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Abstract

Formalin fixed paraffin-embedded (FFPE) tumor specimens are the conventionally archived material in clinical practice,
representing an invaluable tissue source for biomarkers development, validation and routine implementation. For many
prospective clinical trials, this material has been collected allowing for a prospective-retrospective study design which
represents a successful strategy to define clinical utility for candidate markers. Gene expression data can be obtained even
from FFPE specimens with the broadly used Affymetrix HG-U133 Plus 2.0 microarray platform. Nevertheless, important
major discrepancies remain in expression data obtained from FFPE compared to fresh-frozen samples, prompting the need
for appropriate data processing which could help to obtain more consistent results in downstream analyses. In a publicly
available dataset of matched frozen and FFPE expression data, the performances of different normalization methods and
specifically designed Chip Description Files (CDFs) were compared. The use of an alternative CDFs together with fRMA
normalization significantly improved frozen-FFPE sample correlations, frozen-FFPE probeset correlations and agreement of
differential analysis between different tumor subtypes. The relevance of our optimized data processing was assessed and
validated using two independent datasets. In this study we demonstrated that an appropriate data processing can
significantly improve the reliability of gene expression data derived from FFPE tissues using the standard Affymetrix
platform. Tools for the implementation of our data processing algorithm are made publicly available at http://www.biocut.
unito.it/cdf-ffpe/.
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Background

Gene expression profiling has proved to be successful in cancer

research [1]. The first pivotal studies [2,3] have been conducted

using fresh-frozen samples as source of RNA since commercially

available whole gene expression platforms were designed for high

quality RNA. The need of fresh-frozen samples has represented

one of the major limiting factors in biomarker discovery,

development, validation and clinical implementation since few

tissue banks with frozen specimens linked to clinical meaningful

information were available [4]. On the contrary, formalin-fixed

paraffin-embedded (FFPE) tissue specimens are collected for

clinical routine diagnostics almost everywhere allowing a broader

clinical implementation of biomarkers developed from such source

of material. Moreover, archival FFPE tumor blocks retrospectively

collected from patients enrolled in prospective clinical trials can be

used to generate under specific circumstances the highest level of

evidence for the clinical utility of candidate biomarkers avoiding

the need to perform expensive and time consuming prospective

clinical trials [5]. The commercially available tool Oncotype DX

which is broadly used in the clinical practice for breast cancer

patients has been validated so far only using retrospective-

prospective studies design [6].

Unfortunately, the age of collected tumor blocks and fixation

process induce RNA fragmentation, chemical modifications and

RNA-protein cross-linking, making gene expression analysis

challenging [7]. Such a limitation has been successfully overcome

by using qRT-PCR [6,8], but this approach limits the number of

genes which can be assessed and the potential advantage of testing

multiple signatures at a time with one single assay [9]. The

availability of technical and analytical methods for generating

whole gene expression profile (GEP) from FFPE derived RNA

could overcome this limitation, thus providing extremely valuable

information. Remarkable examples of this approach are repre-

sented by the successful achievement of Affymetrix-based gene

expression profiling from tumor samples collected in the NOAH

trial [10,11] and NeoSphere trials [12] and even larger studies are

in their planning or execution stages [13].

Specific technologies have been developed to use fragmented

RNA, like the Illumina DASL platform [14] and ad hoc protocols

have been defined to optimize all the analytical steps required to
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use the Affymetrix GeneChip platforms [15]. Both these platforms

proved suitable to yield biologically meaningful GEP data from

FFPE clinical samples.

Nevertheless, when gene expression data derived from frozen

and FFPE samples are compared, a high level of discrepancy is

observed. In a study on diffuse large B-cell lymphoma (DLBCL),

Williams et al. [15] processed 59 matched frozen and FFPE

samples from patients belonging to two subgroups (activated B-

cell, ABC and germinal center B-cell, GCB). In their analysis,

1428 genes were found as differentially expressed (DE) with a false

discovery rate (FDR) ,5% between the two subgroups using gene

expression data generated from frozen samples, whereas only 289

genes were found DE, at the same FDR threshold, when data from

FFPE samples were used. Moreover, only 35 of the top 100 DE

genes were in common.

Many pre-analytical factors can affect the quality of FFPE-

derived expression data, including sample collection and storage

procedures and RNA extraction or amplification methods, so that

an accurate quality pre-assessment evaluation is needed [16].

Therefore it is natural to expect that the methods applied during

the data processing can also affect the downstream results.

Several methods to summarize and normalize expression data

were developed for the Affymetrix platforms, with MAS5 and

RMA [17] being the most commonly used, and the choice of the

normalization algorithm was demonstrated to have a major

influence on downstream analysis [18]. A new method called

fRMA was recently proposed [19] which, contrary to RMA, allows

to normalize microarrays one by one, a useful property in

biomarker development studies where the final goal is to classify

new patients individually. A peculiarity of the Affymetrix platform

is that the expression of each gene is measured by one or more

probesets and, for each probeset, the signal is generated by several

independent probes. These probes were designed according to

sequence annotation available at the time the chip was developed.

As the transcript annotation changed over time, probe re-

annotation based on updated knowledge of the transcript was

shown to improve data quality [20,21]. This process can be

applied by creating alternative Chip Description Files (CDFs)

using only the probes matching the most up-to-date gene

annotation to assess the expression level.

Expression profiles from FFPE samples are expected to have a

lower signal to noise ratio, and an appropriate processing could be

crucial to derive a reliable measure of gene expression. At this

time, it is not known which processing approach should be used to

produce the best results. Indeed, of 15 publications reporting

Affymetrix expression data generated from FFPE samples, 4 used

MAS5, 6 used RMA and 5 used other or unspecified procedures.

None has reported the use of alternative CDFs.

We thus set out to compare the performance of three different

summarization and normalization methods, MAS5, RMA and

fRMA used in combination with the standard Affymetrix CDF or

two different alternative CDFs. The first CDF included all the

probes unambiguously mapping RefSeq transcripts, while the

second was defined similarly to the first one but contains, for each

probeset, only the probes nearest to 39-end as these probes could

be the most informative and reliable in FFPE data because of

RNA fragmentation. All these processing pipelines were applied to

the Williams dataset [15] evaluating the agreement between

matched frozen and FFPE data by several metrics. Findings were

further assessed using two independent breast cancer datasets.

Results

Generation of alternative CDFs
We developed an alternative CDF, hereafter referred as

RefSeq_all, for the Affymetrix chips of the HG-U133 series, where

all the probes unambiguously mapping RefSeq transcripts were

retained and merged to create a new single set of probes for each

gene. As result, genes which were represented by multiple probe

sets in the original chip design resulted in a new single probeset. A

total of 16,991 probesets were generated and about half of them

(45.3%) contain more than the 11 probes present in standard

Affymetrix probesets (Figure S1A), thus potentially increasing the

statistical power in measuring expression levels.

To verify the effect of RNA degradation on probe signals, we

focused on the distance from the 39-end of the 11 probes in each

standard Affymetrix probeset in the Williams dataset. Moving

toward the 59, a decay in their signals was observed both in frozen

and FFPE data, but the effect was much more striking in FFPE

data (Figure S1B). A 39-bias was indeed expected as a direct

consequence of fixation and RNA degradation despite the use of a

combination of random primers and oligo-dT in the retro-

transcription step. We therefore hypothesized that probes nearer

to the 39-end would be the most informative and reliable,

especially in FFPE data.

To verify our hypothesis, after probe re-annotation described

before, we computed the distance from the probe to the 39-end of

the transcript. The correlation between frozen and FFPE data

turned out to be a decreasing function of such distance, reaching a

plateau at around 250–300 bp that corresponds with the average

size of aDNA obtained after amplification (Figure S2). Thus we

created a second CDF using, for each transcript, only the five

probes closest to the 39-end and in any case mapping within

300 bp from the 39-end (this alternative CDF was called

RefSeq_dist). Using these criteria it was possible to define 8,263

probesets, in which the reliability of each probe was likely

increased, although the number of probes measuring each gene

was reduced.

Normalization algorithms
Three different normalization algorithms were considered in the

subsequent analysis: i) MAS5, ii) RMA [17] and iii) fRMA [19]. In

fRMA normalization, the single-sample normalization is achieved

by applying pre-computed parameters estimated using a large set

of CEL files derived from the Gene Expression Omnibus (GEO)

repository [22]. As those parameters need to be re-estimated when

using an alternative CDF, we carried out our own estimation using

the same pool of publicly available samples used in [19].

Frozen – FFPE agreement using different processing
pipelines

To identify the best performing procedure to process FFPE-

derived Affymetrix data, we compared the matched frozen and

FFPE GEPs of the Williams dataset [15] after processing the raw

data with the three different normalization methods previously

described in combination with three different CDFs (the Affyme-

trix standard CDF, the RefSeq_all CDF and the RefSeq_dist CDF).

From the data processed with the standard CDF, we also

extrapolated the subset of probesets mapping on genes targeted

in the RefSeq_all and RefSeq_dist CDFs, in order to undertake a fair

comparison. Moreover, we applied the method proposed by Li

and colleagues [23] to select the optimal Affymetrix probeset for

each gene. We considered the results obtained from frozen

samples as the gold standard, and rated the different processing

Analysis of Gene Expression from FFPE Samples
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approaches with various measures of concordance between frozen

and FFPE samples.

First we evaluated, for each pair of samples, the correlation

between frozen- and FFPE-derived expression values over all

probesets (hereafter called sample correlation) and, for each

probeset, the correlation between frozen- and FFPE-derived

expression values over all samples (hereafter called probeset

correlation). As not all genes are expected to be expressed or to

vary significantly in a specific tissue type, the second analysis was

performed only for the 50% most variant probesets (Table 1).

Wilcoxon matched pairs test was used to test the significance of the

differences in sample correlation between the processing pipelines

(Table S1), whereas the differences in probeset correlation were

evaluated using the Wilcoxon-Mann-Whitney test (Table S2).

Correlations invariably increased when using RMA or fRMA

instead of MAS5. The highest median sample correlation was

obtained when using the RMA or fRMA normalized data in

combination with the RefSeq_dist CDF (Figure S2). On the

contrary, RMA or fRMA normalized data in combination with

the RefSeq_all CDF gave the highest probeset correlation. This is in

keeping with what observed at probe level, where probes near to

39-end were those giving the most similar signals in frozen and

FFPE data that translates in a higher sample correlation. On the

other hand probeset correlation is systematically higher for the

Refseq_all CDF. This might be due to the higher number of

probes per probeset. Indeed within this CDF frozen/FFPE

probeset correlation is significantly associated (r = 0.23, P,2.2e-

16) with the number of probes included in the probeset. The

simple filtering of the standard probesets using the method by Li et

al. [23] gave some improvement compared with the evaluation of

all standard probesets but performed worse than RefSeq_all CDF.

In the second step we took advantage of the presence of both

molecular subgroups of DLBCL in the dataset (ABC and GCB) by

performing a class comparison analysis for all processing pipelines,

separately for frozen- and FFPE-derived data (Table 2). We

computed: a) the correlation (and 95% confidence interval)

between fold changes obtained in frozen- and FFPE-derived data;

b) the frozen-FFPE fold change slope (and 95% confidence

interval); c) the percentage of differentially expressed (DE)

probesets observed in frozen samples which were found DE also

in FFPE data (i.e. FFPE data sensitivity); d) the percentage of DE

probesets observed in FFPE samples which were found DE also in

frozen data (i.e. FFPE data positive predictive value). Results,

reported in Table 2, showed that, in agreement with the

correlation analysis, MAS5 gave the poorest agreement between

frozen and FFPE data, independently of the CDF used and for all

computed metrics. Consequently, the use of MAS5 algorithm

seems to be strongly disadvantageous. fRMA only slightly

outperformed RMA but in our opinion it is the preferable option

because it implements a normalization method which is applicable

independently on each single-sample. This approach allowed for

potential clinical applications for which the assessment of tumor

samples from patients is made one at a time and also in the context

of translational research for which new samples could be added to

the ongoing project without introducing potential batch effects

associated to the different groups of normalization. The best fold

change correlation was obtained for fRMA normalization in

combination with the RefSeq_all CDF (R = 0.76), corresponding

also to the highest percentage of commonly DE probesets (41.7%,

about twice the value obtained with MAS5 method and the

standard CDF) and increased positive predictive value (69.1%).

When using the RefSeq_dist CDF, besides the highest sample

correlations reported in Table 1, we observed the best frozen-

FFPE fold change slope, confirming that the probes nearer to 39-

end are those giving the most concordant signal in frozen and

FFPE data. Moreover, looking at the common genes between

RefSeq_all and RefSeq_dist CDFs, the same genes evaluated using

only the 5 probes nearest to 39-end gave on average higher signals

(p,2-2e-16, Wilcoxon matched pairs test) in keeping with what

observed in the degradation plots (Figure S3). Nevertheless, using

the RefSeq_dist CDF we did not obtain an improvement in frozen-

FFPE probeset correlation (Table 1) nor in the agreement of

probesets called as differentially expressed (Table 2). Therefore, in

the trade-off between the increasing of the statistical power in

measuring the expression levels of each gene (i.e. using the

RefSeq_all CDF) and the selection of the most reliable probes (i.e.

using the RefSeq_dist CDF), the first approach seemed to be

globally advantageous.

To evaluate the robustness of our results we generated partial

datasets by removing one sample at a time, and we evaluated how

PPV and sensitivity varied when removing one array (we thank

one of the reviewers for suggesting this check). This showed that

the effect of array removing is much smaller than the difference

between pipelines. For example, when removing in turn each of

the 45 classified samples we obtained from MAS5 with standard

CDF an average PPV of 0.524 (standard deviation 0.024), while

for fRMA with the RefSeq_all CDF we obtained 0.694 (0.025).

Similar results apply to the sensitivity.

The impact of the normalization method (MAS5 vs fRMA) and

type of CDF (standard vs RefSeq_all) was graphically represented in

Figure 1. Notably, the data processing has an influence also on

frozen data. Indeed, besides the fraction of commonly DE

probesets, the percentage of DE probesets in frozen data rose

from 0.7% (396/54675) in MAS5 normalized data to 1% (554/

54675) in fRMA normalized data with the standard CDF.

Finally, results in Table 2 and Figure 1 lead to the observation

that FFPE data, also with the best performing method, still suffers

from a false negative problem, in fact they have a significantly

lower power. However generally speaking what is identified in

FFPE data is mostly confirmed in frozen data.

Independent confirmation of data processing relevance
We sought to confirm the findings generated in the Williams

dataset using two independent breast cancer datasets: the

GSE5460 dataset [24], derived from 127 frozen breast cancers

and a dataset of 44 FFPE breast cancers profiled in our institution

(hereafter called INT dataset, see Materials and Methods for

details).

Through the analysis described in Figure 2A, we aimed to

confirm that data processing affects the capability of identifying

truly DE genes in FFPE-derived data. The two datasets were

processed using MAS5 or fRMA with the standard CDF or fRMA

with the RefSeq_all CDF. Class comparison between estrogen

receptor (ER) positive and negative tumors was performed in the

GSE5460 frozen dataset and probesets with P,1e-10 were

selected. Genes targeted by such probesets, identified using a very

stringent P-value threshold and a large dataset of GEPs from

frozen tissues can be reasonably considered as true ER related

genes. As reported in Figure 2B, the P-values computed in the INT

FFPE dataset for these ‘‘gold standard’’ probesets significantly

shifted towards lower values when using fRMA instead of MAS5

in combination with the standard CDF (fRMA standard vs MAS5

standard, P = 1.18e-08), with a percentage of probesets having

P,0.01 rising from 22.6% to 29.2%. At the same time, an

improvement seems to happen also in frozen data as the total

number of DE probesets increased from 1635 to 2179 out of

54675, corresponding to the 3.0% and 4.0% respectively. The use

of the RefSeq_all CDF with fRMA further shifted the P-value

Analysis of Gene Expression from FFPE Samples
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distribution (fRMA RefSeq_all vs fRMA standard, P = 1.23e-04)

and 34.5% of the ‘‘gold standard’’ probesets had P,0.01 in FFPE

data. Overall these results also suggest that despite using an

optimized processing algorithm, many genes will not be detected

as DE when using GEPs derived from FFPE material. This

observation should be carefully considered when data generated

from frozen-material has to be validated in data derived from

FFPE.

Using the same datasets, we also employed FFPE-derived data

to identify the genes DE between tumor subtypes and then

evaluated the proportion of these genes which can be confirmed as

DE in frozen derived GEPs according to different processing

methods. To this aim we performed the analysis as described in

Figure 3A. Class comparison between ER positive and negative

tumors was performed in the INT FFPE dataset and the probesets

with P,1e-4 were defined as DE. Their P-value distribution in the

frozen dataset were similar when using MAS5 or fRMA in

combination with the standard CDF (Figure 3B), with a

percentage of probesets having a P,0.01 equal to 85.8% and

87.0% respectively (MAS5 standard vs fRMA standard, P = 0.62).

However, the number of probesets identified as DE in the FFPE

dataset were higher for fRMA compared to MAS5, 362 (0.7%)

and 218 (0.4%) respectively. The use of the RefSeq_all CDF further

increased the proportion of DE probesets (up to 0.9%) and the P-

value distribution in frozen data shifted towards lower values

(fRMA RefSeq_all vs fRMA standard, P = 0.016; fRMA RefSeq_all

vs MAS5 standard, P = 0.108), with 98.1% of probesets having

P,0.01 in frozen data.

In the previous analysis no correction for multiple testing was

applied; however similar results were obtained by selecting as DE

probesets in FFPE data those with a Benjamini-Hochberg adjusted

p,0.01 (Figure S4).

Threshold criteria adopted in the generation of the alternative

CDF could have the drawback of losing potentially informative

markers, considering that about 2000 less genes are evaluated

when using the RefSeq_all CDF compared to the standard CDF

(Table 1). To verify whether it can have an impact when a

biological interpretation is of interest, we performed a gene set

enrichment analysis in the INT FFPE dataset between tumors

having or not lymphocytic infiltration. Since multiple probesets

per gene are not allowed in this analysis, for the standard CDF one

probeset per gene was selected according with the method

developed by Li et al. [23], somehow selecting the best performing

probesets. Of the genes composing each gene set in the C5

MSigDB collection (gene ontology gene sets), the number of those

actually found (i.e. assayed) in data processed using either the

alternative CDF or the standard CDF was quite identical

(Figure 4A), suggesting that genes lost in the alternative CDF

are frequently poorly characterized genes determining a minimal

impact on pathway analyses. Moreover, a set of immune-related

gene sets was selected and tested for enrichment in expression data

processed with the same three pipelines described before.

In the comparison of breast cancers with and without

lymphocytic infiltration, the selected immune gene sets were

similarly enriched in fRMA normalized data, with a trend of

higher enrichments using the RefSeq_all CDF, while, again, poorer

results were obtained in the MAS5 normalized data (Figure 4B).

Table 1. Frozen-FFPE correlation analysis for each processing procedure.

CDF Normalization
Number of
probesets

Number
of genes

median frozen-FFPE
sample correlation

median frozen-FFPE
probeset correlation
(50% higher IQR)

CDF standard MAS5 54675 19798 0.691 0.116

CDF standard RMA 54675 19798 0.792 0.333

CDF standard fRMA 54675 19798 0.784 0.347

CDF standard common
with RefSeq_all

MAS5 36727 16991 0.709 0.135

CDF standard common
with RefSeq_all

RMA 36727 16991 0.777 0.359

CDF standard common
with RefSeq_all

fRMA 36727 16991 0.773 0.371

CDF standard common
with RefSeq_dist

MAS5 18517 8263 0.713 0.131

CDF standard common
with RefSeq_dist

RMA 18517 8263 0.783 0.360

CDF standard common
with RefSeq_dist

fRMA 18517 8263 0.776 0.371

CDF standard jetset filtered MAS5 19178 19178 0.708 0.129

CDF standard jetset filtered RMA 19178 19178 0.781 0.370

CDF standard jetset filtered fRMA 19178 19178 0.775 0.384

CDF RefSeq_all MAS5 16991 16991 0.759 0.228

CDF RefSeq_all RMA 16991 16991 0.790 0.420

CDF RefSeq_all fRMA 16991 16991 0.782 0.430

CDF RefSeq_dist MAS5 8263 8263 0.736 0.178

CDF RefSeq_dist RMA 8263 8263 0.795 0.349

CDF RefSeq_dist fRMA 8263 8263 0.801 0.359

doi:10.1371/journal.pone.0086511.t001
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Tools availability
Globally the use of an alternative CDF in combination with the

fRMA algorithm seems to be advantageous in many situations.

The parameters required by fRMA have to be re-estimated if

using an alternative CDF and this is time consuming and a

computationally demanding task. To make available an immedi-

ately applicable bioinformatic tool, the software and data files

needed to implement the pipelines using an alternative CDF are

available at: http://www.biocut.unito.it/cdf-ffpe/.. RefSeq_all and

RefSeq_dist aCDFs were generated for Affymetrix HG-U133a,

Affymetrix HG-U133b and HG-U133 Plus 2.0 chips. Re-

estimated parameters for each combination of chip (U133a and

Plus 2.0) and CDF are also available. Moreover, sample R code

was included. Updated CDFs (and related fRMA parameters)

using new RefSeq versions will be periodically released.

Conclusions and Discussion

Obtaining reliable gene expression data from fragmented RNA

derived from FFPE specimens is challenging, with many pre-

analytical and analytical steps which can affect the quality of the

results [7,16]. However, the approach is feasible and it has been

proved to be able to generate valuable data for translational

studies [10,12]. In this study we demonstrated that also an

appropriate data processing can significantly improve the reliabil-

ity of gene expression data derived from FFPE tissues and

generated using the Affymetrix platform.

Our methodology was specifically developed for the Affymetrix

chips of the HG-U133 series. While microarrays in general, and

the HG-U133 series in particular, can be considered an obsolete

way of conducting gene expression profiling experiments, the

availability of an impressive corpus of data obtained with this

platform on many different tumors makes this choice still

appealing by making comparisons with previous results straight-

forward. In fact these chips are still used in current projects [10–

13,25] and improving the methods for their analysis is still

relevant.

By assessing the performance of different processing approaches

and comparing distinct molecular groups in both lymphoma and

breast cancer (ABC vs GCB or ER+ vs ER2), we identified the

use of fRMA as normalization method in combination with the

RefSeq_all CDF as the more effective processing approach. The

advantage of using this optimized processing could be even more

valuable in the identification of the tiny differences expected in

biomarker discovery for more demanding prognostic and predic-

tive clinical questions in the modern era of personalized medicine.

Indeed, our algorithm has been successfully applied to GEPs

derived from a large series of FFPE tumor samples from patients

enrolled in the ECTO randomized clinical Phase III trial [26],

where GEPs have been used to predict outcome after adjuvant/

neoadjuvant chemotherapy [27].

Figure 1. Correlation between frozen- (FFN) and FFPE-derived fold changes as a function of the processing procedure. Fold changes
between ABC and GCB subgroups were computed in the Williams dataset [15] for three representative processing pipelines, separately for frozen-
and FFPE-derived data. Commonly DE probesets are in dark yellow, probesets only DE in frozen data are in blue and those only DE in FFPE data are in
dark red.
doi:10.1371/journal.pone.0086511.g001
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Methods

Datasets
All datasets used in this study contained data from the

Affymetrix HG-U133 Plus 2.0 microarray platform and are

available on GEO repository [22]. Table S3 summarizes their

features.

GSE19246 [15] – contains 59 matched frozen and FFPE

DLBCL patient samples. The dataset contained both prognostic

subgroups of DLBCL: germinal center B-cell (i.e. GCB) and

activated B-cell (i.e. ABC). Frozen samples were amplified using

both the traditional Eberwine oligo-dT method and the Nugen

WT-Ovation FFPE System, but only the second were used in our

analysis, as this was the amplification method for the matching

FFPE samples. After a quality control assessment, three cases (IDs:

A6, B3, E6) were excluded from the analysis due to poor quality of

FFPE data (low present call and low correlation with the other

profiles).

GSE5460 [24] – contains expression data from 127 frozen breast

cancer samples hybridized using the standard Affymetrix protocol.

Of them, 74 were estrogen receptor positive (ER+) and 53 ER2.

GSE38554 (INT dataset) – contains expression data from 44

FFPE primary breast cancer samples taken for routine diagnostic

purposes in our Institution between 1997 and 2002. The patients

signed an informed consent and this study was approved by the

Institutional Review Board and independent ethic committee of

Fondazione IRCCS Istituto Nazionale dei Tumori (INT). Thirty

samples were from ER+ and 14 from ER2 tumors. Presence of

lymphocytes infiltration (LI) was quantified by an expert pathol-

ogist. Tumors having 5% or less LI (n = 22) were compared with

those having 10% or more LI (n = 22). RNA was amplified with

the Nugen WT-Ovation FFPE System. A quality control was

performed at each level, from sample representativeness to

expression profile. Methodological details will be described in an

independent manuscript submitted for publication.

Alternative CDFs and normalization
Alternative CDFs were generated as previously described [28].

Briefly, the sequences of all human mRNAs included in RefSeq

database (hg19, GRCh37) were obtained from the UCSC genome

browser. For genes with multiple RefSeq transcripts, the longest

isoform was considered. These isoforms were then used as input

for the altcdfenvs Bioconductor package (version 2.16.0, R version

2.14.1) [20,29], which generates the alternative CDF. New

probesets were required to contain at least 5 uniquely mapped

probes (RefSeq_all CDF), otherwise were not further considered.

For the RefSeq_dist CDF the five probes closest to the 39-end and in

any case mapping within 300 bp from the 39-end were used.

The affy Bioconductor package (version 1.32.1) [30] was used

for data import and MAS5 and RMA normalization, while for

fRMA we used the package of the same name (version 1.6.0) [19].

fRMA is based on pre-computed parameters estimated using a

large set of CEL files derived from the GEO repository [22]. As

parameters need to be re-estimated when using an alternative

CDF, we carried out our own estimation using the same set of 200

batches of 5 samples used by the authors, taking advantage of the

Figure 2. Sensitivity of FFPE data after applying different processing pipelines in two breast cancer datasets. (A) Flow chart of the
analysis. (B) Distribution of p-values in the INT FFPE dataset for ER-related probesets identified in the GSE5460 frozen dataset. The analysis was
performed on data processed using MAS5 and the standard CDF (left), fRMA and the standard CDF (center) or fRMA and the RefSeq_all CDF (right).
doi:10.1371/journal.pone.0086511.g002
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Figure 3. Evaluation of the positive predictive value of FFPE data after applying different processing pipelines in two breast cancer
datasets. (A) Flow chart of the analysis. (B) Distribution of p-values in the GSE5460 frozen dataset for probesets DE in the INT FFPE dataset between
ER+ and ER2 tumors. The analysis was performed on data processed using MAS5 and the standard CDF (left), fRMA and the standard CDF (center) or
fRMA and the RefSeq_all CDF (right).
doi:10.1371/journal.pone.0086511.g003

Figure 4. Immune gene set enrichment analysis results from the comparison of samples with and without lymphocitic infiltration in
the INT FFPE dataset. (A) Number of genes composing each gene set that was found in the standard CDF compared with the number of genes
found in the RefSeq_all CDF. (B) Heatmap representing positive enrichment significance for the immune gene sets after processing the data with
three different pipelines.
doi:10.1371/journal.pone.0086511.g004
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functions implemented in the frmaTools Bioconductor package

(version 1.6.0) [31].

Standard probesets were annotated using the hgu133plus2.db

Bioconductor package (version 2.6.3) and redefined probesets were

annotated using the org.Hs.eg.db Bioconductor package (version

2.6.4)

Statistical analysis
Pearson’s correlation was used to compute samples, probeset

and fold change correlation analysis in the GSE19246 dataset.

Student’s t-test was used to assess probesets differential

expression. Probesets with p,1e-4 were defined as DE if not

otherwise specified.

Differences in p-value distributions were tested for significance

using the Wilcoxon-Mann-Whitney test.

Enrichment analysis was performed using GSEA (v. 2.0) [32].

From the C5_BP collection (v. 3.1) containing 825 gene sets

derived from the Biological Process Gene Ontology, immune

related gene sets were selected searching for the following keyword

in their names: immune, lymphocytes, inflammatory, T cell and B

cell. A total of 30 gene sets were selected and only those for which

a number of genes .15 and ,200 was found in the data were

tested. Gene sets with FDR,5% were considered significantly

enriched.

Supporting Information

Figure S1 (A) Number of probes in each probeset in the

RefSeq_all CDF. (B) RNA degradation plot for the frozen (left) and

FFPE (right) data in the Williams dataset [15]. For each chip,

probe intensities are averaged by location in probeset, with the

average taken over probesets.

(TIF)

Figure S2 Frozen-FFPE correlation as a function of the distance

of the probes from 39-end. (A) Frozen-FFPE correlation for the 56

matched samples of the GSE19246 dataset increases when only

probes nearer to the 39-end are selected. (B) Frozen-FFPE pair plot

of probe-level log2 intensities for a representative sample. Probes

with a 39-distance ,100 bp are highlighted in red.

(TIF)

Figure S3 Average distribution of signals in the FFPE

GSE19246 dataset (n = 56) for the 8263 common genes using

RefSeq_all and RefSeq_dist CDFs and fRMA normalized data.

(TIF)

Figure S4 Evaluation of the positive predictive value of FFPE

data after applying different processing pipelines in two breast

cancer datasets. (A) Flow chart of the analysis. (B) Distribution of

p-values in the GSE5460 frozen dataset for probesets DE

(FDR,1%) in the INT FFPE dataset between ER+ and ER2

tumors. The analysis was performed on data processed using

MAS5 and the standard CDF (left), fRMA and the standard CDF

(center) or fRMA and the RefSeq_all CDF (right).

(TIF)

Table S1 Wilcoxon matched pairs test of frozen-FFPE sample

correlations using different processing pipelines.

(XLSX)

Table S2 Mann-Whitney test of frozen-FFPE probesets corre-

lations using different processing pipelines.

(XLSX)

Table S3 Main features of the datasets analyzed.

(XLSX)
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