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Biological units such as macromolecules, organelles, and
cells are directed to a proper location by gradients of
chemicals. We consider a macroscopic element with sur-
face binding sites where chemical adsorption reactions can
occur and show that a thermodynamic force generated
by chemical gradients acts on the element. By assuming
local equilibrium and adopting the grand potential used
in thermodynamics, we derive a formula for the “chemo-
phoresis” force, which depends on chemical potential
gradients and the Langmuir isotherm. The conditions
under which the formula is applicable are shown to
occur in intracellular reactions. Further, the role of the
chemophoresis in the partitioning of bacterial chromo-
somal loci/plasmids during cell division is discussed. By
performing numerical simulations, we demonstrate that
the chemophoresis force can contribute to the regular
positioning of plasmids observed in experiments.
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1. Introduction

Biological entities such as cells, organelles, and macro-

molecules often move to appropriate locations under an

external chemical gradient. In cell chemotaxis, the process

by which an organism senses the presence of an external

chemical and responds to it has been elucidated in depth.

However, the coordinated motion of entities is not limited to

those at the organism level. In recent studies, it has been

shown that such directional motion under chemical gradi-

ents/localizations plays an important role in organization at

an intracellular level1, e.g., microtubule guidance under a

RanGTP gradient2–4 or Stathmin gradient5, actin nucleation

under an IcsA gradient on the outer membrane of a patho-

gen Shigella flexneri (actin comet)6,7, bacterial chromo-

somal locus/plasmid DNA partitioning by a Par system8–24.

However, the general mechanism underlying the coordinated

motion of organelles or macromolecules under an intracel-

lular gradient/localization is yet to be understood.

The formation of organelle/macromolecule patterns by

chemical concentrations under non-equilibrium conditions,

first observed during macroscopic morphogenesis25, has

recently been observed at the intracellular level as well, and

its relevance to intracellular organization processes has been

demonstrated in the case of bacterial plasmid DNA parti-

tioning by a Par system11–24, determination of the plane of

cell division in bacteria using the Min system26–36, etc. These

studies have discussed how positional information given by

the chemical concentration gradient/localization is gener-

ated and maintained. However, there are few studies on the

role of chemical gradients/localization in the coordinated

motion, transport, and positioning of organelles or macro-

molecules under non-equilibrium conditions.
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In the present paper, we present a physical mechanism

that can explain the coordinated motion and positioning.

According to the mechanism, in the presence of a chemical

gradient resulting from a reaction, a macroscopic element

consisting of a number of reaction sites is generally sub-

jected to a force. By considering this element to be a scaf-

fold that adsorbs chemicals, we derive a formula for the

force generated by a chemical potential gradient. In the

derivation, we introduce the grand potential used in thermo-

dynamics for an open system. The direction of motion of

the element is such that the chemical potential increases. A

formula is obtained by assuming that the reaction process

reaches equilibrium faster than the motion of the element

and by extending the minimization of free energy to include

the contact with a particle bath with a given chemical gradi-

ent. We propose that the force leads to a general mechano-

chemical coupling; we call this force chemophoresis force.

We show that the work done by the chemophoresis force

can be much greater than the thermal energy fluctuations.

By examining whether this statement holds true in the case

of intracellular reaction processes, we discuss the possible

role of this force in the partitioning dynamics of bacterial

chromosomal locus/plasmids during cell division. By intro-

ducing a dynamical system in which equations of motion

for plasmids and a reaction-diffusion equation for concen-

tration of a chemical mutually determine each other, we

demonstrate that the chemophoresis force can contribute to

a regular positioning of plasmids observed in experiments.

The scheme of this paper is as follows. In Sec. 2 for

results, we derive an expression for the chemophoresis force

in Sec. 2-1, and in Sec. 2-2, we consider a simple toy model

of chemophoresis. In Sec. 2-3, we show that conditions for

chemophoresis are satisfied in the intracellular reaction

process. Sec. 2-4 discusses applications of chemophoresis

force in the dynamics of bacterial chromosomal locus/plas-

mid partitioning during cell division. First, we perform an

order estimation to examine the validity of the application

of chemophoresis to bacterial chromosomal locus/plasmid

partitioning. Next, we demonstrate that the chemophoresis

force can contribute to the regular positioning of plasmids,

which has been observed in experiments. In Sec. 3, a brief

discussion on the relevance of chemophoresis to intracel-

lular organization is presented. Discussions of the chemo-

phoresis on the basis of thermodynamics and statistical

mechanics are given in Appendix A and B, respectively.

2. Results

2-1. Chemophoresis

Consider organelles or macromolecules that have a num-

ber of binding sites on their surface for reactions to occur;

for example, nucleoprotein complexes (NCs) have several

promoter sites to bind transcription factors. Let us model

these biological elements simply as beads with several reac-

tion sites to which molecules attach themselves, as shown in

Figure 1. The bead is placed at r = ξ and moves in a d-

dimensional space r Rd (d = 1, 2, 3). We consider an iso-

thermal process that is homogeneous over space at a given

temperature T. We also consider a chemical bath containing

a chemical X with a spatially dependent concentration x(r)

or, equivalently, the corresponding chemical potential μ(r).

This gradient is assumed to be sustained externally. A mole-

cule of X is attached to a binding site B on the bead and

forms a complex Y (Fig. 1), as given by the reaction

The molecular number of the complexes on the bead is

denoted by Ny. Note that we define the bead as a macro-

scopic entity relative to an X molecule. To consider local-

equilibrium conditions, we make the following assump-

tions. The “adsorption” reaction on the bead is considered to

be a macroscopic event and Ny is the average molecular

number that is averaged over a much longer time scale than

the microscopic time scale of the reaction. Further, the bead

is assumed to move sufficiently slowly so that the above

reaction is in local chemical equilibrium at the position r =
ξ. In other words, the time scales of diffusion of the X mole-

cules (τdiff) and the adsorption reaction (τadsorb) are much

smaller than the time scale of the motion of the bead (τbead):

τdiff , τadsorb << τbead . As long as the bead is in motion, it is in

equilibrium with the reservoir at r = ξ.

With the assumption of the existence of local equilibrium,

we can apply thermodynamics with spatially dependent ther-

modynamic variables. Indeed, at each position ξ, the reac-

tion process is described by the familiar classical Langmuir

adsorption theory37,38; note that the theory has been success-

fully applied to DNA-protein binding equilibrium37. The

grand potential at each position is given by Ω(ξ) = F(ξ) −

yμ(ξ), dΩ(ξ) = dF(ξ) − d(yμ(ξ)) = −ydμ(ξ) , where y =  (V:

volume of the bead), F(ξ) is the Helmholtz free energy, and

dF(ξ) = μ(ξ)dy 39.

Figure 1 Schematic representation of our system. A bead is
placed at r = ξ, and it moves in a d-dimensional space (d = 1, 2, 3). The

adsorption reaction X(ξ) + B Y occurs on the surface of the bead.

X(ξ) + B Y. (1)

∈

Ny

V
-------
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Now, consider a virtual displacement of the bead. Under

an infinitesimal displacement ξ → ξ + dξ, the change in the

grand potential is dΩ(ξ) = −ydμ(ξ) = −y μ(ξ) ·dξ. In other

words, the position of the bead, ξ, is adopted as an effective

independent variable instead of the chemical potential μ(ξ).

Then, ξ is the work coordinate, while −y μ(ξ) is the force

exerted on the bead by the external world balanced by the

force generated by the reservoir chemical potential distribu-

tion μ(ξ); this force also acts on the bead. The reservoir-

generated chemical gradient force per unit volume of the

bead is

fchem = − Ω(ξ) = y μ(ξ) . (2)

This expression is obtained as follows. Consider a quasi-

static infinitesimal displacement dξ. Then, from the change

in the grand potential, the maximum work done by the sys-

tem on the external world through the reservoir is d ′W =
y μ(ξ) ·dξ. By considering that this work is done by the

force that the reservoir exerts on the bead, i.e., d ′W =
fchem·dξ, the force formula in Eq. (2) is obtained. In other

words, without an externally applied force, ξ evolves spon-

taneously so that Ω(ξ) monotonically decreases, that is,

dΩ(ξ) < 0. (see Appendix A for a detailed discussion in

terms of the principle of maximum work). When we con-

sider an overdamped system, where the kinetic energy of the

bead is negligible, the phenomenological equation of motion

is given by γ  = − Ω(ξ) = y μ(ξ); here, it is assumed that

the friction constant resulting in dissipation is proportional

to the velocity with the proportionality constant γ — the fric-

tion coefficient per unit volume of the bead.

Now, consider the condition for chemical equilibrium. Be-

cause c = y + b = const., the dissociative constant is defined as

y = y(x(ξ)) =  (In statistical mechanics, the Langmuir

isotherm is obtained as a function of the chemical potential

μ(r) at r = ξ. We can derive the expression as a function of

μ(r). Also see Appendix B.). If we consider the cooperative

adsorption of n chemicals on the bead (given by nX(ξ) +

B Y), the isotherm for the adsorption is given as y(x(ξ))

= , where n denotes the Hill coefficient. There-

fore, the equation of motion is written as

γ  = μ(ξ) . (3)

Eq. (3) is a general expression for the motion of an element

that has a number of binding sites for chemical adsorption

under the gradient of chemical potential. The theoretical

description of the motion of the bead can be considered to

be an extension of the Langmuir adsorption theory. We call

this motion chemophoresis — similar to the nomenclature

of typical ‘phoresis’ phenomena such as electrophoresis and

thermophoresis. Because of the chemophoresis force, the

direction of motion of the bead is such that the chemical

potential is increased. Note that the force has an entropic

origin from the viewpoint of statistical mechanics (also see

Appendix B for an analysis of the force from the viewpoint

of statistical mechanics).

When an additional external potential field E(r) such as

an elastic energy is applied to the bead, the relation dF(ξ) =
dE(ξ) + μ(ξ)dy(ξ) holds (from the first law of thermodynam-

ics). Accordingly, the grand potential of the system given by

Ω(ξ) = F(ξ) − y(ξ)μ(ξ) satisfies dΩ(ξ) = dF(ξ) − d(y(ξ)μ(ξ))

= dE(ξ) − y(ξ)dμ(ξ). Further, by taking into account thermal

fluctuations, the equation of motion of the system is given by

γ  = − E(ξ) + y(ξ) μ(ξ) + η(t) , (4)

with <η(t) > = 0 and <η(t) ·η(t′) > = 2dγkBTδ(t − t′). Note

that the equation is obtained as an extended form of the con-

ventional one by considering the Helmholtz free energy as

the thermodynamic potential for a closed system. It is

straightforward to extend the present formula for multiple

beads and multiple components, with interactions among

the beads.

2-2. An example

We consider a simple toy model as an example of Eq. (4).

We assume that a bead placed at r = ξ is tethered and bal-

anced at r = 0 in a one-dimensional space r by a restoration

force produced by a linear spring; the force is represented by

the harmonic potential E(ξ) = ξ 2. The concentration of the

chemical that reacts with the bead is assumed to be constant

and is given by x(r) = xs exp (λ(r − rs)), where xs = x(rs) is the

concentration of X at r = rs, while the corresponding chemi-

cal potential is given by μ(r) =  + kBT ln x(r). Here,  is

the standard chemical potential. Then, by using Eq. (4) with-

out considering thermal fluctuations, the equation of motion

of the bead is obtained as γ  = y(ξ) (ξ) − (ξ) =

λkBTc  − aξ. Here, γ, c, K and a are the frictional

coefficient, maximum adsorption concentration, dissociative

constant, and spring constant, respectively. This equation can

be rewritten as

γ  =  − aξ , (5)

where A = λkBTc, B = . The steady state solution of the

equation shows bistability as it includes a sigmoid function.

If xs is considered as a control parameter, upon increasing

K =
k– =

x(ξ)b
, where y is given by the Langmuir isotherm

k+
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xs, Eq. (5) undergoes twofold bifurcation from monostable

fixed points to bistable ones and then back to monostable

states. A change in the chemical concentration leads to a

change in the stable fixed position of the bead, which also

shows bistability. This toy model can be used to explain how

a stable position of an organelle undergoes bifurcation to a

new location as the chemical concentration increases.

2-3. Conditions for chemophoresis

2-3-1. Condition (i): Relationships among time scales

The grand canonical description and local chemical equi-

librium can be considered only under certain conditions.

The following relationships must exist among time scales:

(1) the time scale of adsorption τadsorb must be shorter than

that of bead motion τbead in order for the adsorption reaction

to reach equilibrium (approximately) before the bead moves,

and (2) the time scale of bead motion must be much larger

than that of the diffusion of the chemical adsorbed on the

bead, i.e. τbead >> τdiff . This condition is necessary to assume

that the motion of the bead is macroscopic under the chemi-

cal gradient, which itself diffuses in space. In living cells of

interest, the molecular number is not large enough for the

instantaneous chemical concentration to show large fluctua-

tions. Hence, the macroscopic concentration relevant to the

force is determined by the temporal average of the concen-

tration of molecules over the diffusion time scale40, and

therefore, the above condition is important.

2-3-2. Condition (ii): Dominance of chemophoresis over 

thermal fluctuations

As long as the above conditions are satisfied, the direc-

tion of the gradient force, on an average, is such that the

chemical potential increases, regardless of the magnitude of

thermal fluctuations. However, the gradient force must be

larger than the thermal noise in order for it to act effectively

and to eliminate the need for long-time averaging to remove

fluctuations. This leads to the following condition: the work

done by the force must be greater than the thermal energy, i.e.,

−V dξ ′y(ξ ′) μ(ξ ′) > kBT for a directional motion from ξ0

to ξ (This inequality can also be derived from the steady-state

solution of the Smoluchowski equation. For one-dimensional

motion, the steady-state distribution of ξ is given by P(ξ) =

A exp . Here, A is a normalized factor and W(ξ) =

−V dξ′y(ξ′) μ(ξ′) . If the position ξc that satisfies W(ξc) ~ kBT

is smaller than the system size L, the distribution is concen-

trated at higher chemical potentials and the gradient force domi-

nates over the thermal fluctuations. In such a case, the above

inequality is obtained.). The concentration and chemical potential

of chemical X are obtained as x(r) = x0 exp  and μ(r)

=  + kBT ln x(r), respectively. Here, x0 is the highest con-

centration and it corresponds to r = 0. In the case of one-

dimensional motion from r = 0 to L, the above condition for

the work is rewritten as follows: dξ  > 1

with Nc = V c. A straightforward calculation gives the inequality

ln  > 1 , which can be rewritten in the

form

 > . (6)

This inequality is accompanied by the additional condition

Nc > . Note that the lower bound on  decreases with

 and Nc, and the formula is valid over a wide range of 

values. Although this condition is valid for an exponentially

decaying distribution, it is expected to be useful as an esti-

mate of the order of magnitude.

2-4. An application of chemophoresis to plasmid/chromo-

somal locus partitioning

2-4-1. Estimate of the chemophoresis and the validity of 

the conditions

We consider applications of the chemophoresis force within

a cell. As an example, consider the partitioning of chro-

mosomal locus/plasmids in bacteria during cell division8–24.

Here, the bead corresponds to a chromosomal locus/plasmid

on which the relevant protein (X in the model) binds to form

a NC (Y in the model) that is important for partitioning. For

the application, the above-mentioned condition relating to

the time scales (τdiff , τadsorb << τbead) has to be satisfied. We

first examine this condition.

In general, the time scale of protein binding equilibrium

on bacterial DNA, τadsorb, is about the order of 1 (s). In

Espeli et al., Fiebig et al. and Elmore et al., it has been

suggested that the segregation of chromosomes is spatially

restricted and the diffusion coefficient D of a chromosomal

locus is estimated as 10–5~10–4 (μm2/s)41–43. The size of a

NC, a, is assumed to be on the order of a~50 (nm), so that

is estimated as τdiff ~  ~ 10–3 (s), where Dx is the diffusion

coefficient of proteins within the cytoplasm and is roughly

ξ
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estimated as Dx ~ 3.0 (μm2/s) (according to Elf et al.44 and

Xie et al.45). Therefore, τdiff << τadsorb << τbead , the condition for

the chemophoresis is satisfied.

To examine the validity of condition (ii), we consider a

specific example — the partitioning of bacterial chromo-

somal locus/plasmids to daughter cells by a Par system8–24.

Here, the most ubiquitous partitioning system is the parABS

partitioning loci (The Par system consists of three compo-

nents: DNA binding protein ParB, ATPase ParA, and cen-

tromere-like site parS. ParB binds parS, spreads along the

DNA, and forms a large NC around parS. ATP-bound ParA

(ParA-ATP) can nonspecifically bind to DNA and interact

with the ParB-parS NC8–10,16–19,22–24.). Before cell division,

daughter chromosomal locus/plasmids are precisely segre-

gated by ATP-bound ParA (ParA-ATP) dynamic localiza-

tion along with the associated (ParA-ATP)-NC interaction

at the parS site on chromosome/plasmid. It has been sug-

gested that ParA-ATP localization pulls parS chromosomal

locus10 or at least guides plasmids24, but the mechanism by

which ParA-ATP generates the driving force for chromo-

somal locus/ plasmid segregation has not been elucidated

yet. Now, by regarding ParA-ATP as X and the NC (to be

precise, ParB-parS NC mediated by ParA-ATP) as Y in our

model, we will show that this driving force is naturally

explained by the chemophoresis force.

To confirm the validity of our formula, we simply con-

sider the steady concentration distribution of ParA-ATP to

be x(r) = x0 exp  within [0, L]9,10. We then take n = 2

(because ParA-ATP cooperatively binds DNA)46,47 and choose

K = 0.3 (μM) on the basis of recent data obtained in Leonard

et al.46 and Castaing et al.47. Although the precise amount of

ParA-ATP that binds DNA around the NC is unknown,

Nc~10 is a natural estimate since it has been suggested that

a large amount of ParA is required to bind DNA around an

NC. The localization scale rc of ParA-ATP localization is not

precisely known either and could vary across bacterial species.

By assuming  ~5 from Toro et al.9 and Fogel et al.10, the

condition in Eq. (6) can be rewritten as  > 0.5. Active

protein binding generally occurs when a reasonable concen-

tration x0~K is reached and x0 is larger than K so that the

above inequality is satisfied. Therefore, the chemophoresis

force dominates over the thermal fluctuations. Although the

mechanism of ParA-ATP localization could depend on the

species, the estimate suggests that the force plays a signifi-

cant role in the partitioning of plasmids/chromosomal locus,

independent of the specific molecular mechanisms. Further,

we note that the above-mentioned “spring toy model” involv-

ing a gradient is applicable to the partitioning problem and

may help explain the bifurcation of plasmids/chromosomal

locus during cell division with a change in ParA-ATP local-

ization.

2-4-2. Regular positioning determined by combining 

chemophoresis and the reaction-diffusion (RD) 

equation

Although the application mentioned here assumes a ParA-

ATP steady distribution, the distribution sometimes shows

pole-to-pole oscillation17–24 or the formation of a different

spatial pattern by a few plasmids18,19,23. Nevertheless, our

theory is applicable to time-varying distributions because

the force derived here leads to directional motion toward the

ParA foci (peaks). Indeed, the directional motion has been

suggested in Hatano et al.24. Furthermore, the present chemo-

phoresis force is applicable to a RD system so that the plas-

mid is positioned according to the chemical concentration

pattern. We shall discuss this in detail.

As mentioned in the previous subsection, we hypothe-

sized that the chemophoresis force generated by a ParA-

ATP concentration gradient drives plasmids in the direction

of increased concentration. On the other hand, it has been

observed that ParB-bound plasmids can stimulate the ATPase

activity of ParA16,19, which is similar to the Min system where

MinE stimulates the ATPase activity of MinD homologous

to ParA during cell division34–36. Hence, there exists feed-

back from plasmids to the ParA-ATP pattern dynamics. This

means that the chemophoresis force generated by a ParA-

ATP gradient acts on plasmids, whereas ParB on the plasmids

can modulate the ParA-ATP distribution through chemical

reactions; thus, there is a relation between the plasmids and

the ParA-ATP dynamics. This interaction may lead to the

regular spacing of plasmids, which is observed in experi-

ments18,19,23.

Here, we briefly study a dynamical system in which equa-

tions of motion for plasmids are coupled with a RD equa-

tion for ParA-ATP. Modeling studies in which biological

details are taken into account will be reported elsewhere

(Sugawara T. and Kaneko K., in preparation).

As was mentioned, ParA-ATP binds NC on a plasmid.

ParA-ATP interacts with ParB which stimulates ParA ATPase

activity at a catalytic rate k. Because ParA cannot bind the

NC when it is not combined with ATP, free ParA products

are released from the NC immediately after ATP hydrolysis.

Thus the reaction formula can be written as

Through this reaction on the NC, a plasmid plays a role of a

sink for ParA-ATP and induces a concentration gradient of

this protein. Now, consider a one-dimensional space along

the long cell axis and a plasmid i (1 ≤ i ≤ N) to be positioned

at r = ξi [0, L]; Here, L is cell length. ParB is assumed to

be collected and localized at the positions of NCs on plas-

mids. Denoting the concentration of ParA-ATP as u and that

of ParB as b, the RD equation for the ParA-ATP concentra-

r

rc
-------–⎝ ⎠

⎛ ⎞

L

rc
-------

x0

K
-------

nParA-ATP + NC (ParA-ATP)n − NC

k
→ nParA + nADP + nPi + NC.  (7)

∈
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tion is given as follows:

ut(r, t) = D u(r, t) + a − c u(r, t)

− kb δ(r − ξi) , (8)

where the first, second, and third terms represent the diffu-

sion of ParA-ATP, its synthesis at a constant rate a, and

linear degradation with a rate c, respectively; the last term

denotes the inhibition by ParB on the NC.

On the other hand, from Eq. (3) and the representation for

the chemical potential, μ = + kBT ln u, the equations of

motion for plasmids are given as

γ  = bkBT  + ηi(t) , (9)

with < ηi(t) > = 0 and < ηi(t) ηi′(t′) > = 2γkBTδi i′δ(t − t′).
We adopt the Neumann boundary condition (NBC) for

the RD equation: u(0) = u(L) = 0. To confine the plasmids

to a cell r [0, L], we place reflection walls at r = 0 and r =
L. This can be explicitly represented as

Here, we set a = 1, b = 10, c = 0.1, k = 1, D = 0.5, K = 0.5,

n = 1, γ = 1000, and L = 10 and choose unit energy so that  kBT

= 1 (note that  is larger than K, so that the chemophoresis

force on the plasmids dominates over thermal fluctuations).

Partitioning of two replicated plasmids

First, we examine the case of N = 1 and 2 to examine how

two replicated plasmids are separated into daughter cells.

Figure 2 shows the dynamics and distribution of u(r) and

plasmid(s) along the long cell axis for the two N values. A

plasmid is localized at the center of the cell for N = 1

whereas two plasmids are positioned approximately at dis-

tances of one-quarter and three-quarters of the cell axis for

N = 2 (Fig. 2). These results are consistent with earlier

reports on plasmid positioning during cell division20,21.

Regular distribution of plasmids

Observation of such regular positioning of plasmids are

not restricted to the cases of N = 1 and 2. For N > 2, stable

regular distributions are formed as a result of the generation

of the gradient of u(r) by each plasmid. Figure 3 shows the

distributions of u(r) and plasmids for N = 3~6 along the

long cell axis. Similarly, regular distribution of plasmids is

achieved. A plasmid i is localized around a fixed position

r = :=  (i = 1, 2, ..., N) and they appear to get

arranged at an interval determined by  (Fig. 3).

The regular positioning of plasmids is due to an effective

interplasmid repulsive force. A plasmid, which acts as a

sink for ParA-ATP, contributes to the formation of a con-

centration gradient in which the concentration increases

with an increase in distance from the plasmid. The other

plasmids are subjected to the chemophoresis force by the

gradient in the direction of increasing ParA-ATP concentra-

tion so that the latter plasmids are pushed away from the

former. Because the former is also subjected to the chemo-

phoresis force by the gradient derived from the latter, there

is mutual repulsion among the plasmids. As a result, the

regular positioning of plasmids is achieved. In fact, on the

basis of a recent experiment14, the repulsive force between

plasmids has been suggested to be cause of their regular

positioning. The repulsive interaction between plasmids due

to ParA-ATP and mediated by chemophoresis is consistent

with such experimental results.

A concentration gradient of u(r) is maintained around a

plasmid (sink), while it is vanished due to NBC at the bound-

aries r = 0 and L. On other words, the plasmid is reflected at

the boundaries by NBC and confined within [0, L]. Hence,

an effective repulsive force from the boundaries acts on

the plasmid even though gradients at the boundaries are

vanished under NBC.

Here, we adopted the Neumann boundary condition

u(0) = u(L) = 0. Although this boundary condition may

be appropriate for intracellular dynamics, we have con-

firmed that the formation of the regular distribution is inde-

pendent of the choice of boundary conditions. In fact, simu-

lations of Eqs. (8) and (9) under the Dirichlet boundary

condition u(0) = u(L) = 0 have demonstrated the regular dis-

tribution of plasmids as a result of chemophoresis.

3. Discussion

In this paper, we have demonstrated that when a chemical

concentration gradient exists, a macroscopic element that

acts as a scaffold for the absorption of a chemical is gener-

ally subjected to a thermodynamic force; the force makes it

move in the direction of increasing chemical potential. We

term this force chemophoresis force. The force has an

entropic origin and thus is independent of the specific

molecular mechanism, and it is expected to provide clues to

the mechanism underlying mechanochemical coupling. We

have derived a general formula for the magnitude of the

force and have presented a few conditions that should be

satisfied for the validity of this formula. The conditions are

shown to be satisfied for the intracellular motion of macro-

molecules or organelles under a suitable chemical gradient.

Further, the force is shown to be greater than the thermal

fluctuation force.

In particular, we have applied chemophoresis to bacterial

partitioning systems during cell division. By introducing a

dynamical system consisting of equations of motion for

plasmids and a reaction-diffusion equation that are mutually

coupled, we have explained the regular positioning of plas-

mids, which has been observed in experiments. Because it

Ubound (r):= { 0 0 < r < L
 (10)

otherwise.
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has been reported that other organelles are also organized by

ParA or its homologue48,49, chemophoresis may contribute

to these phenomena, too.

Here, we considered distributions of plasmids and ParA-

ATP only along the long cell axis, and we studied equations

of motion for plasmids coupled with the RD equation for

ParA-ATP in one-dimensional space. It has been suggested

that in reality, plasmids and ParA-ATP are restricted on a

two-dimensional surface of the nucleoid of a host bacterial

cell. A more realistic distribution can be obtained by taking

into account two-dimensional plasmid motion under the

gradient generated by ParB. In a future study, it is important

to study a two-dimensional model by considering motions

along both the longitudinal direction (parallel to the long

cell axis) and transverse direction.

Furthermore, it is to be noted that our study does not

exclude the possibility of the existence of other mechanisms

for partitioning, such as the growth and shrinkage of ParA-

ATP filaments19. To explain the regular positioning of the

plasmids, the model used for the study of the growth and

shrinkage of ParA-ATP filaments considers the polymeriza-

tion of ParA-ATP along the long cell axis and the depoly-

merization of ParA-ATP by ParB on the plasmids19. In the

model, it is sufficient to take into consideration only the poly-

merization-depolymerization in the longitudinal direction

(parallel to the long cell axis), that is, in one-dimensional

space. Indeed, chemophoresis is compatible with other pos-

sible mechanisms, and a combination of such mechanisms

can enable the rapid and robust intracellular organization of

macromolecules.

In applying chemophoresis to bacterial plasmid parti-

tioning, we have focused particularly on the gradient gen-

erated and maintained by the regulation of ATP hydrolysis.

Because the regulation of the gradient of a protein con-

centration by phospholylation-dephospholylation has been

reported in Kholodenko1, Carazo-Salas et al.2, Caudron et

al.3 and Kalab and Heald4 and suggested to be a general

intracellular process, chemophoresis resulting from the reg-

Figure 2 Dynamics and distribution along the long cell axis of u(r) and plasmids.We show the cases of N = 1 and 2. A plasmid is localized at
the center of the cell for N = 1 whereas two plasmids are positioned approximately at distances of one-quarter and three-quarters of the cell axis for
N = 2. Obtained from simulations of Eqs. (8) and (9) under the Neumann boundary condition, with the parameter values a = 1, b = 10, c = 0.1, k = 1,
D = 0.5, K = 0.5, n = 1, γ = 1000, L = 10, and k

B
T = 1.
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ulation of phospholylation-dephospholylation, such as the

regulation of the hydrolysis of ParA-ATP discussed in this

paper, is expected to be ubiquitous in a variety of intra-

cellular processes.

Apart from the chemophoresis reported here, there is

another driving force generated by the concentration gradi-

ent; “diffusiophoresis”, which is well-known in the trans-

port of colloid50–52. In the diffusiophoresis, hydrodynamic

effect is essential, while in the chemophoresis, chemical

adsorption reaction is important. However, if the hydro-

dynamic effect is necessary, we can simply add the term

into our formulation for chemophoresis. In the organization

of plasmids, it appears that macroscopic hydrodynamic flow

is not necessary. Indeed, an entropic effect caused by a

gradient generated and maintained by the regulation of phos-

pholylation-dephospholylation can explain the plasmid par-

titioning well.

It is important to note that in contrast to the hydrody-

namic effect or other entropic forces such as the excluded

volume effect, the chemophoresis force acts only on macro-

scopic elements (such as plasmids) to which proteins can

bind. Because specific binding of a chemical is one of the

most fundamental intracelluar processes for proper and

robust functions, the generation of the chemophoresis force

by such specific binding is expected to be a universal phe-

nomenon that is responsible for the intracellular positioning

of macromolecules and organelles.
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Appendix A

Discussion of the variational principle for grand potential 

with the principle of maximum work

It is well known that the grand potential is a thermody-

namic potential in terms of natural variables T, μ and surface

area. Following the standard thermodynamic principle of

maximum work, we will discuss the variational principle for

the grand potential.

Consider a thermodynamic system composed of a bead

with a surface as shown in Fig. 1 and that it is maintained in

equilibrium during its motion. Therefore, the temperature

and chemical potential of the system are always balanced by

those of the reservoir, that is, Tsystem = T, μsystem = μ(ξ). By the

assumption of local equilibrium, several thermodynamic

variables can be defined in the d-dimensional space.

The precise definition of the grand potential is as follows:

Ω(T, μ):=  [F(T, y) − yμ] (11)

This is the precise representation for the Legendre transfor-

mation from F(T, y), the Helmholtz free energy in terms of

natural variables (T, y), to Ω(T, μ) in terms of natural vari-

ables (T, μ). The determined y* and F(T, y*) − y*μ by the

minimum condition are identical to the Langmuir isotherm

and the grand potential, respectively.

The principle of maximum work represents the second

law of thermodynamics in terms of the work obtained by the

change of y under an isothermal process:

Wmax(T, y1 → y2) = F(T, y1) − F(T, y2) (12)

When y is quasistatically changed from y1 as a function of

μ1 to any y2 by moving the position of the bead from ξ1 to ξ2
via the force f exerted by the external world, the work per-

formed by the system on the external world is given as:

W(T, μ1 → μ2) = f·dξ = Wmax(T, y1 → y2)

− (13)

The first term represents the total work that the system

can perform, and the second term represents the work that

the system performs on the reservoir. The latter work can be

interpreted as the integration of the potential energy of the

system −y(ξ)μ(ξ) from ξ1 to ξ2.

We consider maximizing W(T, μ1 → μ2) by changing y2

determined arbitrarily so far and then determining it as a

function of (T, μ2). The maximum work is expressed in terms

of natural variables T, μ as Wmax(T, μ1 →  μ2), as follows:

Wmax(T, μ1 → μ2) =  W(T, μ1 → μ2)

=  [Wmax(T, y1 → y2) + y2μ2 − y1μ1]

= F(T, μ1) − y1μ1 −  [F(T, μ2) − y2μ2]

= Ω(T, μ 1) − Ω(T, μ 2) (14)

Next, we consider the situation in which the force f

exerted by the external world vanishes (f = 0) and the change

μ → μ′ occurs spontaneously. In this case, W(T, μ → μ′) = 0

because f  = 0.

Wmax(T, μ → μ′) ≥ W(T, μ → μ′) = 0

Ω(T, μ′) − Ω(T, μ) ≤ 0 (15)

For an infinitesimal displacement ξ → ξ + dξ, the follow-

ing inequality is satisfied:

dΩ(T, μ) = Ω(T, ξ) · dξ ≤ 0 (16)

Therefore, for a displacement per unit time ,

(T, ξ, ) = Ω(T, ξ) ·  ≤ 0 (17)
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Appendix B

Discussion of Chemophoresis from the Viewpoint of 

Statistical Mechanics

Although we considered only the thermodynamic approach

to obtain the chemophoresis force, the obtained force can

also be determined by using a statistical-mechanics approach.

Following the standard technique, we coarse-grain the

original system by tracing out some coordinates, to deter-

mine an effective potential for slower coordinates. For

example, we trace out some coordinates {ri}1≤ i≤N for a system

with a Hamiltonian H({ri}, {Rj}) when some coordinates

{Rj}1≤ j≤M , which are much slower than {ri}, are fixed. An

effective potential for {Rj}, Ueff ({Rj}), is defined as follows:

Ueff({Rj}):= −kBT ln P({Rj}) (18)

Here, P({Rj}) is the probability distribution of {Rj}:

= dri (19)

where Q is the partition function of the original system

({ri}, {Rj}); Q := dri dRj . One can see

that the effective potential Ueff ({Rj}) corresponds to the free

energy as a function of {Rj} that is obtained by canonical-

averaging for {ri} when {Rj} is fixed. A mean force acts on

{Rj} so as to minimize Ueff ({Rj}), to attain equilibrium. The

force acting on {Rj} is obtained as

fj = (20)

As will be seen below, the same formula as that derived from

the thermodynamic approach is obtained for the chemo-

phoresis force by defining an effective potential for the bead’s

coordinate much slower than chemical binding equilibrium.

As discussed earlier in this paper, consider a “bead”,

which is a macroscopic entity that has binding sites for

chemical adsorption reactions to occur on its surface. The

bead is placed at r = ξ and moves in a d-dimensional space

r Rd (d = 1, 2, 3). We consider an isothermal process that is

homogeneous over space at a given temperature T ; we also

consider a chemical bath with a chemical X having a spa-

tially dependent concentration x(r), or equivalently, the cor-

responding chemical potential μ(r). The concentration gra-

dient is assumed to be sustained externally.

First, we show that for a general situation, an effective

potential for the bead’s motion is equivalent to the grand

potential and that the mean force defined in the same way as

the above procedure corresponds to the chemophoresis

force derived from the thermodynamic approach. Next, as a

simple example, we will obtain a concrete representation of

the chemophoresis force by using a two-state system.

Consider a system with a binding site i (1 ≤ i ≤ Nc) on which

Ni molecules of chemical X bind. The binding energy per

molecule and Hamiltonian of the system are represented as

εi and H({εi}1≤i≤Nc), respectively. In order to obtain an effec-

tive potential for ξ, we perform grand canonical averaging

for chemical adsorption when the bead’s coordinate r = ξ

is fixed because the bead is assumed to move sufficiently

slowly so that local chemical equilibrium can be assumed to

exist at each position r = ξ during the adsorption reaction:

τbead >> τadsorb. As discussed above, we can define an effective

potential Ueff (ξ) as

Ueff (ξ) := −kBT ln P(ξ) (21)

Here, P(ξ) is the probability distribution of ξ :

where Ξ(ξ) is a partition function of the system obtained by

summing over microscopic states ({εi}, {Ni}) and is given by

Ξ(ξ) := (23)

and Ω(ξ) is the grand potential

Ω(ξ) = −kBT ln Ξ(ξ) (24)

We can see that Ueff (ξ) = Ω(ξ) + const. and that Ω(ξ) is

equal to Ueff (ξ) except for a constant factor. Therefore, there

is an effective force per volume, f, that is equal to the chemo-

phoresis force fchem, and it is written as

fchem = Ueff (ξ) = Ω(ξ) = y(μ(ξ)) μ(ξ) ,

(25)

y(μ(ξ)) : =  =  > 0 . (26)

Here, the bead can move in a direction that decreases Ueff (ξ)

as a result of the increase in μ(ξ) when the gradient of μ(r) is

sustained. This is consistent with the result of the thermo-

dynamic approach. The chemophoresis force then acts to

decrease the grand potential in the presence of the chemical

potential gradient. The effective potential Ueff (ξ) is obtained

through coarse-graining by grand canonical averaging for

chemical adsorption by maintaining ξ fixed. This is valid

when the time scale of chemical equilibrium is much smaller

than that of the bead’s motion. This procedure is equivalent
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N
μ ξ( )Ni–

kBT
----------------------------------------------------------–

1

V
-------– ∇ 1

V
-------– ∇ ∇

1

V
-------– ∂Ω

∂μ
---------⎝ ⎠

⎛ ⎞
T

kBT

V
-----------

1

Ξ
-------

∂Ξ
∂μ
--------⎝ ⎠

⎛ ⎞
T
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to the above mentioned conventional coarse-graining one

and can be used to obtain an effective potential for slow

coordinates.

Next, as a simple example, we obtain a concrete repre-

sentation of the chemophoresis force using a two-state sys-

tem, with bound and unbound states, per binding site. If the

system is in the bound (unbound) state, the change in its

energy is ε(0). In other words, this chemical is attached to

the binding sites on the bead and thus forms a complex Y

(see Fig. 1), as given by Reaction (1). For a system with only

one binding site, the partition function is obtained by sum-

ming over the microscopic states (ε1, N1) = (ε, 1), (0, 0):

Ξ(ξ) =  = . (27)

Assuming that the chemical adsorption reactions at the Nc

binding sites are independent of each other, the partition

function and the grand potential for the system with Nc

binding sites are written as

Ξ(ξ) = , (28)

Ω(ξ) = −kBT lnΞ(ξ) = −NckBT ln . (29)

Eventually, the chemophoresis force is written as

fchem = y(μ(ξ)) μ(ξ),   y(μ(ξ)) = . (30)

Here, c := . Using μ =  + kBT ln , and

y(x(ξ)) =  obtained by considering chemical kinetics,

we get the relation

Similarly, for the cooperative binding case nX(ξ) + B Y,

the Langmuir isotherm is as follows:

y(μ(ξ)) = . (32)

From the above discussion, we can see that fchem is a force

with an entropic origin.

Σε
1

N,
1
e

ε
1

μ ξ( )N
1

–
kBT

-------------------------------–
1 e+

ε μ ξ( )–
kBT

----------------------–

1 e+

ε μ ξ( )–
kBT

----------------------–

⎝ ⎠
⎜ ⎟
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Nc

1 e+

ε μ ξ( )–
kBT

----------------------–

⎝ ⎠
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⎛ ⎞

K =
k– =

1
. (31)

k+ V

∇ c
e

ε μ ξ( )–
kBT
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1 e+
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kBT
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-----------------------------

Nc

V
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N

V
-------=⎝ ⎠
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c
x ξ( )

K x ξ( )+
----------------------

e

ε μ–
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