase activity has not been shown
to play a role in the antiviral effect of MCPIP-1, even though
ubiquitination has been implicated in virus replication (85, 86).
MCPIP-1 also restricts HCV replication by directly degrading
HCV RNA and inhibits HCV-mediated expression of pro-
inflammatory response (23, 24). In patients with chronic
hepatitis C, the expression of MCPIP-1 in the liver has been
suggested to have a protective role in antiviral responses (87).
Type I interferons (IFNs) are recognized as the first line of
defense against viral infection (88). MCPIP-1 has been proven to
be a positive feedback amplifier of IFN signaling and promotes
innate antiviral immunity independently of its RNase and
deubiquitinase activities (82). Therefore, MCPIP-1 seems to be
a very promising target for antiviral infections by degrading
viral genomes, suppressing virus-mediated expression of
Frontiers in Immunology | www.frontiersin.org 5
pro-inflammatory cytokines or through the induction of
antiviral effector molecules, resulting in the resolution of
inflammation. These findings also reveal an exciting possibility
for MCPIP-1 protecting against the infection caused by the SARS-
CoV-2, an RNA virus that may cause severe acute respiratory
distress syndrome due to “cytokine storms” induced by a hyper-
activation of inflammatory cytokine response (89, 90).

MCPIP-1 Regulates Post-Ischemic
Inflammation
Inflammatory response represents one of the first immune
processes following ischemic injury, which is usually self-
limiting, followed by tissue repair and healing responses (91,
92). Ischemic preconditioning is a well-established phenomenon,
in which brief episodes of sub-lethal ischemia and reperfusion
elicit strong cellular protection against the subsequently sustained
ischemia in the heart and the brain (93, 94). There is increasing
evidence that ischemic preconditioning induces a powerful anti-
inflammatory response (94–96), which has been well illustrated by
‘endotoxin tolerance’ and is thought to be an adaptive response
conferring protection by suppression of the hyper-activation of the
innate immune system through auto-regulatory network of
cytokines (94, 97). Preconditioning stimuli with low doses of
LPS, a primary ligand for TLR4, provides protection against
subsequent challenges with injurious focal ischemia in the brain
that is similar to ischemic preconditioning (98). Diminished
activation of cellular inflammatory responses to ischemia by LPS
preconditioning has been suggested to play an important role for
protection against ischemic injury (98, 99). In a mouse model of
middle cerebral artery (MCA) occlusion, LPS induces
upregulation of MCPIP-1 in the brain and the neuroprotection
offered by LPS preconditioning was diminished due to MCPIP-1
deficiency, suggesting MCPIP-1 expression initiated by LPS
preconditioning may be an intrinsic cellular defense mechanism
against the sustained ischemic injury (100). Consistently, mice
lacking MCPIP-1 showed an enhanced leakage of blood–brain
barrier, increased production of cytokines and a larger infarct
FIGURE 2 | Biological roles of MCPIP-1 associated with resolution of inflammation. During the early phase of inflammation, inflammatory response initiated by
infection or tissue injury activates the endogenous defense mechanisms aimed to bring about proper resolution. The expression of MCPIP-1 induced by the
inflammatory response modulates a wide range of cellular and molecular events associated with the resolution of inflammation. The expression of MCPIP-1 results in
the suppression of NFkB activation and reduced pro-inflammatory cytokines. MCPIP-1 is able to induce apoptosis of infected or damaged cells, leading to their
clearance by macrophages. In addition, MCPIP-1 promotes M2 macrophage polarization and enhances angiogenic differentiation of mesenchymal stem cells (MSCs).
These events will create a favorable environment contributing to the resolution and tissue homeostasis.
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volume after MCA occlusion (21, 101). This scenario was further
demonstrated in the heart, where cardiac-specific expression of
MCPIP-1 protected against LPS-induced myocardial
inflammation and dysfunction (44). Consistently, mice with
cardiac-specific expression of MCPIP-1 showed cardioprotective
effects against myocardial infarction, as evidenced by the improved
cardiac function, mitigated interstitial myocardial fibrosis,
increased apoptosis of inflammatory cells, and decreased
myocardial inflammation (22). In cardiomyocytes, NFkB activity
was increased in response to LPS but suppressed by forced
expression of MCPIP-1, thus linking MCPIP-1 to the
suppression of myocardial inflammation in response to cardiac
stress (22, 44). Consistent with this findings, NFkB activity
initiated by myocardial infarction was inhibited by forced
expression of MCPIP-1, suggesting that the preconditioning-like
effects of MCPIP-1 probably involve its ability to inhibit NFkB
activation (22, 44). The murine hearts expressing MCPIP-1 also
displayed lower expression of inflammation-associated miR-126,-
146,-155 and -199a when compared to those seen in the wild type
mice (22). Preconditioning by minocycline is a pharmacological
alternative to ischemic preconditioning, which enhances
neuroprotection after ischemic stroke (102). Minocycline
preconditioning inhibits the inflammatory cytokine response to
ischemia through preferential induction of MCPIP-1, and the
protective role of minocycline was diminished in the MCPIP-1-
deficient mice subjected to focal cerebral ischemia/reperfusion (I/
R) injury (27). Similar findings were observed in a mouse model of
myocardial I/R injury, in which minocycline attenuated
myocardial I/R injury via upregulating MCPIP-1 that
subsequently inhibited NFkB activation and pro-inflammatory
cytokine secretion (28). These findings are in agreement with the
previous reports thatMCPIP-1 deficiency results inmassive multi-
organ inflammation and premature death in mice (40, 41, 43).

The mechanisms underlying the preconditioning-like cellular
protection by MCPIP-1 need further investigation. MCPIP-1 is
likely to alter the immune responses to the ischemic insults by
limiting pro-inflammatory cytokine transcription, dampening of
protein expression of pro-inflammatory cytokines, regulating
synthesis of pro-inflammatory miRNAs or enhancing clearance
of the infiltrated inflammatory cells (44, 100). The combination
of these mechanisms may result in an effective resolution of
inflammation, pointing to MCPIP-1 as a promising target for the
development of new therapeutic strategies to treat post-ischemic
inflammation, and therefore warrant future studies on the
molecular mode of action of MCPIP-1 in inflammatory diseases.
Pleiotropic Effects of MCPIP-1
On Inflammation
Resolution of inflammation is a coordinated process that
requires a tight interplay between macrophages, stem and
progenitor cells, together with stromal cells to restoration of
tissue integrity and function (5, 6). Beyond its anti-inflammatory
activity, MCPIP-1 has also shown some beneficial pleiotropic
effects, contributing to the resolution of inflammation and the
restoration of tissue homeostasis.
Frontiers in Immunology | www.frontiersin.org 6
MCPIP-1 was shown to induce angiogenesis by promoting the
migration and apoptosis of human umbilical vein endothelial cells
(HUVECs) and the expression of angiogenesis-related gene CDH12
and CDH19 (103). Moreover, MCPIP-1 inhibits the production of
anti-angiogenetic miR-20b and miR-34a, which repress the
translation of HIF-1a and SIRT-1 respectively, leading to
promoting angiogenesis in the HUVECs (50). These findings
agree with the animal data showing that forced expression of
MCPIP-1 induces angiogenesis of bone marrow monocytic cells
and accelerates post-ischemic neovascularization (104).
Mesenchymal stem cells (MSCs) are candidates for cellular
therapies aimed at promoting tissue repair or immunoregulation
(105). MCPIP-1 was shown to increase angiogenic and cardiac
differentiation capacity of bonemarrow-derivedMSCs, contributing
to repair and regeneration of ischemic myocardium (106). Vascular
endothelial and smoothmuscle cells play critical roles in the stability
and tonic regulation of vascular homeostasis. MCPIP-1 was shown
to regulate the phenotypic switching of both endothelial and
smooth muscle cells via suppression of synthesis of miRNAs,
such as miR-126, 145, -146a, and -223 (43, 107). However,
Marona et al. reported that MCPIP-1 reduces tumor vascularity
in clear cell renal cell carcinoma by inhibiting the recruitment of
bone marrow-derived endothelial progenitor cells (EPCs) and
phosphorylation of VE-cadherin via the degradation of mRNAs
encoding for IL8, VEGF and CXCL12 (108).

A key event required for resolution of inflammation is
efferocytosis of apoptotic and necrotic cells, mostly by
macrophages acquiring an alternative M2 phenotype (109). We
reported the ability of MCPIP-1 to control macrophage
reprogramming toward a M2 phenotype, resulting in reduced
production of pro-inflammatory cytokines and increased release
of anti-inflammatory and reparative mediators (16).WithMCPIP-1
mutants that have only one of the two catalytic activities, both the
deubiquitinase and RNase activities ofMCPIP-1 were shown to play
a critical role in M2 macrophage polarization (16, 110). MCPIP-
1was also reported to suppress the synthesis of miR155 and
upregulate miR-223 and miR-146 expression, contributing to M2
polarization (111). By its RNase activity, MCPIP-1 is capable of
suppressing the expression of a group of mRNAs encoding factors
involved in Th1 differentiation (36, 112). Similar effects were
observed in Th17 differentiation, MCPIP-1 works cooperatively
with roquin to suppress the differentiation of pro-inflammatory
Th17 cells (36). IL-17, a cytokine produced by Th17 cells, has been
indicated in the pathogenesis of chronic inflammatory and
autoimmune diseases such as psoriasis (113). MCPIP-1 is induced
by IL-17A via the phosphorylation of STAT3 (31) and negatively
regulate IL-17-dependent inflammation through the degradation of
IL-17A-induced target gene transcripts and IL-17RA mRNA (112).
Ablation of MCPIP-1 in keratinocytes resulted in the upregulated
expression of transcripts encoding factors related to inflammation
and keratinocyte differentiation (114). Similar to the results obtained
with Th17 cells, MCPIP-1 was shown to play a role in Th2 cell
differentiation by dampening of Gata3 expression through the
degradation of Gata3 mRNA (115). Mice lacking MCPIP-1
suffered severe airway inflammation, with increased numbers of
airway Th2 cells and elevated level of IL-5 (115). These findings
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suggest MCPIP-1 has pleiotropic effects that contributes to
maintaining homeostasis under inflammatory conditions.

The involvement of MCPIP-1 in adipogenesis was also
reported, in which MCPIP-1 was thought to induce p47phox, a
critical component of NADPH oxidase that contributes to the
increase of ROS, which initiates the sequential differentiation
process (116, 117). Other studies, however, reported an opposite
effect of MCPIP-1 on adipogenesis (118), which shows that
forced expression of MCPIP-1 decreases mRNA levels of the
C/EBPb and PPARg, two key transcription factors controlling
adipogenesis, leading to the impairment of adipogenesis (118).
Although the evidence described above suggests that MCPIP-1
may exhibit diverse actions according to normal or pathological
conditions and the types of cells, it should be noted that most of
the evidence regarding the pleiotropic effects of MCPIP-1 were
observed in vitro. In addition, most of the studies dissecting the
effects of MCPIP-1 were associative and further investigations
are warranted to address the pleiotropic effects of MCPIP-1.
ROLES OF MCPIP-2, -3, AND -4 IN THE
REGULATION OF INFLAMMATION

Compared to MCPIP-1, the biological roles played by other three
members of the Zc3h12 family are less characterized, although it
appears that these members are also involved in inflammatory
processes. Similar to MCPIP-1, MCPIP-2 has been shown to
regulate the course of inflammation. MCPIP-2 participates in the
degradation of IL-6 mRNA, resulting in reduced production of
IL-6 protein upon stimulation with IL-1b (119). MCPIP-2 also
interacts with other known substrates of MCPIP-1 and MCPIP-
4, such as the 3’UTR of IER3 mRNA, leading to the degradation
of the target mRNAs (119). In a separate study by Huang et al.
(120) indicated that IL-6 mRNA is not a direct target of MCPIP-
2, which could not exclusively attributable to the different cell
line used. In addition, Suzuki et al. (42) showed that MCPIP-2
lacks the miRNA silencing activity, which is attributed to the lack
of the proline-rich domain important for this activity. The
biological roles of MCPIP-2 remain completely unknown, and
further investigations are warranted to address this issue.

MCPIP-3 also contains an RNase domain at the N-terminus
before the CCCH-zinc finger domain. Liu et al. (121) showed
that MCPIP-3 is able to inhibit the endothelial cell inflammatory
response in vitro by suppressing NFkB activation in human
endothelial cells. Mice with MCPIP-3 deficiency developed
hypertrophic lymph nodes and a higher proportion of immature
B cells and innate immune cells, particularly macrophages, by
regulating IFN signaling (122). Like MCPIP-1, MCPIP-3 is an
RNase essential for immune homeostasis, which binds, degrades
and regulates mRNAs, such as MCPIP-1 and IL-6, as observed by
reduction in luciferase activity (123). Further comparative
structural analysis of MCPIP-3 suggests that the RNA substrate
is cooperatively recognized by the PIN and Zinc finger domains of
MCPIP-3 (123). Unlike MCPIP-1, MCPIP-3 is specifically
expressed in macrophages and is transcriptionally controlled by
IFN signaling (122). In humans, MCPIP-3 has been linked with
Frontiers in Immunology | www.frontiersin.org 7
chronic immune disorders like psoriasis via regulating TNFa and
Th1 activation (124, 125). Recently, Liu et al. reported that
MCPIP-3 expression is positively associated with psoriasisform
lesions, and highly expressed in macrophages and plasmacytoid
dendritic cells (126). In the same study, the authors demonstrated
that MCPIP-3 may promote TNFa/IL-12 via the degradation of
MCPIP-1 and IL-6 via direct mRNA degradation, contributing to
psoriatic skin inflammation. Consistently, mice with MCPIP-3
deficiency are protected from imiquimod-induced psoriasiform
lesions. These data suggest that MCPIP-3 could be a potential
inhibitory target to treat psoriasis and other autoimmune
diseases (126).

MCPIP-4 was originally reported as a putative tumor
suppressor that is deregulated in transformed follicular
lymphoma in human (127). A single nucleotide polymorphism
analysis indicated that MCPIP-4 is associated with the
suppression of tumor cell growth both in vitro and in vivo
(128). Similar to MCPIP-1, the expression of MCPIP-4 was
markedly induced by TLR ligands through the activation of
JNK and NFkB signal pathways, while forced expression of
MCPIP-4 inhibited the activation of JNK, ERK, and NFkB
signaling in macrophages (129). The latter is achieved by the
inhibition of global protein ubiquitination, a key event in the
regulation of NFkB activation, suggesting MCPIP-4 is a novel
negative feedback regulator of TLR signaling and macrophage
activation (129). MCPIP-4 also participates in the degradation of
pro-inflammatory mRNAs, such as the mRNAs of IL-2, IL-6, IL-
10, TNFa, IER3, and MCPIP-1 (130, 131). Mechanistically, it
was demonstrated that MCPIP-4 interacts with MCPIP-1 to
form a protein complex, but acts independently in the regulation
of IL-6 mRNA degradation (120). To test the in vivo effect of
MCPIP-4 in determining host immunity, Minagawa et al.
generated a model with MCPIP-4 deletion in mice that
displayed normal phenotypes under normal condition, but
exhibited more activated lymphocytes, particularly Th17 cells,
upon inflammatory stimulation (132). In experimental
autoimmune encephalitis induced in the MCPIP-4-deficient
mice, a higher proportion of Th17 cells with increased IL-17A
mRNA levels were observed in the brain of MCPIP-4 deficient
mice than did those in MCPIP-4 wild-type mice, suggesting
MCPIP-4 may suppress excessive inflammation in the brain by
inhibiting the infiltration and activation of Th17 cells in the
experimental autoimmune encephalitis (132).
CONCLUSIONS AND PERSPECTIVES

In this review, we summarized the relevant literature about the
role of MCPIP family proteins, in particular MCPIP-1, in the
regulation of inflammatory response in different stress
conditions. In vivo and in vitro studies revealed that MCPIP-1
expression by immune and non-immune cells contributes to the
resolution of inflammation through distinct cellular and
molecular programs. Overall, the expression of MCPIP-1 may
be a promising target for the prevention and treatment of
inflammatory disorders. Besides its crucial role the regulation
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of inflammation, MCPIP-1 appeared to play a significant role in
diverse cellular functions in a variety of cell types, including
macrophages, T cells, MSCs, endothelial progenitor cells and
adipocytes, as we discussed above in this review. Macrophages
are a major source of active inflammation associated with various
chronic inflammatory diseases, such as cardiovascular disease,
obesity, atherosclerosis, bone loss, and cancer. Understanding
how MCPIP-1 regulates macrophage phenotype and modulates
nflammatory response may offer promising opportunities for the
development of novel therapeutic approach for these disorders. In
addition, MCPIP-1 processes antiviral cellular response by
degrading the genomic nucleic acids of both positive-sense and
negative-sense RNA viruses and DNA viruses. There is a clear
potential for MCPIP-1 to be considered as a therapeutic target to
prevent the deleterious effects of cytokine storms caused by SARS−
CoV−2 infection, although much remains to be investigated. On
the other hand, other MCPIP members appear to be involved in
the regulation of inflammatory processes. Additional studies are
needed to elucidate the effects of other members on the regulation
of inflammation, which would include the crosstalk of the proteins
from this family and the mechanisms of their actions, especially
those related to the resolution of inflammation. Finally, it should
be assessed in the future whether the modulation of these proteins
Frontiers in Immunology | www.frontiersin.org 8
should contribute to the discovery of new pharmacological targets
that allow us to design specific strategies to resolve inflammation,
especially in the context of acute or chronic inflammatory diseases.
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