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Abstract. Tissue factor (TF) is an integral membrane 
glycoprotein which, as the receptor and essential 
cofactor for coagulation factors VII and Viia (FVII 
and FVIIa, respectively), is the primary cellular acti- 
vator of the coagulation protease cascade. Previous 
studies on the procoagulant activity of a variety of cell 
types (either lysed or in the intact state) have variously 
been interpreted as showing that TF is either stored 
intracellulady or is present in a cryptic form in the 
surface membrane. Using mAbs to TF, we have di- 
rectly investigated the subcellular localization and 
functional activity of TF in lipopolysaccharide- 
stimulated blood monocytes and J82 bladder carci- 
noma cells. Blocking of surface TF of viable cells 
with inhibitory anti-TF mAbs abolished >90% of TF 

activity of the intact cells as well as of lysed cells. 
Furthermore, quantitative analysis of the binding of 
FVII and anti-TF mAb to J82 cells demonstrated that 
all surface-expressed TF molecules were capable of 
binding the ligand, FVII. By immunoelectron micros- 
copy, TF was present only in the surface membrane of 
monocytes and J82 cells, although the latter also con- 
tained apparently inactive TF antigen in multivesicular 
bodies. On the intact cell surface the catalytic activity 
of the TF-FVIIa complex was investigated and found 
to be markedly less relative to cell lysates. Membrane 
alterations that affect the cofactor activity of TF may 
be a means of regulating the extent of initiation of the 
coagulation protease cascade in various cellular 
settings. 

T 
ISSUE factor (TF) t is an integral membrane glycopro- 
tein that serves as the receptor and essential cofactor 
for coagulation factors VII (FVII) and VIIa (FVIIa) 

(36, 37). The TF-FVIIa complex activates coagulation fac- 
tors X (FX) and IX by limited proteolysis, leading ultimately 
to thrombin formation and the deposition of fibrin. TF, nor- 
mally absent in circulating blood cells and endothelium, is 
selectively expressed in tissues and strongly expressed in 
vascular adventitial cells, epidermal keratinocytes, and squa- 
mous cells of mucosal epithelia, among other cells, in a pat- 
tern that is thought to form a hemostatic "envelope" around 
tissues and blood vessels (11). Monocytes (and for some 
mediators, endothelial cells) can be induced to express TF 
by a variety of stimuli, including tumor necrosis factor, bac- 
terial lipopolysaccharide (LPS), immune complexes, and 
other inflammatory stimuli (10, 40, 43). T cell-mediated 
antigen-dependent stimulation of monocyte TF expression 
has also been demonstrated, indicating a role for the expres- 
sion of TF on monocytes in the effector phase of the cellular 
immune response (20, 45). 

1. Abbreviations used in this paper: FVII, coagulation factor VII; FVIIa, 
activated coagulation factor VII; FX, coagulation factor X; FXa, activated 
coagulation factor X; LPS, lipopolysaccharide; PBM, peripheral blood 
mononuclear cell; TE tissue factor. 

As the primary cellular activator of the coagulation pro- 
tease cascade, TF is implicated as having a major role in 
hemostasis (25, 36, 50). However, a much broader role is 
likely in processes, such as inflammation, in which stimu- 
lated monocytes invade tissues and generate thrombin and 
fibrin locally. Thrombin in particular has been shown to have 
a variety of bioregulatory properties in addition to activating 
platelets and cleaving fibrinogen. These properties include 
mitogenic activity, chemotactic effects on monocytes, and 
cleavage of certain extracellular matrix proteins among 
others (3, 4, 9, 19). Similar processes have been proposed 
as promoting tumor progression through the expression of 
TF by neoplastic cells (12, 24, 41). Thus, TE as the cell sur- 
face protein responsible for thrombin generation, can be 
considered an important effector molecule in cell-cell sig- 
naling and in remodeling the extracellular environment in a 
variety of physiologic and pathologic settings. 

For TF to function it must be available on the cell surface 
for interaction with FVII or FVIIa in the extracellular envi- 
ronment. Numerous studies of stimulated monocytes (and 
other normal and neoplastic cells expressing TF) have found 
that TF activity (in clotting assays) measured with intact cells 
is nearly always less than that of lysed cells, with the frac- 
tional activity reported for intact cells varying from >80% 
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to <5% of lysed cell activity (5-8, 10, 24, 27, 29, 38). This 
has been interpreted by some to indicate intracellular stores 
of TF, although other reports have suggested that TF is 
predominately surface expressed (23, 28, 39). In some cells, 
surface-expressed TF procoagulant activity has been shown 
to increase with exposure to proteolytic enzymes (28) or 
hydrogen peroxide (47), suggesting that a certain portion of 
TF activity is latently present in the cell membrane or, alter- 
natively, that TF is being mobilized from an intracellular 
compartment. Precedent for the latter exists in the monocyte 
membrane proteins MAC-1 and p150,95 for which up regula- 
tion of surface expression has been shown to be due to 
mobilization of proteins from intracellular vesicles and per- 
oxidase-negative granules to the cell surface (30). 

We report here studies undertaken to determine the subcel- 
lular localization and functional expression of TF in endo- 
toxin-stimulated human peripheral blood monocytes (PBMs) 
and a neoplastic human cell line (J82 bladder carcinoma 
cells). In initial studies, we have shown that these two cell 
types exhibit different localization of TF at the light micro- 
scopic level. While both express TF on the cell surface, per- 
mobilized J82 cells, but not monocytes, contain im- 
munoreactive TF intracellularly in a perinuclear granular 
distribution. Both cells, however, have similar increases in 
procoagulant activity after cell lysis. In the present study, we 
now present evidence that >90% of functional TF in cells 
is expressed on the surface membrane and is fully competent 
for binding its ligand, FVII (or FVIIa). However, the activity 
of TF on the intact cell surface is substantially lower than that 
in lysed cell preparations. These findings suggest that mem- 
brane alterations that modulate the catalytic activity of the 
TF-FVIIa complex on the cell surface might be an important 
means of regulating the extent of cellular initiation of the 
coagulation protease cascade. 

Materials and Methods 

Materials 
Tissue culture media and supplements were obtained from Gibco Laborato- 
ries (Grand Island, NY), except for FBS which was from HyCIone Labora- 
tories (Logan, UT). All components were tested for endotoxin by Limulus 
amebocyte lysate assay (Sigma Chemical Co., St. Louis, MO), and only 
those with no detectable endotoxin (gl0 pg/mi) were used. Tissue culture 
plastic ware was from Costar, Data Packaging Corp. (Cambridge, MA). TF 
was purified from human brain, and FVII and FX were from human plasma 
as described (15, 17, 33). FVIIa was prepared by incubating FVII with FXa 
immobilized to Afligel 15 beads (2). Preparation and characterization of the 
mAbs to human brain TF has been described (32). Those used in this study 
were TFS-5CO, TF9-6B4, and TF9-9C3, all of which are IgGi subclass 
and were previously shown to inhibit TF-initiated clotting of human plasma 
by >90%. An IgGi murine mAb (PAbl00) with specificity for the SV-40 
large T antigen (22) (TIB-115; American Type Culture Collection, Rock- 
ville, MD) was used as a negative control. Biotinylated horse anti-mouse 
IgG was from Vector Laboratories, Inc. (Buflingame, CA) and streptavidin- 
horseradish peroxidase complex was from Enzo Biochem, Inc. (New York, 
NY). All other chemicals (Sigma Chemical Co.) were reagent grade or bet- 
ter. LPS from Escherichia coli type 0111:B4 was from Calbiochem-Behring 
Corp. (La Jolla, CA). 

Cell Preparation and Culture 
PBMs were isolated from the blood of healthy fasting donors as described 
(20) and resuspended in RPMI plus 10% FBS at a concentration of 2 × 
106/ml. "IF expression by monocytes was induced by incubating cell sus- 
pensions with 100 ng/ml LPS for 4 h at 37°C in 5% CO2. (Previous studies 
from this and other laboratories have shown that normal peripheral blood 

cells do not express TF and that the monocyte is the only cell to do so when 
stimulated by LPS; 14, 27, 42.) 

J82 cells were grown to confluence in T-75 flasks in DME plus 10% FBS. 
Cells were detached by brief exposure to 0.05% trypsin with 0.53 mM 
EDTA, washed three times in 50 ml DME, and resuspended in DME at 5 
x lOSlml. 

For blocking of surface-expressed TF before TF assay, anti-TF mAbs 
TF9-9C3 and TFS-5CO (10 ttg/ml, each) or the control mAb TIB-II5 (20 
~g/ml) was incubated with 1 mi cell suspension for 15 rain at 37°C. Cells 
were then washed three times in medium (RPMI for PBMs and DME for 
J82 cells). Sodium azide (10 mM) was included in all solutions during incu- 
bation and wash steps. Each sample was divided into equal portions before 
the third wash and, after washing, the cells were pelletized. One portion was 
resuspended in 0.5 ml Hepes-saline buffer (25 mM Hepes, 0.85% NaC1, pH 
7.4) and kept at 4°C before assay of intact cell TF activity; the other was 
frozen at -70°C for 15 min, thawed, incubated with octyl-/~-v-glucopyran- 
oside (15 mM in Hepes-saline buffer) for 15 rain at 37°C, brought to 0.5 
ml total volume with Hepes-saline buffer, and kept at 40C before assay of 
total TF in cells. Cell counts and trypan blue exclusion were performed on 
cell suspensions after washing. 

Coagulation Assays 
TF activity was assayed using a single-stage plasma coagulation assay as de- 
scribed (20). Samples were added to 100 ~1 pt~mrmed CaCl2 (20 mM) in 
15 × 75-mm borosilicate glass tubes. After 30 s, 100/d human plasma was 
added and the time required for a visible fibrin gel to form was noted. The 
quantity of "IF expressed was determined by comparison of clotting times 
with a standard curve established using purified reconstituted human brain 
TF in which 1,000 mU (equivalent to 1.2 ng protein) yielded a clotting time 
of 50 s. Mixing experiments were performed to control for possible carry- 
over of unbound antibody that might not have been removed during the 
washing steps. In these, 50/d of cell suspension that had been incubated 
with anti-TF mAb was combined with 50/~1 of cell suspension that had been 
incubated with the control mAb. Both intact and lysed cell suspensions were 
tested. 

For determination of rate of FXa generation, intact and lysed cells were 
resuspended in an identical volume of supplemented Hepes-buffered saline 
(10 mM Hepes, 137 mM NaCI, 4 mM KCI, 11 mM glucose, 0.5% BSA, 
pH 7.4), kept at 4°C, and added to the assay at various concentrations. A 
typical assay was performed by preincubating cells as a TF source with 
FVIIa for l0 rain at 37°C in the presence of calcium ions. The reaction was 
started by the addition of FX. Fixed concentrations of FX (1,500 nM), FVIIa 
(0.2 nM), and CaCI2 (4 mM) were used. At varying times an aliquot oftbe 
reaction mixture was added to TBS containing 100 mM EDTA (final con- 
centration) to stop the reaction. After removing the cells by centrifugetion, 
FXa was quantitated in the supernatant with the chromogenic substrate 
$2222 at 0.2 mM final concentration using a kinetic 96 mnltichannel ELISA 
reader (model Vmax; Molecular Devices Corp., Menlo Park, CA) for the 
determination of initial rates of peptide hydrolysis. Standard curves were 
prepared using purified FXa. 

Quantitation of FVII and Anti-TF mAb 
Binding to Cells 
FVII and mAb TF9-6B4 were labeled with 125I by the coupled lactoperoxi- 
dase/glucose oxidase method (Enzymobead radioiodination reagent; Bio- 
Rad Laboratories, Richmond, CA) to a specific activity of 1-1.7 and 1-8.5 
/~Ci//~g, respectively. Binding characteristics to J82 cells were determined 
using the protocol described by Fair and MacDonald (16) with the modifi- 
cation that 5 mM CaCI2 was added to the washing buffer. Scatcbard analy- 
sis was performed using the nonlinear least squares fitting procedure of the 
LIGAND program (34). 

Immunoelectron Microscopy 
Suspensions of PBMs (1-3 x 107/ml) prepared as described above were in- 
cubated in plastic slide well chambers at 37°C. After 2 h, the wells were 
washed five times with RPMI to remove nonadherent cells. Remaining ad- 
herent cells were incubated overnight in RPMI plus 10% FBS in 5% CO2 
at 37°C. To stimulate TF expression, 100 ng/ml bacterial LIPS in fresh 
medium was incubated with cells for 4 h. J82 cells were cultured in plastic 
slide well chambers as described above and studied when confluent, 2-3 d 
after passage. Cells were fixed by immersion in 0.2% glutaraldehyde plus 
2 % pamformaldehyde in PBS at 4°C for 60 rain followed by washing in PBS 
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with 0.1 M glyeine for 15 rain. Saponin (0.02%) was included in all wash 
and incubation solutions to maintain perrneabilization of cells (51). Cells 
were then sequentially incubated for 60 rain each at 37"12 in blocking buffer 
(10 mM Tris-HCl, pH 7.4, with 2% dry milk solids and 0.02% saponin), 
primary anlibody (TF9-9C3 and TI~-6B4 combined, as hybridoma culture 
supernatants diluted 1:5), biotinylated anti-mouse IgG (1:400), and strep- 
tavidin-peroxidase complex 0:200). These reagents were all diluted in a 
buffer of 0.05 M Tris-HCI, 0.15 M NaCI, 1% BSA, 0.02% saponin, pH 7.4. 
Except for the blocking solution step, slides were washed after each step 
for 15 rain in 0.005 M Tris-HCi, 0.15 M NaCi, pH 7.4, with 1% BSA and 
0.02 % saponin. Before chrornngen development, cells were fixed in 2 % 
gluteraldehyde in PBS for 15 rain at room temperature and then washed in 
PBS and distilled water before immersion in 2 mg/ml diaminobenzidine in 
0.05 M Tris-HCI, pH 7.6, with 0.2% hydrogen peroxide for 15 rain at room 
temperature. Slides were washed in distilled water and immersed in 0.1 M 
cacodylate buffer, pH 7.4, for 15-60 rain bafore embedding. 

Cells were posttixed in some cases in 1% osmium tetroxide in 0.1 M cac- 
odylate buffer, pH 7.4; in all cases, cells were dehydrated in graded ethanol 
solutions and then embedded in Epon 812. En face thin sections were cut 
on an Ultratome [ ]  (LKB Instruments, Inc., Gaithersburg, MD) and 
mounted on 200 mesh bare grids. Cells that had been postlixed in osmium 
tetroxide were stained with 1-2% uranyi acetate in 50% ethanol with or 
without light staining with lead citrate. Sections were examined with an 
electron microscope (HU 12A; Hitachi Ltd., Tokyo, Japan) at a 75-kV exci- 
tation power using a 20-/an objective aperture. Some sections were examined 
without exposure to osmium, uranyl acetate, or lead citrate to enhance visi- 
bility of the diaminobenxidine reaction product. 

Results 

Rate of FXa Generation by Intact and Lysed Cells 
The ability of lysed and intact LPS-stimulated PBMs to 
generate FXa was compared to confirm that the differences 
observed in the procoagulant activity of intact and lysed cells 
indeed represented true differences in functional TF expres- 
sion (Table I). Incubation of PBMs with purified FVIIa and 
FX showed that the rate of FXa generation was substantially 
less with intact than with lysed cells, the intact cells averag- 
ing ",,15-20% the rate of FXa generation of lysed cells over 
a range of cell concentrations. 

Two-stage coagulation assays for "IF were also performed 
with intact LPS-stimulated PBMs, comparing clotting times 
of cells that had been preincubated with FVIIa (1 nM final 
concentration) for 15 rain at 370C with cells that had equiva- 
lent amounts of FVIIa added immediately before (<15 s) as- 
say with FVII-deticient plasma. No shortening of clotting 
times occurred with FVIIa preincubation (77.8 + 1.7 s and 
76.8 + 1.3 s with and without FVIIa preincubation, respec- 
tively; lysed cells with or without FVIIa preincubation had 
clotting times of 40 + 2 s). These experiments, in which the 

Table I. Rate of FXa Generation by Intact and Lysed Cell 
Suspensions of LPS-stimulated PBMs* 

Apparent Vmax 

PBMs Lysed Intact Intact/lysed 

n nMImin nMImin % 

4 X 107 39.24 8.46 21.6 
8 x 106 15.59 2.67 17.1 
1.6 x 106 4.95 0.69 14.0 
0.3 x 106 1.14 0.25 21.7 

18.6 + 3.7 

* Results are from one of three representative experiments. 

TF-FVIIa complex was allowed to come to equilibrium be- 
fore adding plasma, demonstrated that the rate of FVIIa 
binding to "IF on the cell surface was not a significant vari- 
able in the differences in activity between intact and lysed 
cells. 

Inhibition of Total Cellular TF by Surface-bound 
Anti-TF mAb 

To investigate directly if the majority of TF was present in- 
tracellularly or by other means not accessible to the extracel- 
lular environment, experiments were performed in which 
surface-expressed TF in intact cells was blocked with inhibi- 
tory antibody to TF, and cells were then washed to remove 
excess unbound antibody before lysis and assay of TF activ- 
ity. It was observed that "IF activity measured in lysed cell 
preparations was reduced by >90% if surface TF was 
blocked by an inhibitory mAb in this manner (Table II), with 
comparable results for both PBMs and J82 cells. 

For these experiments, intact cell suspensions were in- 
cubated with either control or anti-TF mAb for 15 min at 
37°C and then washed three times to remove unbound anti- 
body before cells were lysed and the TF activity measured. 
Cells remained intact (>90%) during the preincubation and 
washing steps as determined by trypan blue dye exclusion, 
and 10 mM sodium azide was present throughout these steps 
to prevent energy-dependent internalization of membrane 
proteins or externalization of intracellular "IF during the ex- 
periment. (Comparable results were also obtained when the 
experiments were conducted at 4°C in the absence of azide; 
data not shown.) Mixing experiments demonstrated that the 
washing steps effectively removed unbound antibody before 
cell lysis. Under these conditions, only surface-expressed 
TF should have bound antibody in solution, while TF poten- 
tially present intracellularly would remain unaffected. The 
results therefore support the conclusion that functional TF 
is nearly entirely surface expressed. 

Table II. Inhibition of Total TF Activity of Cells by Blocking 
Surface-expressed TF with Anti-TF mAb before Lysis* 

Anti-TF mAb 
Mixing experiment§ 

(control + anti-TF mAb) 

Cell Control TF TF TF 
type activity~ t activity~: % Control activity~ % Control 

PBM 

J82 

440 23 5.3 186 42.3 
409 17 4.1 186 45.6 

1,712 31 1.8 833 48.7 
3.7 + 1.8 45.5 5: 3.2 

11,607 109 0.9 5,325 45.9 
1,372 86 6.3 601 43.8 
3,412 125 3.7 1,676 49.1 

3.6 + 2.7 46.3 + 2.7 

* Intact cell suspensions were incubated with control mAb or anti-TF mAb 
(10 #g/ml), washed thoroughly, and cells lysed by freezing and incubation in 
octylglueoside. Results of three separate experiments for each cell type are 
given. 
~; TF activity was measured by a one-stagu coagulation assay; values for TF 
activity are mUll05 PBMs or mUll04 J82 cells. (TF activity of control cells 
left intact was ,',,5% of activity of lysed cells, as described in text.) 
§ Equal volumes of control- and anti-TF mAb-incubated cells were combined 
before measurement of TF activity. Mean + 1 SD are calculated for % control 
values. 
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Table III. Binding of Anti- TF mAb TFg-6B4 and FVII to 
J82 Cells 

Kd Molecules/cell 

pM 
FVII 1,200 + 520 91,000 + 4,100 
TF9-6B4 193 5:15 89,000 + 4,200 

Values are final estimates + standard error given by the LIGAND program (n 
= 4). 

In these experiments cells that had been similarly incu- 
bated with control or anti-TF mAb, but not subjected to lysis 
after washing, were also assayed for TF activity. TF activity 
of intact cells that had been incubated with control mAb was 
<10% of that measured for cells that had been lysed (for 
PBMs and J82 cells, respectively, TF activity of intact cells 
was 4.2 -1-0.5% and 4.2 + 3.6% that of lysed cells). Also, 
incubation with anti-TF mAb substantially inhibited TF ac- 
tivity measured on cells left intact (83.2 -t- 9.5% and 92.8 
+ 0.9% inhibition for PBMs and J82 ceils, respectively). 

Determination o f  the Number of  Cell Surface-binding 
Sites for FVII and Anti-TF mAb 

The above experiments indicated that >90% of cellular TF 
was localized in the cell surface membrane where it was ac- 
cessible to added antibody. One explanation for the differ- 
ence in TF activity between intact and lysed cells could be 
that, although most of the "IF is on the cell surface, many 
of the TF molecuIes on the surface of intact cells might exist 
in a state in which they were unable to bind FVII/FVIIa. Ac- 
cordingly, the number of specific binding sites for both FVII 
and anti-TF mAb on J82 cells were quantitated and found to 
be the same (Table III). (A previous study showed that essen- 
tially all the specific binding of FVII to J82 cells is due to 
TF; 32.) J82 cells expressed ~90,000 sites per cell. There- 
fore essentially all of the surface-expressed TF molecules 
were competent to function as receptors for FVII/FVIIa. 

Iramunoelectron Microscopic Localization of  TF 

Supportive evidence for the surface localization of TF in 
cells was obtained by immunoelectron microscopic studies 
of both PBMs and J82 ceils. Among adherent PBMs stimu- 
lated with bacterial LPS for 4 h, TF was detectable in 

Figure 1. Immunoperoxidase localization of TF in permeabilized, LPS-stimulated monocytes. PBMs adherent to plastic were cultured for 
18 h, incubated with LPS for 4 h, fixed, permeabilized with 0.02% saponin, and processed for immunoelectron microscopy. (A and C) 
Anti-TF mAb showing localization only to plasma membrane; the cell in A was not fixed in osmium or stained with lead citrate or uranyl 
acetate to optimize antigen localization. (B) Control mAb. Bars: (A) 0.5 ~m; (B and C) 0.25 t~m. 
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~10-20% of the cells and was only present on the surface 
membrane (Fig. I). Endoplasmic reticulum and Golgi struc- 
tures were negative in all cells examined, and no label was 
detected in internal membrane-bound vesicles of the cells. 

When J82 cells were similarly examined, all cells were 
found to exhibit surface labeling and, in addition, most had 
label present in multivesicular bodies (Fig. 2), As in adher- 
ent PBMs, endoplasmic reticulnm and Golgi structures were 
negative and there were only scattered small membrane- 
bound structures with label; these were always near the cell 
surface and could not be distinguished from invaginations of 
the surface membrane. The presence of label in the mul- 
tivesicular bodies was useful to assure that antibody and re- 
agents had adequately penetrated intracellular membrane- 
bound structures and, thus, that the absence of detectable TF 
elsewhere within the cells was not an artifact of the tech- 
nique. 

D i s c u s s i o n  

Since TF expression on the cell surface in the presence of 
FVII or FVIIa is generally considered sut~cient to initiate 
the coagulation protease cascade, regulation of surface ex- 

pression of TF is a crucial process determining TF function. 
Previous studies of a variety of cell types have indicated that 
from 30 to >90% of the maximum observable TF activity 
is not functionally expressed at the cell surface, suggesting 
that TF might be present in a potentially mobilizable intra- 
cellular pool or, alternatively, expressed on the surface mem- 
brane in a state not accessible to FVII (5-8, 10, 24, 27, 29, 
38). We have demonstrated in this study that essentially all 
the functional TF molecules in both LPS-stimulated mono- 
cytes and in a tumor cell line are fully expressed on the cell 
surface. This conclusion is supported by two independent 
observations: (a) >90% of lysed cell TF activity was in- 
hibited by blocking surface TF with inhibitory anti-TF mAb 
before cell lysis; and (b) TF antigen is detectable on the cell 
surface membrane but not intracellularly by immunoelectron 
microscopy, except in multivesicular bodies of some cells. 
We have also demonstrated that surface TF is fully accessible 
to FVII and that a decreased rate of association of FVIIa with 
TF on the cell surface cannot account for the reduced activity 
of TF observed in intact cells. The observation that appar- 
ently greater amounts of TF are detectable in lysed than in 
intact cells can be explained by reduced catalytic activity of 
the TF-FVIIa complex in the intact cell surface membrane 
relative to the environment of the lysed cell suspension. 

Figure 2. Immunoperoxidase localization of TF in permeabilized J82 cells. (A, C, and/9) Anti-TF mAb showing localization to plasma 
membrane (.4) and multivesicular bodies (,4, arrowhead, and C, MVB) but not the Golgi complex (D, G). Inset in A is a light microgmph 
of immunofluorescence localization of TF in a permeabilized J82 cell showing correspondence with electron microscopic localization. 
(B) Control mAb; inset shows multivesicular body at higher magnification. Bars: (A and B) 2 t~m; (C, D, and B, inset) 0.25/~m. 
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Surface expression of TF indicates that the coagulation 
protease cascade will be activated when ceils producing TF 
are accessible to FVIIa. However, the observation that the 
catalytic activity of the TF-FVIIa complex is submaximal in 
the intact cell surface membrane suggests that a significant 
degree of functional modulation may occur in response to 
changes in the cell environment. This was suggested by the 
earlier observations of Maynard et al. (28), that exposure of 
cells to proteolytic enzymes increased apparent TF activity, 
and by more recent studies of similar phenomena with sub- 
lethal peroxide injury to endothelial cells (47). Whether these 
or other physiologically relevant agents have similar effects 
on TF expressed by monocytes remain to be examined, as do 
the potential mechanisms by which this might occur. In vivo, 
the expression of maximal TF activity in lysed cells may also 
have protective hemostatic effects at sites of severe tissue 
injury. 

The mechanism(s) responsible for the much greater cata- 
lyric activity of the TF-FVIIa complex in lysed cells remain 
to be determined. Studies of the catalytic activity of TF with 
FVIIa showing the dependence of phospholipid composition 
on TF activity may be relevant in this regard (35). The pres- 
ence of phospharidyl serine was associated with increased 
TF-FVIIa activity in vesicles. This phospholipid is unequal- 
ly distributed in the plasma membrane, being mostly present 
on the cytoplasmic side of the phospholipid bilayer (44). 
Therefore, disruption of cells would be expected to increase 
its presence on the outer surfaces of resulting membrane 
vesicles. Additionally, the physicochemical effects of the dis- 
persion of the TF-VIIa complex in small vesicles as a conse- 
quence of cell lysis could influence measurements of cata- 
lyric activity (1). The possibility of modulation by other 
membrane constituents must also be considered. 

Functional activity of TF is dependent on its insertion in 
a phospholipid membrane; determination of the primary 
structure of "IF by sequence analysis of eDNA clones has 
demonstrated features characteristic of a transmembrane 
protein (18, 31, 46, 48). Although TF may be released from 
certain ceils in the process of membrane shedding (6, 13), 
a secreted form does not appear to exist. Results of this study 
are compatible, showing TF antigen to be present only in the 
surface membrane and, in J82 cells only, in multivesicular 
bodies. TF antigen detected in the latter site was very likely 
derived from internalized surface membrane and, based on 
the results of the functional studies, presumably represents 
inactive TF in the process of being degraded. Further studies 
will be needed to define the transit pathways of TF in cells, 
particularly internalization and degradation or possible recy- 
cling as described for some membrane proteins (49). How- 
ever, this study has documented that relatively little (<10%) 
functional TF is present at sites other than the surface mem- 
brane. Although prior studies of J82 cells have shown 
negligible internalization of surface-bound FVII over 2 h 
(16), in limited experiments we were able to demonstrate 
some internalization over 4 h and subsequent localization to 
multivesicular bodies of an mAb that had previously bound 
surface TF (our unpublished observations). TF was not de- 
tectable by immunoelectron microscopy in endoplasmic 
reticulnm, the Golgi apparatus, or in significant numbers of 
transport vesicles presumably because of the relatively small 
absolute amounts of TF present within cells and the lack of 
"IF accumulation in any single intracellular compartment. 

Visualization of TF antigen in multivesicular bodies of J82 
ceils showed that lack of detection in other intracellular sites 
was not due to inadequate reagent access to internal mem- 
brane-bound structures. Leoni and Dean (26) have described 
intracellular accumulation of TF in monocytes incubated with 
NI-hCI. This compound can raise intracellular pH, and the 
resulting interference with the activity of lysosomal pro- 
teases could slow the degradation of TF, leading to its intra- 
cellular accumulation in an active state as surface membrane 
is internalized. 

At a physiologic level, TF initiation of coagulation is pri- 
marily controlled by selective expression of TF in cells at 
anatomic sites not normally in contact with blood (11). At the 
cellular level, the inducible intravascular cells, endothelium 
and monocytes, are limited in the types of stimuli capable of 
causing TF synthesis. In these cells primary regulation ap- 
pears to be at the transcriptional level, with additional con- 
trol at the level of mRNA degradation (21). For monocytes 
and one tumor cell line, translocation of an intracellular pool 
or exposure of TF from a sequestered membrane site has 
been excluded as significant means of cellular modulation of 
functional TF expression. The current study suggests that a 
third means of controlling functional TF expression by cells 
may be modulation of the catalytic properties o[ TF-FVIIa 
at the cell surface. 
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