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ABSTRACT

Concurrent electroencephalography (EEG) and functional magnetic resonance imaging

(fMRI) bridge brain connectivity across timescales. During concurrent EEG-fMRI resting-state

recordings, whole-brain functional connectivity (FC) strength is spatially correlated across

modalities. However, cross-modal investigations have commonly remained correlational,

and joint analysis of EEG-fMRI connectivity is largely unexplored. Here we investigated if

there exist (spatially) independent FC networks linked between modalities. We applied the

recently proposed hybrid connectivity independent component analysis (connICA)

framework to two concurrent EEG-fMRI resting-state datasets (total 40 subjects). Two robust

components were found across both datasets. The first component has a uniformly

distributed EEG frequency fingerprint linked mainly to intrinsic connectivity networks (ICNs)

in both modalities. Conversely, the second component is sensitive to different EEG

frequencies and is primarily linked to intra-ICN connectivity in fMRI but to inter-ICN

connectivity in EEG. The first hybrid component suggests that connectivity dynamics within

well-known ICNs span timescales, from millisecond range in all canonical frequencies of

FCEEG to second range of FCfMRI. Conversely, the second component additionally exposes

linked but spatially divergent neuronal processing at the two timescales. This work reveals

the existence of joint spatially independent components, suggesting that parts of resting-state

connectivity are co-expressed in a linked manner across EEG and fMRI over individuals.

AUTHOR SUMMARY

Functional connectivity is governed by a whole-brain organization measurable over multiple

timescales by functional magnetic resonance imaging (fMRI) and electroencephalography

(EEG). The relationship across the whole-brain organization captured at the different

timescales of EEG and fMRI is largely unknown. Using concurrent EEG-fMRI, we identified

spatially independent components consisting of brain connectivity patterns that co-occur in

EEG and fMRI over subjects. We observed a component with similar connectivity

organization across EEG and fMRI as well as a component with divergent connectivity.

The former component governed all EEG frequencies while the latter was modulated by

frequency. These findings show that part of functional connectivity organizes in a common
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spatial layout over several timescales, while a spatially independent part is modulated by

frequency-specific information.

INTRODUCTION

The advances in neuroimaging in the last decades have brought new important insights on

brain functioning by using both electroencephalography (EEG) data and functional magnetic

resonance imaging (fMRI) data extracted from human brain. EEG provides a direct measure of

neuronal activity with high temporal resolution but is limited by the spatial coverage of elec-

trodes on the scalp and by volume conductance. Conversely, fMRI provides a high-resolution

estimate of brain function with whole-brain coverage, however, with limited temporal relia-

bility restricted by the slow filter of the hemodynamic response (Logothetis et al., 2001) and

the time needed to acquire a whole-brain image (typically in the range of 1–3 seconds).

Functional connectivity (FC), measured as statistical dependence of neural activity across

distant brain areas, is considered crucial for brain function and cognition. In large-scale brain

network models of FC, nodes correspond to gray matter regions (based on brain atlases or par-

Functional connectivity (FC):
Denoting the temporal dependency
of signal time courses at the systems
level d (e.g., from fMRI, EEG, or
MEG) measured from distributed
brain regions.

cellations) while links or edges correspond to connections between the nodes. The connec-

tivity between brain regions in fMRI is usually computed as the pairwise Pearson’s correlation

between brain regions’ infraslow (<0.1 Hz) time series (Biswal et al., 1995). On a whole-brain

level this graph is either called a FC matrix (Achard et al., 2006) or functional connectomeConnectome:
A whole-brain map of structural or
functional neural connectivity.
At the systems level, connections are
typically established among brain
regions, e.g., of a brain atlas.

(FCfMRI) (Sporns, 2011). When looking at the whole-brain functional connectivity of the hu-

man brain, a stable pattern of interconnected intrinsic connectivity networks (ICNs) arise that

Intrinsic connectivity
networks (ICNs):
Networks that spontaneously exhibit
temporal dependency among neural
activity time courses of their
distributed regions. Regions of a
given ICN also co-activate in
response to the same cognitive
demands.

closely resemble co-activation patterns observed during cognitive tasks (Damoiseaux et al.,

2006; Fox et al., 2005; Yeo et al., 2011).

In electrophysiological recordings, stable activation patterns arise forming so-called mi-

crostates (Koukkou-Lehmann et al., 1980; Lehmann et al., 1987) reorganizing on a fast timescale

(∼100 ms). It has been shown that these fast electrophysiological patterns are linked to fMRI

ICNs (Britz et al., 2010; Musso et al., 2010). Beyond such activation patterns, to derive elec-

trophysiological connectivity in MEG or EEG (FCM/EEG), the statistical dependencies between

brain regions’ M/EEG activity can be measured by phase coupling, for example, by using the

pairwise imaginary part of the coherency (Wirsich et al., 2017) or by amplitude coupling using

Pearson’s correlation of the Hilbert envelope (Brookes et al., 2011; Deligianni et al., 2014).

These pairwise FCM/EEG measures are estimated for source-reconstructed M/EEG time series at

a specific frequency band. In other words, the rich oscillatory repertoire of electrophysiological

activity gives rise to multiple frequency-specific connectomes in various canonical frequency

bands. Phase- and amplitude-based connectivity measures are reliably related to each other

(Colclough et al., 2016), and it has been shown that both organize into ICNs (de Pasquale et al.,

2010; de Pasquale et al., 2012) spatially resembling fMRI ICNs (Brookes et al., 2011). Re-

cent concurrent EEG-fMRI studies have directly shown that whole-brain EEG connectivity in

all oscillatory frequency bands is spatially related to fMRI connectivity (Deligianni et al., 2014;

Wirsich et al., 2017).

Besides this partial connectivity overlap across modalities, brain responses measured from

fMRI and electrophysiology show discrepancies not only arising from different signal-to-noise

levels, but also because they capture different aspects of brain activity at different timescales

(Furey et al., 2006). Those discrepancies can also be observed when comparing multimodal

connectivity. Indeed, when compared directly, it was recently shown that modality-specific
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differences in localized pairwise connections between FCfMRI and FCEEG exist, when relating

each of the functional modalities to diffusion MRI (dMRI) connectivity (Wirsich et al., 2017).

Specifically, when trying to explain the underlying structural connectivity by using the com-

bination of fMRI- and EEG-derived FC, we observed that EEG-delta connectivity provides ad-

ditional information to fMRI connectivity at the global level. Conversely, gamma contributes

information beyond FCfMRI locally in areas of the visual cortex. To date, the few existing inves-

tigations of concurrently recorded fMRI and source space EEG connectomes (Deligianni et al.,

2014, 2016; Wirsich et al., 2017) remain correlational, and analysis of joint EEG-fMRI con-

nectivity is largely unexplored. In consequence, the relationship between EEG and fMRI con-

nectivity organization is still incompletely characterized.

Recently, Amico et al. (2017) have proposed applying independent component analysis

(ICA) to whole-brain FC to extract independent components, also termed as independent con-Independent component
analysis (ICA):
A computational method for
disentangling the independent
additive subcomponents of a
multivariate input signal, under the
assumption that the subcomponents
are non-Gaussian signals and that
they are statistically independent
from each other.

nectivity traits. This connectivity ICA (connICA) framework has been shown to be useful in ex-

tracting the hybrid independent components jointly expressed across fMRI- and diffusion MRI

(dMRI)–derived connectivity (Amico & Goñi, 2018a). An interesting feature of this approach

is that it is able to identify hybrid joint connectivity components that are linked in terms of

explaining subject-specific variance of spatially independent nonlinear relationships between

both modalities. Note that in contrast to other bimodal ICA approaches (e.g., Eichele et al.,

2009), hybrid connICA operates on connectivity values rather than on signal magnitudes or

their time series. As such, the connICA approach provides the optimal framework to access

multi-timescale connectome components. This is the case not only if the modalities contribute

in a spatially consistent manner but also in a spatially divergent manner to the variance ob-

served in different subjects.

In this study, we first asked if there exist spatially independent brain network patterns co-

occurring over modalities in simultaneous EEG-fMRI data. Second, we were interested in deter-

mining howmany independent connectivity patterns are collapsed into the global connectivity

organization provided by FCsfMRI and FCsEEG. And third, we sought to determine the contri-

bution of different oscillation frequencies to the EEG connectivity organization, and how this

frequency distribution relates to fMRI connectivity.

In summary, in this study we sought to answer if there exist spatially independent frequency-

specific FC patterns co-expressed between modalities across subjects by extending the hybrid

connICA approach proposed in (Amico & Goñi, 2018a) to concurrent EEG-fMRI resting-state

data.

METHODS

We use two independent datasets acquired from two different sites. The main dataset consisted

of 26 healthy subjects with 3 runs of 10minutes of concurrent EEG-fMRI during task-free resting

state (Sadaghiani et al., 2010). The generalization dataset consisted of 14 subjects, 20 minutes

resting-state runs of concurrent EEG-fMRI (Wirsich et al., 2017). The data was used to extract

the main joint independent components co-occurring during EEG-fMRI resting state.

Data Acquisition and Processing

I.a. Main dataset

Subjects and data of main dataset. Magnetic resonance (MR)was acquired in 26 healthy subjects

(8 females, mean age 24.39, age range 18–31) with no history of neurological or psychiatric
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illness. Ethical approval has been obtained from the local Research Ethics Committee (Comité

de Protection des Personnes (CPP) Ile de France III), and informed consent has been obtained

from all subjects.

Three runs of 10-min eyes-closed resting state were acquired in one concurrent EEG-fMRI
session (Tim-Trio 3T, Siemens, 40 slices, TR = 2.0 s, 3.0 × 3.0 × 3.0 mm, TE = 50 ms, field
of view 192, FA = 78◦). EEG was simultaneously recorded using an MR-compatible amplifier

(BrainAmp MR, sampling rate 5 kHz), 62 electrodes (Easycap), referenced to FCz, 1 ECG elec-

trode, and 1 EOG electrode, while the scanner clock was time locked with the amplifier clock
(Mandelkow et al., 2006). An anatomical T1-weighted MPRAGE (176 slices, 1.0 × 1.0 ×

1.0 mm, field of view 256, TR = 7 min) was equally acquired. The acquisition was part of a
study with two naturalistic film stimuli of 10 min not analyzed in this study (acquired after runs

1 and 2 of the resting state as described in Morillon et al., 2010). Subjects wore earplugs to

attenuate scanner noise and were asked to stay awake, avoid movement, and close their eyes

during resting-state recordings. Because of insufficient EEG quality in three subjects, one of
three rest sessions was excluded.

Brain parcellation of main dataset. T1-weighted images were processed with the Freesurfer
suite (recon-all, v6.0, http://surfer.nmr.mgh.harvard.edu/) performing nonuniformity and inten-

sity correction, skull stripping, and gray/white matter segmentation. The cortex was parcellated
into 148 regions according to the Destrieux atlas.

fMRI processing of main dataset. The fMRI time series were subjected to time slicing followed

by spatial realignment using the SPM12 toolbox (revision 6906, http://www.fil.ion.ucl.ac.uk/
spm/spm/software/spm12). The subjects’ T1 image and Destrieux atlas were coregistered to the
fMRI images. Average cerebrospinal fluid (CSF) and white matter signal frommanually defined
regions of interest (5-mm sphere, Marsbar Toolbox 0.44, http://marsbar.sourceforge.net) were
extracted andwere regressed out of the BOLD time series alongwith six rotation and translation

motion parameters and global gray matter signal. Time series were bandpass filtered at 0.009–

0.08 Hz (Power et al., 2014) and scrubbed using frame wise displacement (threshold 0.5)

defined by Power et al. (2012). The Pearson correlation between all region pairs’ remaining

time courses were used to build a functional connectivity matrix (FCfMRI).

EEG processing of main dataset. The gradient artifact induced by the scanner on the EEG sig-

nal was removed using the template subtraction and adaptive noise cancellation followed by
low-pass filtering at 75 Hz, downsampling to 250 Hz (Allen et al., 1998). Then, a cardiobal-

istic artifact template subtraction (Allen et al., 2000) was carried out using EEGlab v.7 (http://

sccn.ucsd.edu/eeglab) and the FMRIB plug-in (https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/).

Data was then analyzed with Brainstorm software (Tadel et al., 2011), which is docu-

mented and freely available under the GNU general public license (http://neuroimage.usc.

edu/brainstorm, version August 2017). Data was bandpass filtered at 0.3–70 Hz and seg-

mented according to the TR of the fMRI acquisition (2-s epochs, based on a window length

established by Colclough et al., 2016, and Wirsich et al., 2017). Epochs that contained head

motion artifacts in EEG were visually identified and removed after semiautomatically prese-

lecting epochs where signal in any channel exceeded the mean channel time course by 4 std.

Electrode positions were manually coregistered to the T1 image, and a forward model of

the skull was calculated using the T1 image of each subject using the OpenMEEG BEM model

(Gramfort et al., 2010; Kybic et al., 2005).
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EEG was re-referenced to the global average, and data were reconstructed into source space

by using the Tikhonov-regularized minimum-normwith the Tikhonov parameter set to λ = 10%
of maximum singular value of the lead field (Baillet et al., 2001). Source time series were aver-

aged to the regions of the Destrieux atlas, and connectivity matrices were calculated for each
segment by taking the imaginary coherency of delta, theta, alpha, beta, and gamma frequency
bands between each region. Excluding the real part of coherency is a commonmethod to avoid

spurious connectivity stemming from volume conductance (Nolte et al., 2004). The final EEG
functional connectivity (FCEEG) matrices were obtained by averaging the band-specific con-

nectivity of all time segments (FCδ: 0.5–4 Hz; FCθ: 4–8 Hz; FCα: 8–12 Hz; FCβ: 12–30 Hz;

and FCγ: 30–60 Hz). All steps of EEG and fMRI connectome construction are summarized in

Figure 1.

I.b. Generalization dataset

Subjects and data of generalization dataset. MR was acquired in 14 healthy subjects (five fe-

males, mean age: 30.9, std: 8,6, Min/Max age: 20–55) with no history of neurological or
psychiatric illness (see Wirsich et al., 2017). Ethical approval has been obtained from the local

Research Ethics Committee (CPP Marseille 2), and informed consent has been obtained from
all subjects.

A session of 21-min eyes-closed resting state was acquired using concurrent EEG-fMRI
(Siemens Magnetom Verio 3T MRI-Scanner, 50 slices, TR = 3.6, 2.0 × 2.0 × 2.5 mm,
TE = 27 ms, FA = 90◦, a total of 350 volumes). EEG-fMRI were acquired during eyes-closed
resting state, and the subjects were wearing a 64-channel EEG-cap (BrainCap-MR 3-0, Easycap,
Hersching, Germany, according to the 10–20 system with one ECG channel and a reference
at the mid-frontal FCz position). EEG was simultaneously recorded using an MR-compatible
amplifier (BrainAmp MR, sampling rate 5 kHz), 63 electrodes (Easycap), referenced to FCz,
and 1 ECG electrode, while the scanner clock was time locked with the amplifier clock
(Mandelkow et al., 2006). An anatomical T1-weighted MPRAGE (TR = 1,900ms, TE = 2.19ms,
1.0 × 1.0 × 1.0 mm, 208 slices) was equally acquired. Subjects wore noise protection to at-
tenuate scanner noise and were asked to stay awake, avoid movement, and close their eyes

during resting-state recordings.

Figure 1. Construction of EEG and fMRI connectomes. EEG and fMRI data were parcellated into
the 148 cortical regions of the Destrieux atlas as follows. EEG was source reconstructed to a fine-
grained grid, and the time courses of the solution points were averaged per region and per subject.
For fMRI, the BOLD signal time course was averaged over the voxels in each region for each subject.
Pearson correlation of the mean fMRI-BOLD time courses and imaginary part of the coherency
of averaged EEG source signals were used to build functional connectivity matrices/connectomes
(FCEEG and FCfMRI) for each subject.
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Brain parcellation of generalization dataset. The parcellation procedure was identical to that of

the main dataset (using Freesurfer 5.3).

fMRI processing of generalization dataset. fMRI data processing was carried out as described in

Wirsich et al. (2017). In brief, the data was processed as described above (using SPM12 6685,

Marsbar 0.43). After regressing out movement, CSF, white matter and global gray matter sig-

nal, instead of bandpass filtering as used in the main dataset, fMRI data was filtered by wavelet

analysis using the Brainwaver toolbox (version 1.6, http://cran.r-project.org/web/packages/

brainwaver/index.html) (Achard et al., 2006; Wirsich et al., 2017). Equivalent to the main

dataset, fMRI data points were scrubbed using framewise displacement (threshold 0.5) as de-

fined by Power et al. (2012). The Pearson correlation of the remaining wavelet coefficients

of scale two (equivalent to a frequency band 0.04–0.09 Hz) was used to build a functional

connectivity matrix (FCfMRI).

EEGprocessing of generalization dataset. EEG artifact correction was carried out using the Brain

Vision Analyzer 2 software (Brain Products, Munich, Germany). To correct for the gradient ar-

tifact, a gradient template was subtracted followed by adaptive noise cancellation with 70-Hz

low-pass filtering and downsampling to 250 Hz (Allen et al., 2000). Peaks from the ECG signal

were extracted to generate a cardiac pulse artifact template averaged over the 100 last pulses.

This template was then subtracted from the EEG signal (Allen et al., 1998). Eye movement was

manually rejected using ICA and high-pass filtered at 0.3 Hz. Data was segmented into 3.6-s

segments (according to one TR of the fMRI sequence and equivalent to Wirsich et al., 2017).

Segments with obvious movement artifacts were manually excluded from the analysis. As

in the main dataset, the remaining segments were then analyzed with Brainstorm software

(Tadel et al., 2011), followed by FCEEG matrix construction, with the difference that we used

an older version of Brainstorm (January 2016 according to Wirsich et al., 2017).

Analytical methods

Hybrid connectivity ICA. We used the hybrid connICA (Amico et al., 2017; Amico & Goñi,

2018a), code available here: https://engineering.purdue.edu/ConnplexityLab/publications/

connICA_hybrid_toolbox_v1.0.tar.gz) method as a data-driven way to disentangle the main

brain network patterns underlying the FCsfMRI and FCsEEG (Figure 2).

To analyze the data in one hybrid vector, we uniformed the value distribution range of EEG

(imaginary coherency original range 0 to 1) and fMRI (Pearson correlation, range -1 to 1) by

transforming the EEG imaginary coherency according to the procedure in (Amico & Goñi,

2018a). In brief, we derived a correlation value from EEG by taking the Pearson correlation

between the ith and jth row of the imaginary coherency-based connectome. This procedure

results in a new correlation matrix where the values −1 and 1 indicate if the EEG nodes are

connected antagonistically to the network or have high similarity (see also matching index in

Rubinov & Sporns, 2010).

Then, for each subject, we first computed the concurrent FCsfMRI and FCsEEG at different
frequency bands (δ, θ, α, β, and γ). We then stacked the upper triangular parts of each indi-
vidual FCfMRI together with the FCEEG of each frequency band (FCfMRI was repeated 5 times

for each combination with one EEG frequency band) and added it to a matrix where rows are
number of subjects times the number of frequencies, and columns are their bimodal connec-
tivity pattern (see scheme in Figure 2). Second, we applied a principal component analysis
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Figure 2. The upper triangular of each individual fMRI functional connectivity (FCfMRI) matrix
(left, top) and lower triangular of each correspondent EEG functional connectivity (FCEEG) matrix
(left, bottom) are added to a matrix where rows are the subjects times the EEG frequency bands and
columns are their vectorized hybrid (fMRI-EEG) connectivity patterns; the fMRI vector is repeated
and concatenated with each of the five canonical frequency bands (middle). The ICA algorithm
extracts the n independent components (i.e., ICs) associated to the whole population and their
relative ICA mixing weights across the subjects times the frequency bands (right).

(PCA) dimensionality reduction followed by an ICA run. As both PCA reduction and numberPrincipal component analysis (PCA):
A statistical procedure that uses an
orthogonal transformation to convert
a set of observations of possibly
correlated variables into a set of
values of linearly uncorrelated
variables called principal
components.

of selected independent components (ICs) are an arbitrary choice, parameters were explored
for keeping the principal components (PCs) that explain 75% to 90% of the data (in 4 steps of
5% each) and reducing the data from 5 to 20 ICs (in 4 steps of 5 ICs). The ICA algorithmwas run
(500 times, similarly to Amico & Goñi, 2018a) to extract the main hybrid (joint FCEEG-FCfMRI)
components associated with the whole population. Third, the most robust components were
selected. Here, robust is defined as appearing at least in 75% of ICA iterations with correlation
higher than 0.75 for both IC connectivity strength and subject mixing weights. This approach
has been shown to generate robust connICA estimation (Amico et al., 2017).

Two consistent hybrid ICs were observed across the majority of parameter pairs (the above

described PCA reduction followed by limiting the number of ICs) and across both datasets.
We chose the parameters by maximizing the correlation of the upper triangle of those two ICs
between the two datasets (this is the maximum value when averaging the four diagonals in
Figure 3; for across-parameter stability of the components within each dataset see Supporting
Information Figures S1 and S2). Choosing separate parameters for each dataset can result in
slightly higher correlation of ICs across datasets (i.e., keeping PCs that explain 75% of the
variance in one dataset and 80% of the variance in the other; see Figure 3 off-diagonals and
Supporting Information Table S1). However, in order to avoid overestimation of the correlation

between the two datasets, we chose the same parameter configuration for both main and gen-

eralization datasets. For some parameter pairs we also observed that in the main dataset, stable

components sometimes split up into two components. Both components are correlated to one
component in the generalization dataset and can optionally be merged into one component
that correlates even better with the component found in the generalization data. In case we

found two components in the main dataset, we kept only the component that correlated more

with the generalization dataset (to conservatively avoid adding an additional merging step).

Finally, we kept the IC configuration most consistent between the two datasets: the first PCA

components explaining 75% of the variance (12 first PCs in case of the main dataset and 14

first PCs for the generalization dataset) were kept for further analysis.

Network Neuroscience 664



Multi-timescale EEG-fMRI components of the functional connectome

Figure 3. Impact of the choice of free parameters on the consistency across datasets. Matrices
visualize the intercorrelation between the IC strengths of the two datasets by using different param-
eter sets, shown separately for the EEG and fMRI parts of the ICN-FG and VIS-FS components (A–D).
We tested all combinations, keeping principal components with 75–90% of the variance, followed
by an independent component analysis keeping 5–20 ICs (e.g., IC5PCA75 depicts an analysis using
5 ICs and keeping all PCs that cumulatively explain 75% of the data variance). Rows with con-
sistent correlation of zero mean that in one of the datasets, the preceding separate ICC procedure
had found no component passing stability requirements for this parameter combination. There is
significant (p < 10−100) spatial correlation of IC matrices between datasets for all parameters for
which stable ICs had been identified (average correlation for the ICN-FG component: fMRI part r =
0.27; EEG part r = 0.35; and for the VIS-FS component: fMRI part r = 0.45; EEG part r = 0.44).

Intraclass correlation of mixing weights. To characterize the properties of the resulting hybrid

ICs, we assessed graph modularity and intraclass correlation (ICC; Bartko, 1966) of both EEGIntraclass correlation (ICC):
An inferential statistic for quantitative
measurements that are organized
into groups. It describe show strongly
units in the same group resemble
each other. A typical application
consists of the assessment of
consistency or reproducibility of
quantitative measurements made by
different observers measuring the
same quantity.

frequency-specific and subject-specific mixing weights. ICC is a measure to define the percent

of agreement between units (ratings) of different groups (raters) (McGraw & Wong, 1996). The

stronger the agreement between raters, the higher the ICC value. Here, we used ICC to define

either the EEG frequency band weighting or the subject weighting of the IC mixing matrix

as raters. With this approach we assess if the IC mixing matrix is separable by either EEG

frequency or subject weight.

Modularity of ICs. Modularity of EEG and fMRI IC matrices were calculated based on

the Brain Connectivity Toolbox (version 2019_03_03, https://sites.google.com/site/bctnet/;

Rubinov & Sporns, 2010). To test in how far the networks overlap with canonical ICNs (as
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proposed by Amico et al., 2017), we calculated modularity based on a predefined module

label M for each region derived from the Yeo7 ICN networks (Yeo et al., 2011). Using this

predefined set of modules enables us to interpret the observed modularity values as a mea-

sure of convergence with the well-known canonical ICN organization. For the calculation of

modularity Q, negative and positive connectivity values were treated separately. Connec-

tivity values were treated according to the negative asymmetry implementation proposed by

Rubinov and Sporns (2011), weighting the modularity (Newman, 2004) of positive connec-

tions more than negative connections (see implementation in function community_louvain.m

of the Brain Connectivity Toolbox):

Q =
1

v+ ∑
i,j

(

wi,
+

j − ei,
+

j

)

δMi Mj
−

1
v++v− ∑

i,j

(

wi,
−

j − ei,
−

j

)

dMi Mj (1)

where the edge weight wi,
+

j = wi,j in case the value is positive and wi,
+

j = 0 in case the value

is negative, while wi,
−

j = wi,j in case the value is negative and wi,
−

j = 0 in case the value is

positive. δMi Mj
= 1 is assigned in case both nodes are in the same module, and δMi Mj

= 0

in case the nodes are in different modules M. ei,
±

j =

∑
i

(

wi,
±

j

)

∑
j

(

wi,
±

j

)

v±
with v± = ∑

i,j

(

wi,
±

j

)

denotes the expected density of positive or negative weights, respectively (Rubinov & Sporns,

2011).

Data availability

ConnICA code is available at https://engineering.purdue.edu/ConnplexityLab/publications/

connICA_hybrid_toolbox_v1.0.tar.gz. Processed EEG and fMRI connectomes are available at

OSF (https://osf.io/hberu/). Raw EEG-fMRI data is available on request.

RESULTS

We observed correlations of connection strength for fMRI versus δ/θ/α/β/γ of r = 0.34/0.34/

0.33/0.36/0.29 in the main dataset (replication dataset correlation were fMRI vs. δ/θ/α/β/γ:

r = 0.34/0.32/0.33/0.37/0.16 as reported in Wirsich et al., 2017). Next, we sought to move

beyond the prior correlational approaches by using joint fMRI-EEG decomposition of brain FC.

Outcome of connICA After Determination of Free Parameters

When applying the connICA method to the EEG-fMRI connectivity matrices, as a function of

the choice of the free parameters in the framework (PCA reduction and number of selected

ICs; cf. Figure 3) we observed two to four stable reoccurring components in the main dataset,

whereas two stable components reoccurred in the generalization dataset (using PCs explaining

75% of the variance followed by an ICA with 10 components; see Methods section).

Two stable components were appearing in both datasets (Figure 3, Supporting Information

Figures S1 and S2):

1. We observed an Intrinsic Connectivity Network-Frequency-General component (ICN-

FG) that captures all the main within-network connectivity in the ICNs described by

Yeo et al. (2011) (Figure 4 and Figure 5). The mixing weights do not differ for different

frequencies (Figure 4A).

2. We observed a Visual-Frequency-Sensitive component (VIS-FS) that shows two differ-

ent patterns for fMRI and EEG that jointly co-occur. The fMRI part mainly captures

the connectivity within the visual network (VIS) and the connectivity between visual
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Figure 4. (A) Subject- and band-specific mixing weights of the hybrid EEG-fMRI ICN-FG com-
ponent. (B) fMRI part of the ICN-FG component. (C) EEG part of the ICN-FG component. Note
that as we stacked up all frequency-specific EEG connectomes for each subject (cf. Figure 2), we
obtained a single EEG component part (C) associated with an ICA mixing weight for each sub-
ject and frequency (represented by one bar each in A). (D–F) These panels visualize equivalent
aspects for the VIS-FS component. All panels represent the main dataset (for generalization data see
Supporting Information Figure S3. Colorbars have been saturated at 95th and 5th percentile for
better comparison with Figures 5 and 6). VIS = visual; SM = somatomotor; DA = dorsal attention;
VA = ventral attention; L = limbic; FP = fronto-parietal; DMN = default mode network.

and somatomotor (SM) networks (Figure 4 and Figure 6), whereas the EEG part captures

mainly connectivity between ICNs. Mixing weights differ according to frequency band

Figure 4D).

The ICN-Frequency-General Component

The ICN-FG component was identified in both the main and generalization datasets, with

spatial similarity across datasets observed for both the fMRI IC weight matrix (i.e., the spatial

pattern in Figure 4B compared to that in Supporting Information Figure S3; r = 0.36, p <

1.0−300) and the EEG IC weight matrix (Figure 4C vs. Supporting Information Figure S3C;

r = 0.51, p < 1.0 × 10−300). Lifting our requirement of keeping parameters identical across

the two datasets would further improve the correlations across datasets (cf. off-diagonals in

Figure 3); for the fMRI part, the correlation of IC weights would be maximized to r = 0.41 (p =

<1.0 × 10−300) in case of a PCA selecting 75% of the variance followed by an ICA limited

to 10 ICs (IC10PCA75) for the main dataset, while using IC10PCA80 for the generalization

dataset. Conversely, the correlation would be minimized to r = 0.12, (p = 4.4 × 10−34) by

combining IC10PCA90 (main) vs. IC5PCA75 (generalization). The mean correlation between

all possible combinations of parameters was 0.27 (p = 5.5 × 10−183). For the EEG part, the IC

weight correlation is maximized to r = 0.54 (p = <1.0× 10−300) when combining IC10PCA80

(main) with IC20PCA90 (generalization), and minimized to r = 0.22 (p = 3.8 × 10−123) for

IC10PCA85 (main) combined with IC20PCA85 (generalization). The mean cross-dataset cor-

relation over all parameter combinations was r = 0.35 (p = <1.0 × 10−300). This similarity
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Figure 5. Connections with highest nodal strength (99th percentile) for the ICN-FG component:
circle graphs show all connections between different ICN networks for fMRI (A) and EEG (D); ma-
trices summarize the number of connections falling into each ICN-ICN pair for fMRI (B) and EEG
(E); brain renderings show strongest connections of the components on a canonical reconstructed
cortical surface for the fMRI (C) and EEG (F) part of the hybrid component. Data correspond to
the main dataset; for the results of the generalization dataset see Supporting Information Figure S4.
VIS = visual; SM = somatomotor; DA = dorsal attention; VA = ventral attention; L = limbic; FP =
fronto-parietal; DMN = default mode network.

confirms the robustness of the hybrid component across datasets and across a variety of pa-

rameter combinations.

On visual inspection, EEG and fMRI parts of the IC (Figure 4B and 4C) share partial spatial

similarity. This is in line with small but significant correlation between EEG and fMRI parts of

the ICN-FG independent component (main dataset: r = 0.11, p = 3.66 × 10−30; generaliza-
tion dataset r = 0.37, p = 1.42 × 10−251). Assessed visually, both EEG and fMRI parts of the IC
express a strong organization into ICNs. We empirically tested this observation by calculating
the modularity of the network given the predetermined labels of the seven ICNs as defined

by Yeo et al. (2011). The mapping of the ICN-FG component to the Yeo ICNs is visualized in

Figure 5A, 5B, 5D, and 5E. For FCfMRI, we found significantly higher modularity than in ran-

domized networks (5,000 iterations with preserved weighted degree distribution and weighted

degree sequence) (Maslov & Sneppen, 2002; Rubinov & Sporns, 2011) (qfMRI = 0.22, p <

0.0002; generalization qfMRI = 0.37, p < 0.0002). Similarly, we found significant moderate

modularity for FCEEG (qEEG = 0.093, p < 0.0002/generalization q = 0.14, p < 0.0002, same
null model as ndom network with FCfMRI, 5,000 iterations). The significant modularity implies

that connectivity is generally stronger within ICN modules than across them, confirming the

relative spatial closeness of the hybrid component to the well-known ICN organization.

In addition to supporting the ICN backbone of the intrinsic connectivity architecture, the IC

also showed a high subject-specific fingerprint on all its mixing weights (Figure 4A, ICCsubject =

0.85, p < 1.0 × 10−10; generalization ICCsubject = 0.48, p = 2.18 × 10−6), but importantly

nonsignificant (main dataset, ICCsubject = −0.005, p = 0.42) or low (generalization dataset
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Figure 6. Connections with highest nodal strength (99th percentile) for the VIS-FS component:
circle graphs show all connections between different ICN networks for fMRI (A) and EEG (D); ma-
trices summarize the number of connections falling into each ICN-ICN pair for fMRI (B) and EEG
(E); brain renderings show strongest connections of the components on a canonical reconstructed
cortical surface for the fMRI (C) and EEG (F) part of the hybrid component. Data correspond to
the main dataset; for the results of the generalization dataset see Supporting Information Figure S5.
VIS = visual; SM = somatomotor; DA = dorsal attention; VA = ventral attention; L = limbic; FP =
fronto-parietal; DMN = default mode network.

ICC = 0.27, p = 0.00023673) ICC for frequency category. This result shows that the ICN-FG

component has a strong contribution from all timescales and is not frequency specific.

The Visual-Frequency-Sensitive Component

The VIS-FS component was found in both datasets with spatial similarity across datasets of r =

0.50 (p < 10−300; Figure 4E vs. Supporting Information Figure S3) for the fMRI IC matrix and

r = 0.50 (p < 10−300; Figure 4F vs. Supporting Information Figure 3F) for the EEG IC matrix.

When permitting parameters to differ across the two datasets (off-diagonals in Figure 3), this
cross-dataset correlation of the IC matrix is maximized for the fMRI part to r = 0.62 (p <

10−300) by combining a PCA selecting 75% of the variance followed by and ICA limited to

10 ICs (IC10PCA75) for the main dataset and IC10PCA85 for the generalization dataset. The

correlation is minimized to r = 0.27 (p = 5.5 × 10−183) for IC5PCA75 (main) and IC20PC85

(generalization). The mean correlation of all parameter configurations is r = 0.45 (p = <1.0 ×

10−300). The correlation of the EEG component is maximized to r = 0.53 (p = <1.0 × 10−300)

in case of combining IC20PCA85 (main) with IC5PCA75 (generalization) and minimized to

r = 0.35 (p = <1.0 × 10−300) when combining IC10PCA80 (main) and IC20PCA90

(generalization). The mean cross-dataset correlation of all parameter configurations is r = 0.44

(p = <1.0 × 10−300). Again, this similarity confirms the robustness of the identified hybrid

component across datasets.

Compared with the ICN-FG component, EEG and fMRI parts of the VIS-FS component di-

verge considerably in their spatial pattern (Figure 4E and 4F). In line with this divergence, EEG

Network Neuroscience 669



Multi-timescale EEG-fMRI components of the functional connectome

and fMRI matrices showed a very low but significant anticorrelation (main dataset r = −0.10,

p = 1.09 × 10−26; generalization dataset r = −0.15, p = 5.79 × 10−58). The mapping of the

VIS-FS component to the Yeo ICNs is visualized in Figure 6 (A, B, D, E). The fMRI pattern of this

component is dominated by ICN organization (Figure 4E) similar to the observation in the ICN-

FG component. Supporting this observation, fMRI again showed significant modularity when

mapped to Yeo’s seven ICNs (compared to 5,000 iterations of random networks with preserved

weight and strength distribution of FCfMRI/FCEEG; Rubinov & Sporns, 2011: qfMRI = 0.32,

p < 0.0002; generalization dataset qfMRI = 0.30, p < 0.0002). However, the visual (VIS) ICN,

and to a lesser degree the somatomotor (SM) ICN, are more strongly expressed than other ICNs.

The EEG part (Figure 4F) co-occurring with the aforementioned fMRI pattern depicts a more

diverse connectivity profile diverging from the ICN architecture. This divergence is confirmed

by lack of significant modularity whenmapped to the seven canonical ICNs (qEEG −0.012, p =

0.95; generalization qEEG =−0.018, p = 0.97). The most salient characteristics of the EEG pat-

tern are strong connectivity among default mode network (DMN), S, M and dorsal attention

(DA) networks (Figure 4F and 6D and 6F).

Interestingly, these joint EEG-fMRI patterns are sensitive to different frequency bands un-

der consideration. In other words, the mixing weights associated with the VIS-FS component

change in magnitude as a function of frequency (Figure 4D, ICCfreq = 0.69, p < 1.0 × 10−10;

generalization dataset ICCfreq = 0.48, p = 3.51× 10−8), and do not represent a subject-specific

fingerprint (ICCsubject = −0.11, p = 0.98, generalization dataset ICCsubject = 0.07, p = 0.19).

The frequency sensitivity was characterized by considerably stronger mixing weights for the

gamma band compared with other frequencies.

Relationship Between Components and Head Movement

To test if subject-specific mixing weights are driven by head movement, we checked for a

monotonous relationship between the mixing weights and mean framewise displacement (FD),

as well as between mixing weights and the number of scrubbed volumes by using Spearman

ranked sum correlation. For the ICN-FG component, we found an negative correlation be-

tween subject-specific mixing weights and motion across all bands in the main dataset but not

in the generalization dataset (main dataset: FD vs. mixing weights (Figure 4A): rho = −0.44,

p = 1.9 × 10−7; no. of scrubbed volumes vs. ICA: rho = −0.37, p = 1.4 × 10−5/generalization

dataset: FD vs. mixing weights: rho = 0.17, p = 0.14; no. of scrubbed volumes vs. mixing

weights: rho = 0.042, p = 0.73).

For the VIS-FS component, we did not find a relationship between subject-specific mixing

weights and motion across any band in either dataset (main dataset: FD vs. mixing weights

(Figure 4D): rho = 0.07, p = 0.40; no. of scrubbed volumes vs. ICA: rho = 0.12, p = 0.14/gen-

eralization dataset: FD vs. mixing weights: rho = 0.11, p = 0.36; no. of scrubbed volumes

vs. mixing weights: rho = 0.04, p = 0.74). To summarize, we found a negative relationship

between movement and mixing weights of the ICN-FG component in the main dataset. This

outcome indicates that for the main dataset, subjects with movement contribute less to the

ICN-FG component.

Of note, as mentioned in the Methods section, we observed a second component with

similar characteristics to the ICN-FG component in the main dataset. This component did

not show any relationship to head motion (see detailed analysis in Supporting Information

Results section). This observation further supports that the characteristic features of the ICN-

FG component are not dependent on motion.
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DISCUSSION

Since BOLD fMRI measures neural energy consumption, FCfMRI collapses over a mixture of

electrophysiological FC (FCEEG) mechanisms in various oscillatory frequency bands. To dis-

entangle the complex relationship between FCfMRI and multifrequency FCEEG, we applied

a data-driven decomposition of bimodal connectomes for simultaneous EEG-fMRI recordings.

Two robust spatially independent bimodal connectome components, each representing FCfMRI

and FCEEG, were found across all frequency bands and both independent datasets. The first

component, which we call the Intrinsic Connectivity Network–Frequency-General compo-

nent (ICN-FG), has a uniformly distributed frequency fingerprint and is linked to ICNs in both

modalities (Figures 4A and 5). Conversely, the second component, which we call the Visual–

Frequency-Sensitive component (VIS-FS), spatially diverges between EEG and fMRI and is

sensitive to different frequency bands under consideration (i.e., the mixing weights associated

to the VIS-FS component change in magnitude as a function of frequency; see Figures 4D

and 6).

ICN-FG Component

The ICN-FG component captures the main within-network connectivity in well-known neuro-

cognitive networks for EEG and fMRI. The EEG and fMRI patterns are co-expressed over subjects

and quantified by subject-specific mixing weights. This result corroborates previous findings

extracting the same robust ICN-FG components from different fMRI datasets (Amico et al.,

2017; Contreras et al., 2017).

The fact that we found this ICN-conform stable hybrid component across modalities might

suggest that the within-network connectivity dynamics are “scale-independent,” that is, to

some extent, insensitive to whether one considers the millisecond-scale of the FCEEG con-

nectome in a specific frequency, or the infraslow-scale of the FCfMRI connectome. Previous

work on microstates have indeed demonstrated temporal scale-free behavior in EEG ranging

from fast millisecond to slow second time range (Van de Ville et al., 2010). Such timescale

invariance is also in line with more recent findings linking fMRI to EEG (Deligianni et al., 2014;

Wirsich et al., 2017) and to MEG connectivity (Brookes et al., 2011; Colclough et al., 2016).

We found strong ICC at the subject level, suggesting a strong fingerprint for each subject

(Amico & Goñi, 2018b). This result should be interpreted very carefully, however, as we ob-

served in the main dataset (but not in the replication dataset) that those subject-specific mixing

weights are negatively correlated with head movement for the ICN-FG component. As such,

the subject-specific mixing weights should be interpreted as subject-specific contributions to

the hybrid component that might also be weighted by session-specific individual conditions

such as vigilance state and movement of the subject. This possibility also implies that the

final connectivity component is “corrected” for those subject-specific (linear) contributions,

consequently representing a clean component common among all subjects. As we showed in

the main dataset, the ICN-FG component can split into two parts, one being anticorrelated to

movement and one being uncorrelated to movement. This demonstrates the ability of ICA to

decompose the connectivity matrix into behaviorally relevant parts provided a sufficient num-

ber of subjects (the larger main dataset of 26 subjects was able to detect a split of the ICN-FG

component that could not be observed in the smaller generalization dataset).

In conclusion, the ICN-FG component suggests that the presence of strong electrophysiolog-

ical communication in all frequencies (widely distributed, with ventral dominance) contributes

to strong ICN architecture in fMRI.
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VIS-FS Component

The VIS-FS hybrid component shows two spatially divergent patterns for fMRI and EEG

(Figure 4C and 4F). The fMRI part mainly captures the connectivity within visual network (VIS)

and the connectivity between visual and somatomotor (SM) networks but also other ICNs. On

the other hand, the EEG part co-occurring with the aforementioned fMRI pattern depicts a more

diverse connectivity profile that captures between-network connectivity, especially between

DMN. Although the pattern has not been described before, it reproduces across both datasets

(correlation between EEG IC strength of the two datasets r = 0.50; see Figure 3).

The observed difference across EEG and fMRI parts of the VIS-FS component suggests that

the hybrid connICA is able to detect the complementary information carried over the two

different timescales measured by FCfMRI and FCEEG. The fMRI IC weights of the component

are in line with previous findings extracting VIS-SM independent components from different

fMRI datasets (Amico et al., 2017; Contreras et al., 2017). On the other hand, the γ-band-

driven electrophysiological FC VIS-FS component is in line with the results of Wirsich et al.

(2017) who observed a global contribution of delta but a contribution of gamma to predicting

diffusion MRI connectivity specifically in visual areas. The results reported here are consistent

with this pattern, as the VIS-FS component is mainly driven by gamma oscillations, whereas

delta does not contribute to this component and only contributes to the global pattern of the

ICN-FG component (see Figure 4A).

The dominance of the gamma band in this component tied with an occipitally focused fMRI

counterpart may be surprising in light of the well-known predominance of alpha power in oc-

cipitoparietal cortex. Here, it is important to recall the difference between local power versus

long-range coupling of electrophysiological oscillations. While the former is dominated by

the alpha band, whole-brain oscillation-based connectivity in M/EEG paints a different picture

(for an extensive review see Sadaghiani & Wirsich, 2019). In particular, early studies defin-

ing ICNs in MEG (Brookes et al., 2011; Hipp et al., 2012) found that alpha and beta bands pro-

vide the strongest connectivity in all observed ICNs (presumably due to higher SNR; cf.

Hipp & Siegel, 2015) without a unique prevalence in VIS/DA networks. After accounting

for SNR differences across frequencies, Hipp and Siegel (2015) computed a connection-wise

measure of how strongly fMRI-based connectivity is tied to MEG-based amplitude coupling in

each frequency (a measure of local homogeneity of the cross-modal relationship). They found

that the relation between alpha coupling and hemodynamic correlations was particularly pro-

nounced between frontal and temporal areas, concluding a deviation from the prominence of

local alpha power in occipital and parietal areas. Similarly, no dominance of alpha has been

reported for connections of the VIS network in concurrent EEG-fMRI studies (Deligianni et al.,

2014; Wirsich et al., 2017). In sum, in contrast to local spectral power in visual cortex, neither

phase coupling nor amplitude coupling of occipito-parietal connections appear to be stronger

in the alpha compared with other frequency bands. In the following, we propose scenarios

that may explain the pattern observed in the VIS-FS component.

Mutual Versus Divergent Contributions of Hemodynamic and Electrophysiological Recordings

The here-observed duality of spatially mutual and discrepant contributions (ICN-FG and VIS-

FS components, respectively) of hemodynamic and electrophysiological recordings has also

been discussed in task-paradigm studies. Taking face recognition tasks as an example, mutual

contributions of EEG and fMRI have been readily observed (Walz et al., 2013; Wirsich et al.,

2014). However, face recognition tasks also engage discrepant contributions across the two
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modalities; it has been shown that while the face-selective N170 originating from the fusiform

gyrus in MEG is not modulated by attention, fMRI show a strong modulation in the same region

(Furey et al., 2006).

Such divergence across modalities speaks to the view that M/EEG and fMRI may in part

capture preferentially different types of neural activity, rather than considering the fMRI signal

merely a temporally blurred integration over electrophysiological activity. For example, unlike

M/EEG, modulatory processes (such as states of motivation, attention and memory) may of-

ten dominate the hemodynamic signal (Logothetis, 2008). More recently, Hari and Parkkonen

(2015) have suggested that M/EEG most strongly weight fast-conducting pathways (thick myeli-

nated fibers), while the main contribution to the BOLD signal comes from neuronal ensembles

connected via slow fiber pathways (densely packed small fibers). Applying this viewpoint to

the VIS-FS component, the fMRI part would be more heavily driven by slow-conducting path-

ways, while the EEG part would more strongly reflect fast connections. In this scenario, the

divergent topography of the EEG and fMRI parts fits well with the fact that slow-conducting

fibers are more prevalent in local connections, while the fast-conducting fibers support long-

distance connections (Aboitiz et al., 1992; Ringo et al., 1994). Specifically, the fMRI part of

the VIS-FS component comprises more local within-ICN connections (especially for VIS and

SM, which are least distributed), as apparent in significant graph modularity. Conversely, the

EEG part of the VIS-FS component is foremost reflective of cross-ICN and, therefore, longer

connections.

The co-occurrence of these two aspects within the VIS-FS hybrid component would then

imply that fast-conducting pathways distributed broadly between ICNs and operating primarily

in the gamma band (captured by EEG) would be linked to slow-conducting pathways primarily

within ICNs, especially VIS and SM (captured by fMRI). These features should thus be consid-

ered as intertwined characteristics of the connectome. Another implication is that gamma, the

fastest electrophysiological oscillation band, plays a special role over and above other bands

in fast-conducted inter-ICN connectivity, which might be linked to cortical layer–specific pref-

erences of the gamma band (Scheeringa & Fries, 2017; Scheeringa et al., 2016). In short, a

partial preference of EEG and fMRI for nonoverlapping classes of pathways could explain how

a spatially divergent connectivity pattern could be tied across the two modalities in the VIS-

FS component. To summarize, the observation of two robust bimodal components, one with

convergent and one with divergent topography across EEG and fMRI (ICN-FG and VIS-FS, re-

spectively), would support the view that the two data modalities capture partly overlapping

and partly independent neural activity.

From a systems neuroscience point of view, the concurrent convergence and divergence of

multimodal connectivity patterns reflect recent findings of computational modeling of scale-

free dynamics. In line with the convergent aspect, a large body of literature is showing that

computational models of FC generated from structure show a common pattern across several

timescales (Deco et al., 2009, 2013; Ghosh et al., 2008; Hansen et al., 2015; Honey et al.,

2007). This speaks to the ICN-FG component and its frequency independence observed in our

study, likewise showing a common component across all observed timescales. Conversely,

speaking to the divergent aspect, some evidence suggests additional timescale–specific con-

tributions to FC organization (for discussion see Sadaghiani & Wirsich, 2019, section 3a).

Specifically, recent trimodal and modeling studies demonstrate that EEG provides complimen-

tary information to that obtained from fMRI when linking structural to FC (Schirner et al.,

2018; Wirsich et al., 2017). These findings are in line with the above-discussed hypothesis that

electrophysiological and hemodynamic signals may in part be associated with different fibers
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(Hari & Parkkonen, 2015). It has been recently demonstrated that tuning free parameters of

a computational model for each region as compared to a global whole-brain level improves

the link between structural and FC (Wang et al., 2019). This local modification of parameters

permits local variation of FC timescales in line with the frequency sensitivity of the VIS-FS

component observed in our study. This observation further highlights the complimentary in-

formation of FC on several timescales not predicted by the earlier computational models but

likely harnessed by our bimodal connICA.

Methodological Considerations, Limitations, and Future Directions

Like in any data-driven approach (and in rsfMRI in general) preprocessing steps remain arbi-

trary. In particular, here the parameters of PCA-based variance reduction and number of final

ICs can slightly change the results. We tried to avoid this parameter-dependence by fitting the

optimal parameter to the maximum correlation between two independent datasets. Never-

theless, the analysis design still remains flexible and parameter sets most likely also depend

on SNR of any given dataset (recording length, field strength of the MR scanner). Also, the

selection criteria for stable ICAs defined by (Amico et al., 2017) remain arbitrary, and further

work should explore the parameters of the stability criteria or use other approaches to define

ICA stability (e.g., an adequate null model).

Another important parameter might be the number of subjects used in the approach. The

here-used generalization dataset had only 14 subjects with a resting-state acquisition of 20 min

(as compared to the 26 subjects of the main dataset with each 30-min total of resting-state ac-

quisition). Note that this relatively small number of subjects might result in an overfitting of the

ICA weights to overly general features ignoring more detailed features. As shown in Figure 3

(and Supporting Information Figures S1 and S2), the ICN-FG component is detectable for more

parameter configurations in the main dataset than in the generalization dataset (13 vs. 7 con-

figurations). This suggests that it is easier to extract stable ICs when more data points/subjects

are available. Note, however, that this was not true for the VIS-FS component (we found five

configurations for the main dataset, whereas the generalization dataset had nine stable con-

figurations). It remains unclear if increasing the sample size will help to solve this variability

of the ICA approach (see Amico & Goñi, 2018a, and Supporting Information).

These constraints notwithstanding, the bimodal connICA approach provides novel informa-

tion complementing those obtained from other methodologies. Deligianni et al. (2014) pre-

dicted EEG from fMRI and vice versa using canonical correlation analysis. Another approach

would be to link multimodal connectomes by using partial least squares (Mišić et al., 2016).

As compared to those correlational approaches, the choice of using ICA follows the general

assumption that static connectivity holds independentmixed connectivity signals (Amico et al.,

2017). The informativeness of such ICs has, for example, been established through their associ-

ation with levels of consciousness (Amico et al., 2017), structural connectivity (Amico & Goñi,

2018a), and cognitive status in Alzheimer’s disease (Contreras et al., 2017). As such, the anal-

yses applied here provide a data-driven approach to extract independent hybrid connectomes

beyond correlational approaches.

Conclusion

In conclusion, this work sheds new light on the relationship between EEG and fMRI connec-

tivity, suggesting that parts of the joint EEG-fMRI resting-state connectivity are related across

timescales and modalities in a spatially independent manner. This data-driven approach based

on hybrid extraction of independent connectivity components shows great potential for future

research in the field, especially for simultaneous EEG-fMRI in clinical populations.
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