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Objective: Mild cognitive impairment (MCI) is a heterogeneous syndrome

characterized by cognitive impairment on neurocognitive tests but

accompanied by relatively intact daily activities. Due to high variation

and no objective methods for diagnosing and treating MCI, guidance

on neuroimaging is needed. The study has explored the neuroimaging

biomarkers using the support vector machine (SVM) method to

predict MCI.

Methods: In total, 53 patients with MCI and 68 healthy controls were involved

in scanning resting-state functional magnetic resonance imaging (rs-fMRI).

Neurocognitive testing and Structured Clinical Interview, such as Alzheimer’s

Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) test, Activity of

Daily Living (ADL) Scale, Hachinski Ischemic Score (HIS), Clinical Dementia

Rating (CDR), Montreal Cognitive Assessment (MoCA), and Hamilton Rating

Scale for Depression (HRSD), were utilized to assess participants’ cognitive

state. Neuroimaging datawere analyzedwith the regional homogeneity (ReHo)

and SVM methods.

Results: Compared with healthy comparisons (HCs), ReHo of patients with

MCI was decreased in the right caudate. In addition, the SVM classification

achieved an overall accuracy of 68.6%, sensitivity of 62.26%, and specificity

of 58.82%.
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Conclusion: The results suggest that abnormal neural activity in the right

cerebrum may play a vital role in the pathophysiological process of MCI.

Moreover, the ReHo in the right caudate may serve as a neuroimaging

biomarker for MCI, which can provide objective guidance on diagnosing and

managing MCI in the future.
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Introduction

Mild cognitive impairment (MCI) is a heterogeneous

syndrome defined as deficits on neurocognitive testing but

without significant damage to activities of daily living (ADLs)

(Winblad et al., 2004). Objective evidence cognitive or functional

decline, labeled “subjective cognitive decline,” does not always

accompany subjective awareness of cognitive impairment (Tao

et al., 2021). MCI reflects that cognitive function deteriorates

in neuropsychological testing, but ADL is intact relatively

(Petersen, 2006).

One characteristic of MCI is heterogeneous, which means

that about 5–15% of the patients are at the risk of getting

dementia every year. At the same time, about half of the patients

keep stable at 5 years, and symptoms sort out over time in

the minority (Dunne et al., 2021). The collaboration of Cohort

Studies of Memory in an International Consortium (COSMIC),

which spread standard diagnostic criteria to estimate the

prevalence of MCI more reliably across different regions,

confirmed the prevalence of MCI in adults over 60 years up to

6% across 11 studies (Sachdev et al., 2015).

The guideline date updated by the American Academy

of Neurology estimated a prevalence of 6.7% in 65–69-year-

olds and 25% for 80–84-year-olds (Livingston et al., 2017).

Jia et al. estimated that overall MCI prevalence was 15.5%

in China, representing 38.77 million people (Jia et al., 2020).

Consistently, 10 million new instances of dementia are enlisted,

and it is assessed that 13,500,000 individuals are associated with

the risk of dementia by 2050 (WHO., 2022). It presents an

opportunity for reducing vascular risk and altering behavioral

patterns when a diagnosis of MCI is made. Given diagnostic

and therapeutic practice variation, things could change if a more

definitive diagnosis is available. Therefore, standard national

guidance is eagerly needed for using neuroimaging in MCI

(Gillis et al., 2019; McWhirter et al., 2020). There is a need

for precise prognosis methods to ensure that the diagnosis of

MCI is a possibility for people to prevent the risk of Alzheimer’s

disease (AD). To improve the specificity and sensitivity of MCI

diagnosis, we need cognitive testing and neuroimaging with

more evidence.

Resting-state functional magnetic resonance imaging (rs-

fMRI) is a non-invasive imaging tool to detect brain activity

(Biswal et al., 1995; Smitha et al., 2017). As shown in previous

research, rs-fMRI has been confirmed as a reliable instrument

to explore the brain’s mechanism, reflecting the signature of the

brain’s neural network (van den Heuvel and Hulshoff Pol, 2010;

Pan et al., 2021). Regional homogeneity (ReHo) is a test-retest

method to detect the characteristic of brain connectome (Biswal,

2012; Cheng et al., 2019; Geng et al., 2019; Hou et al., 2021).

The support vector machine (SVM) is among the most popular

methods in the machine learning (ML) that has exceeded

practical neuroimage analysis in the past 20 years (Orru et al.,

2012; Pisner and Schnyer, 2020). SVM has been applied in

different fields and addresses various classification problems

because of its relative simplicity and flexibility (Gori et al., 2015;

Cheng et al., 2021; Shan et al., 2021; Gao et al., 2022). There have

been hundreds of studies usingML to accurately classify patients

with heterogeneous mental and neurodegenerative disorders,

which make improvements in the early diagnosis.

In brain disorders research, SVMs are deployed by

multivoxel pattern analysis (MVPA) and solve plenty of clinical

problems because of their relative simplicity. Even if data

are high dimensional, there is a lower risk of overfitting

in SVMs (Zhang et al., 2020). Recently, SVMs have been

applied in precision medicine. SVM analysis can predict

the diagnosis and prognosis, particularly for patients with

brain diseases, such as Alzheimer’s (Franzmeier et al., 2020;

Xie et al., 2022), schizophrenia’s (Chand et al., 2022; Lei

et al., 2022), and depression’s (Al-Hakeim et al., 2019; Bone

et al., 2021). The results would make improvement in the

diagnostic accuracy.

More research participation is required to increase the

investment in neuroimaging biomarkers to achieve this goal.

To determine whether there are distinct or specific alterations

in MCI that can be used to differentiate MCI from healthy

controls, we examined specific or distinctive alterations in

MCI. The study hypothesized that patients with MCI have

abnormal ReHo in the brain region and the abnormal region

serves as a biomarker to aid in diagnosing and prediction

of MCI.
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Methods

Participants and procedures

In total, 140 subjects were consecutively recruited from

Wuxi Mental Health Center in China between June 2018 and

May 2022.

In total, 70 patients with MCI and 70 age-, education-

, and gender-matched healthy subjects, which were right-

handed, were recruited. The patients were diagnosed by two

psychiatrists with criteria in the Structured Clinical Interview

of the fifth version of the Diagnostic and Statistical Manual of

Mental Disorders (DSM-V) independently. All participants were

assessed by Alzheimer’s Disease Assessment Scale-Cognitive

Subscale (ADAS-Cog) test (Kueper et al., 2018), ADL Scale,

Hachinski Ischemic Score (HIS), Hamilton Rating Scale for

Depression-17 (HRSD), Clinical Dementia Rating (CDR), and

Montreal Cognitive Assessment (MoCA). The patients who

met the criteria (CDR ≥ 0.5, MoCA < 26) were included.

Exclusion criteria were as follows: history of brain damage,

other neurological disorders, other mental disorders, such as

acute illness, substance abuse, schizophrenia, dementia, bipolar

disorder, and other severe limb or head tremor. All healthy

comparisons (HCs) were recruited from the community as

volunteers without a history of neurologic disorders. In control

comparisons, neuropsychology evaluations were also performed

the same as patients with MCI. The study was approved by

the Medical Ethics Committee of Wuxi Mental Health Center.

Each participant had written informed consent and submitted it

before enrollment.

Materials

ADAS-Cog test

The ADAS-Cog helps to evaluate cognition and

differentiation between normal and impaired cognitive

functioning. The administrator accumulates points for the

errors in the test task for a total score. The score ranges from 0

to 70 and a score of 70 epitomizes the most severe impairment

(Cano et al., 2010).

The ADL scale

TheADL is used to describe fundamental skills in taking care

of oneself independently (Edemekong et al., 2022). ADL is used

as an indicator of a person’s functional status and to assess older

adults’ functional status (Árnadóttir, 2016).

Hachinski ischemic score

The vascular burden is considered a risk factor for

cognitive dysfunction. HIS is a clinical tool used to identify

vascular dementia (Johnson et al., 2014). The scores were

related to cognitive functioning, such as global cognition,

executive functioning, immediate memory, and attention. HIS

can significantly predict the diagnosis of MCI (Paul et al.,

2003).

Hamilton rating scale for depression

A 17-item HRSD was used to assess the symptom of

depression (Hamilton, 1967).

Clinical dementia rating

Clinical Dementia Rating is a global rating device calculated

on six behavioral and cognitive fields, such as memory,

orientation, problem solving, judgment, personal care, and

home and hobbies performance. The CDR is based on a scale

ranging from 0 to 3: no dementia (CDR = 0), questionable

dementia (CDR = 0.5), MCI (CDR = 1), moderate cognitive

impairment (CDR= 2), and severe cognitive impairment (CDR

= 3) (Khan, 2016).

Montreal cognitive assessment

Montreal Cognitive Assessment score ranges from 0 to 30

points, and a cut score of 26 represents excellent specificity and

sensitivity separating MCI from healthy subjects (De Reuck,

2020).

Image acquisition

All the rs-MRI data were obtained by an Achieva 3.0T

Scanner (Philips, Amsterdam, the Netherlands) at the Wuxi

Mental Health Center on the first day. Participants were

instructed to remain still, close their eyes, and avoid falling

asleep during the scan. Echo-planar imaging of resting-

state functional images was performed using the following

parameters: repetition time/echo time (TR/TE) 2,000/30ms, 31

slices, 90◦ flip angles, 22 cm × 22 cm field of view (FOV), 5mm

slice thickness, and 1 mm pitch.

Data preprocessing

Imaging data were preprocessed with Data Processing

Assistant for Resting-State (DPARSF) software inMATLAB (Yan

et al., 2016). It was necessary to exclude the first five time points

to minimize the error caused by the initial signal instability

and participants’ adaptation times. Following this, time-slice

correction and head movement correction were completed.

Maximum displacements in x-, y-, or z-axes and maximum

rotations in angular direction were no more than 2mm and 2◦,
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TABLE 1 Demographics of the study population.

MCI (n= 53) Control (n= 68) P

Age(years) 69.07± 4.932 68.80± 4.951 P > 0.05

Sex(M/F) 40/30 34/34 P > 0.05

Education (years) 10.04± 3.321 9.75± 3.414 P > 0.05

ADL 14.243± 0.824 14.059± 0.237 P > 0.05

HRSD 2.114± 2.446 1.441± 2.153 P > 0.05

ADAS-Cog 9.527± 3.480 7.066± 2.760 P < 0.05

HIS 1.371± 0.819 1.044± 0.818 P < 0.05

CDR 0.814± 0.889 0.316± 0.487 P < 0.05

MoCA 22.814± 4.150 26.265± 1.671 P < 0.05

ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale test; ADL, Activity

of Daily Living Scale; HIS, Hachinski ischemic Score; CDR, Clinical Dementia Rating;

MoCA, Montreal Cognitive Assessment; HRSD, Hamilton Rating Scale for Depression.

The p-value was obtained by t-tests and gender was compared by Chi-square test.

TABLE 2 ReHo di�erence among MCI and healthy subjects.

Brain areas

(AAL)

Peak MNI coordinates Cluster

size

Peak T

value

X Y Z

MCI vs.

CONTROL

Right caudate

6 −3 21 43 −4.0112

ReHo, regional homogeneity; MCI, mild cognitive impairment; MNI, Montreal

Neurological Institute.

respectively. Image data were corrected for spatial normalization

to the standard Montreal Neurological Institute (MNI) space.

Samples were resampled to 3× 3× 3mm. Filter was used along

with linear detrending (0.01–0.08Hz) and linearly detrended.

A series of covariates were removed that included the signal

from a region centered in the white matter, and six head-

motion parameters were calculated from rigid bodies (Gao et al.,

2022).

ReHo analyses

Using the Kendall coefficient of concordance (KCC) between

the time series of a given voxel and the 26 nearest voxels,

we generated the ReHo map for each participant. The non-

brain tissues were then removed using a whole-brain mask.

As part of the standardization process, we divided each

ReHo map by its global mean KCC within the whole-

brain mask. Spatial smoothing of the ReHo maps was

performed with a Gaussian kernel of 4.5mm full-width at

half-maximum (FWHM).

Statistical analysis

With the help of two-sample t-tests, age, education, and

whole-brain voxel-based maps were compared. The gender was

compared by the chi-square test. By controlling topological

family-wise errors (FWEs) computed using Gaussian Random

Field theory, all significant clusters were corrected at the cluster

level. The threshold was p < 0.01 for cluster-forming voxel-level

heights, and the threshold was p < 0.05 for cluster-wise FWEs.

Gray matter (GM) masks were generated group wise, i.e., voxels.

Classification analysis

For each participant, we calculated the Pearson correlation

between the time series of all pairs of brain voxels. In MATLAB,

LIBSVM was used to run the SVM method. With ReHo values

extracted from different brain regions, SVM was applied to test

the ability to distinguish patients from healthy controls.

Results

Demographics

From June 2018 toMay 2022, 140 participants were enrolled.

Among all participants, 17 patients and 2 HCs were excluded

because of the head motion parameters. The remaining 53

patients with MCI and 68 age-, education-, and sex-matched

control volunteers were recruited. The subjects were divided

into 2 groups: patients with MCI (n = 53) and HCs (n = 68).

Demographic information and clinical assessment scores are

shown in Table 1. There were no significant differences in age,

gender, and year of education between the two groups (p> 0.05).

Compared with the HCs, MCI patients has poorer scores in all

cognition tests, including ADAS-Cog test (p < 0.05), HIS (p <

0.05), CDR (p < 0.05), and MoCA (p < 0.05). There was no

significance in the ADL Scale and HRSD between groups (p >

0.05, Table 1).

ReHO: Patients vs. HCs

Compared with HCs, patients with MCI displayed a

significantly decreased ReHo in the right caudate (Table 2 and

Figure 1).

The results of the SVM

A combination of decreased ReHo in right caudate was

a potential biomarker to diagnose MCI by SVM. The SVM

classification achieved an overall accuracy (68.6%), sensitivity

(62.26%), and specificity (58.82%) (Figure 2).
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FIGURE 1

ReHo di�erences between patients with MCI and HCs. Red and blue denote higher and lower ReHo, respectively, and the color bars represent

the t-values from the t-test of the group analysis. ReHo, regional homogeneity; MCI, mild cognitive impairment; HCs, healthy comparisons.

Discussion

Mild cognitive impairment could be a prodromal stage

of dementia. Over the past decade, neuroimaging has gained

increasing attention as a predictor of mental disorders (Grueso

and Viejo-Sobera, 2021). The association between MCI and

right caudate was assessed in fMRI comprising 53 MCI patients

with a range of demographic characteristics, and HCs were

matched to patients. As shown in the results, when compared

with the HCs, patients with MCI had poorer scores in all

cognition tests, such as ADAS-Cog test (p < 0.05), HIS (p

< 0.05), CDR (p < 0.05), and MoCA (p < 0.05). There was

no significance in the ADL Scale and HRSD between the two

groups (p > 0.05). Patients with MCI at times will ultimately

advance to dementia, yet the cognitive symptoms have not

ultimately shown.

Compared with HCs, the ReHo of patients with MCI in

the right caudate is lower than HCs. The caudate nucleus plays

a critical role in various higher neurological functions. It is a

region that is not only in executive functioning but also related

to learning, memory, motivation, and emotion (Fisher et al.,

2006; Grahn et al., 2008). One can consider the head of the

caudate nucleus as the cognitive and emotional portion (Seger

and Cincotta, 2005; Graff-Radford et al., 2017). It is possible

that the caudate was restricted from overactivity due to its

significant involvement in the working memory task. Ekman

et al. found in patients with Parkinson’s disease andMCI, blood-

oxygen-level-dependent (BOLD) signals are reduced in the right

caudate and frontal cortex, as well as impaired presynaptic

function in the caudate (Ekman et al., 2012). Working memory

is updated by the caudate and anterior cingulate cortex and their

functional changes are associated with Parkinson’s disease with
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FIGURE 2

Visualizing classifications based on support vector machine (SVM) by the decreased regional homogeneity (ReHo) values in the right caudate to

discriminate patients with mild cognitive impairment (MCI) from healthy comparisons. (Left) SVM parameters’ result of 3D view. (Right)

Classified map of the ReHo values in the right caudate.

MCI. Specifically, Qiu et al. found that MCI smokers showed

decreased functional connectivity of right caudate to left inferior

parietal lobule (Qiu et al., 2022). Compared to controls, caudate

volumes were lower in MCI (4.43% right) (Madsen et al., 2010).

Nevertheless, in the early stages, although biomarkers might

be found in the result of fMRI, it stays trying for the location

of MCI to dementia progression in clinical practice (Zhang

et al., 2012). For this reason, finding the contrast between

those patients with MCI and healthy subjects is significant. To

tackle this issue, researchers established neuroimaging datasets

from patients with MCI, HCs, and different variables, such as

demographic, genetic, and cognitive measurements (Pellegrini

et al., 2018). SVM can characterize non-linear choice limits in

high-layered variable space by tackling a quadratic improvement

issue (Grueso and Viejo-Sobera, 2021). This technique can

provide a valuable insight into a disease that occurs with neural

patterns, such as autism (Gori et al., 2015), attention deficit

hyperactivity disorder (Park et al., 2016), and schizophrenia

(Cheng et al., 2015; Pina-Camacho et al., 2015; Arbabshirani

et al., 2017). In the study, the decreased ReHo of right caudate

was a potential biomarker to diagnose MCI by SVM. The SVM

results showed a diagnostic accuracy of 68.6% (83/121). The

ReHo was decreased in the right caudate, with a sensitivity

of 62.26% (33/53) and a specificity of 58.82% (40/68). The

level of prediction may seem modest, but it must be viewed

in the context of other risk factors that patients may have for

progression over the next 20–30 years. Since these patients

usually coexist, it is crucial to understand how they interact. The

results suggest that future therapy studies should directly verify

the ability to deliver compounds to the caudate nucleus as the

cognitive and emotional portion.

In summary, this study is the first to demonstrate the relation

between the right cerebrum and MCI using ML based on

fMRI imaging data. The right cerebrum may play an important

role in early intervention in patients with MCI. It would be

interesting to combine ReHo value and MCI to fully investigate

its diagnostic accuracy.

They can serve as an objective and reliable complementary

tool to improve diagnosis accuracy and ultimately predict the

MCI. In addition, by classifying biomarkers, it is possible to

revise clinical diagnosis in cases of uncertain diagnosis. The

results add to a superior comprehension of the mechanism in

the cognitive decline of patients with MCI.

Limitation

With regard to the research methods, some limitations

need to be acknowledged. First, cross-sectional design limits

our ability to interpret causal relationships between patients

with MCI and HCs. This study needs to be confirmed in

the future to increase the likelihood of generalizing its results

to MCI patients with different clinical characteristics. Second,

several factors confound our study, such as illness duration,

medication, lifestyle, and diet. In the future, we will explore

potential variations. Third, there was no information available

about whether changes occurred in the caudate before the

development ofMCI. Understanding the cause and effect may be

possible through long-term follow-up observations. Fourth, we

do not make the use of the medial temporal lobe atrophy (MTA)

score (Scheltens’ scale) in distinguishing patients with MCI and

AD from those without impairment.
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Conclusion

In conclusion, the results suggest that abnormal neural

activity in the right cerebrum plays a vital role in the process

of MCI. Moreover, the ReHo in right caudate may serve as a

neuroimaging biomarker for MCI, which can provide objective

guidance on diagnosing and managing MCI in the future.
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