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Repetitive Pain in Neonatal Male
Rats Impairs
Hippocampus-Dependent Fear
Memory Later in Life
Dongqing Xia, Cuiting Min, Yinhua Chen, Ru Ling, Mengying Chen* and Xiaonan Li*

Department of Child Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China

Preterm infants in neonatal intensive care units are inevitably subjected to numerous
painful procedures. However, little is known about the consequences of early pain
experience on fear memory formation later in life. We hypothesized that exposure
to repetitive pain in early life triggered hippocampal synaptic plasticity and resulted
in memory deficiency in prepubertal and adult rats. From the day of birth (P0) to
postnatal day 7 (P7), neonatal male rat pups were randomly assigned to either
needle pricks or tactile touches repetitively every 6 h. Trace fear conditioning was
performed on rats on P24–P26 and P87–P89. On P24 and P87, rats were sacrificed
for molecular and electrophysiological studies. On P24–26 and P87–89, rats that
experienced neonatal needle treatment showed a significant reduction in freezing
time in the contextual fear conditioning (P < 0.05) and trace fear conditioning
tests (P < 0.05). Moreover, repetitive neonatal procedural pain caused a significant
decrease in the magnitude of hippocampal long-term potentiation induced by high-
frequency stimulation. Furthermore, rats that experienced neonatal needle treatment
demonstrated sustained downregulation of NR1, NR2A, NR2B, and GluR1 expression
in the hippocampus. Therefore, neonatal pain is related to deficits in hippocampus-
related fear memory later in life and might be caused by impairments in hippocampal
synaptic plasticity.
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INTRODUCTION

Premature infants worldwide, especially those hospitalized in neonatal intensive care units
(NICUs), underwent many painful procedures every day because of medical necessity (Chen et al.,
2012; Cruz et al., 2016). The literature indicated that untreated pain during the critical development
period might produce unfavorable neurodevelopmental outcomes, not only altering pain sensitivity
but also impairing cognitive, emotional, and psychosocial function later in life (Provenzi et al., 2015;
Chen et al., 2016; Walker et al., 2018).

Evidences have showed that early-life pain might lead to persistent somatosensory processing
changes in both animal models and clinical studies. In young animals, basal hyperalgesia
has been observed to be caused by increased input in nociceptive primary afferent axons
exposed to early pain (Ruda et al., 2000; Knaepen et al., 2013; Schwaller and Fitzgerald, 2014;
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van den Hoogen et al., 2018), while in extremely preterm
children who underwent surgery in the neonatal period, thermal
sensitivity was also decreased in later life (Walker et al., 2009).
Moreover, the repetitive exposure to painful procedures during
the maturation of the central nervous system may certainly
produce deficits in cognition in later life. Higher frequent
exposure to skin-breaking procedures was associated with poorer
cognition at 18 months of corrected chronological age (CCA) and
even last to school age in children born very preterm (Grunau
et al., 2009; Ranger et al., 2014; Vinall et al., 2014). It was also
confirmed that repetitive neonatal pain in rats led to impaired
spatial learning (Chen et al., 2016).

Additionally, numerous lines of evidence suggested repetitive
pain occurred in neonatal period influenced the emotional
development in later life. High neonatal pain experience was
associated with attentional problems in toddlers born preterm
(Gaspardo et al., 2018), while the rats with neonatal painful
experience developed anxiety and depression-like behaviors in
later life (Ranger et al., 2018; Zuke et al., 2019). However, fewer
data tell us how the neonatal painful experiences influence the
emotional cognition in later life, especially the fear learning.

Fear learning is a highly adaptive, evolutionarily conserved
process that allows one to respond appropriately to threats in the
environment. Abnormalities in fear learning are likely involved
in the development and/or maintenance of neuropsychological
dysfunction. Excessive fear memory is related to emotional
disorders, including posttraumatic stress disorder (Chocyk
et al., 2014; Villain et al., 2018); on the contrary, a lack of
fear memory is usually associated with cognitive deficiency
(Connor and Gould, 2016).

Pavlovian fear conditioning pairs the environment or changes
in the environment (conditioned stimulus, CS) with a fearsome
stimulus (unconditioned stimulus, US), providing a classical
method to study fear learning. Subjects in the associative
learning process rapidly learn the association between CS
and US, forming the acquisition and consolidation stage of
memory. After conditioning, an autonomic response to CS alone
can be measured to explore memory retention. In trace fear
conditioning (FC), however, a short temporal gap is placed
between the CS and US, which requires additional processing
by the hippocampus and prefrontal cortex (Jackson et al., 1998;
Takehara et al., 2003; Yoon and Otto, 2007). Huerta found
that mice with N-methyl-D-aspartic acid receptors (NMDARs)
knocked out specifically in hippocampal CA1 pyramidal cells
displayed deficits in trace FC (Huerta et al., 2000). Additionally,
Kesner showed that CA1 lesions disrupted trace FC, whereas CA3
lesions did not (Hunsaker and Kesner, 2008; Hunsaker et al.,
2008). These findings indicate that hippocampal CA1 pyramidal
cells are crucial for trace FC.

Long-term potentiation (LTP) at synapses is widely
believed to be a core mechanism of neuronal plasticity.
In the hippocampus, LTP occurs, and its persistence is
correlated with cognitive function (Whitlock et al., 2006).
In particular, LTP in CA1 is the initial and intrinsic mechanism
of memory consolidation, followed by lasting biochemical
changes involving molecules such as NMDARs and α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic receptors (AMPARs)

to facilitate long-term maintenance of learning (Izquierdo
et al., 2016; Pattwell and Bath, 2017). Interestingly, spinal
LTP is also activated by C-fiber afferent activity after noxious
stimulation (Ruscheweyh et al., 2011), indicating that pain
perception and fear memory share some neuronal networks.
Evidence showed that needle pricks in the neonatal period
increased C-fiber terminal density and induced hypersensitivity
of adult spinal sensory neurons (van den Hoogen et al.,
2018). Likewise, neonatal tissue damage also reduced the
dependence of spike-timing-dependent LTP on NMDAR
activation and unmasks a novel contribution of Ca2+-permeable
AMPARs (Li and Baccei, 2016). However, it is unknown
whether neonatal pain affects hippocampal LTP, NMDARs, and
AMPARs in later life.

To investigate the effects of neonatal repetitive pain during
early life on fear memory in later life, we chose the needle-
prick procedural pain animal model that we previously used to
mimic a clinical situation (Chen et al., 2016). We examined the
trace FC behavior and hippocampal synaptic plasticity through
electrophysiological and molecular studies in prepubertal and
adult rats that formerly experienced neonatal pain.

MATERIALS AND METHODS

Experimental Animals
This study was performed strictly in accordance with
the recommendations in the Guide for the Care and
Use of Laboratory Animals of the National Institutes
of Health publication 86-23. The experimental protocol
was approved by the Committee on the Ethics of Animal
Experiments of Nanjing Medical University (Permit Number:
NJMU/IACUC2011113001). All efforts were made to minimize
animal suffering, to reduce the number of animals used.

Pregnant Sprague-Dawley rats at the 14th day of pregnancy
were obtained from Vital River (Beijing, China). All rats were
housed individually in polycarbonate cages under a standard
condition at room temperature (22 ± 3◦C) under a 12/12-h
light/dark cycle, with food and water available ad libitum.

Experimental Design
A total of 18 pregnant SD female rats were purchased and
delivered at term. On postnatal day (P) 0, the gender of rat pups
was distinguished according to the ano-genital distance and only
male pups (N = 135) were kept for future study in order to rule
out the gender difference. Meanwhile, pups were standardized
to N = 10 per dam and individual identifications were made
by labeling numbers on their backs. Then they were randomly
assigned into two groups, to receive different neonatal treatments
from P0 to P7, either a needle prick (the needle group) or a gentle
tactile stimulus (the tactile group). Litters were stayed with their
mothers until weaning at P21 and after that, were housed 3 to
4 per cage. Two cohort of animals were used for the behavioral,
electrophysiological and biochemical analyses on P22–26 (the
tactile group: N = 31, the needle group: N = 32) and P85–89 (the
tactile group:N = 37, the needle group: N = 35). The experimental
protocol is showed in Figure 1.
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FIGURE 1 | Experimental protocol. FC, fear conditioning; LTP, long-term potentiation; NMDARs, N-methyl-D-aspartic acid receptors; AMPARs,
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors.

Additionally, to assess the effect of repetitive tactile
stimulations on behavior and gene expression, an untreated
group was added as a normal control in the preliminary
experiment. So a total of 48 male pups generated from additional
8 pregnant SD rats were assigned into three different groups:
the untreated group, the tactile group and the needle group.
Behavioral and biochemical analyses were investigated on
P23–27 (N = 16 in the untreated, tactile and needle group,
respectively). Supplementary Figure S1A provided an overview
of the animals used in the preliminary study.

Each behavioral test was performed by one investigator who
was blinded to the group assignment and the test was also in
random order. Supplementary Figure S1B provided an overview
of the animals used in the present study.

Experimental Protocol
Neonatal Repetitive Procedural Treatments
To model repetitive pain exposure in the NICU, according to our
previous study (Chen et al., 2016) and Anand’s study (Anand
et al., 1999), pups in the needle group received four needle-
prick stimulations at 6-h intervals per day from P0 to P7. Each
stimulation was conducted in turns of the mid-plantar surface
of the four paws by a blood glucose sampling device (Accu-
Chek R©Softclix, Roche, Germany) set to “4,” with a sterile 28-
gauge lancet (Accu-Chek R©Softclix, Roche, Germany). After each
stimulation, the sterile lancet was replaced with a new one to
prevent local inflammation. At the same time, a tactile stimulus
was applied to the corresponding paws of pups in the tactile group
by a cotton-tipped swab. Notably, to avoid maternal separation,
the time of the pups away from their dams was controlled no
more than 5 min.

In the preliminary experiment, rats in the untreated group
were reared routinely without any disturbance during the
neonatal period.

Trace Fear Conditioning Test (Trace FC)
Trace FC was performed on P24–P26 (the tactile group: N = 12,
the needle group: N = 15) and P87–89 (N = 17 in the tactile
and needle group, respectively) using a protocol similar to
that of Anagnostaras et al.’s (1999) and Raineki et al.’s (2010)
(Figure 2A). Firstly, the rats were allowed to habituate in the
testing room for 3 min on 5 consecutive days prior to the

beginning of the formal experiments. On the first day (training),
they were trained by 4 paired training blocks after acclimating to
the chamber for 5 min. Each block consisted of a 30 s, 1 kHz,
80 dB tone (CS), followed by a 20 s trace interval of silence,
followed by a 2 s 0.5 mA (P24 rats) or 1.0 mA (P87 rats) foot
shock (US), followed by a 28 s inter-trial interval (ITI). After each
trial, the chambers were scented with a paper towel dabbed with
mint solution, replaced the underneath floor and then cleaned
with 75% ethanol. Freezing behavior, defined as the cessation
of all but respiratory movement, was acquired by means of a
time-sampling procedure using the automated motion detection
software (FreezeFrame, Coulbourn Instruments, United States).

On the second day (contextual FC testing), the rats were
placed in the former training chamber for 180 s to investigate the
freezing behavior in the fear-conditioned context.

On the third day (trace FC testing), the rats were firstly
placed in a novel chamber which was distinct from the training
one, with identical parameters in the first day. In detail, prior
to the tone presentation, the rats were required to acclimate
the novel chamber for 150 s. If the rats showed indiscriminate
freezing behavior (>50%) by the end of adaptation stage, they
were excluded from further trace FC analysis. Next, the rats were
presented with a 30 s baseline, followed by 2 presentations of a
30 s, 1 KHz, 80 dB tone. There was a 20 s trace interval of silence
as well as a 30 s ITI between each tone presentation.

Electrophysiological Recordings and LTP Induction
Hippocampal LTP was recorded on P24 (the tactile group: N = 45
slices/9 animals, the needle group: N = 28 slices/7 animals) and
P87 (the tactile group: N = 40 slices/10 animals, the needle group:
N = 35 slices/8 animals). The rats were randomly selected from
each group and decapitated for electrophysiological recording
as described by Nabavi et al. (2014). The coronal hippocampal
slices (350 µm) were made using a vibrating-blade microtome
(Leica VT1200S) and prepared in ice-cold artificial CSF (ACSF)
containing (in mM) 124 NaCl, 26 NaHCO3, 1.25 NaH2PO4,
2.8 KCl, 2 CaCl2, 2 MgSO4, and 10 D-glucose, oxygenated with
95% O2 and 5% CO2. Fresh slices were incubated in a chamber
with carbogenated ACSF and allowed to recover at 30◦C for
at least 2 h.

Field excitatory postsynaptic potential (fEPSP) responses were
evoked at 0.05 Hz with a 125 µm electrode placed in the
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FIGURE 2 | Traced fear conditioning (FC) performance. (A) Experimental protocol. A repeated ANOVA was used to determine the significance of differences in
freezing behavior between the two groups during the training phase (B,C) and trace FC phase (F,G). Group differences at certain time points were determined by the
least significant difference (LSD) post hoc test. An independent t-test was used to detect group differences in the contextual FC phase (D,E). Data are expressed as
the mean ± SEM. *P < 0.05, **P < 0.01 for needle group vs. tactile group. P24: n (tactile group) = 12, n (needle group) = 15; P87: n = 17. ITI, intertrial interval.

middle of the stratum radiatum of CA1. A 2–3 M� glass
recording electrode filled with 2 mM NaCl was positioned
200 µm orthodromic to the stimulating electrode. Evoked
synaptic responses were elicited using 0.2–0.5 mA constant-
current pulses through a metal electrode (MCE-100/200) placed
in the Schaffer collateral pathway. LTP was induced by a
100 Hz high-frequency stimulation (HFS) protocol (3 trains, 100
bursts in 100 Hz with 5 s interburst intervals) at a stimulus
intensity that evoked a fEPSP slope of approximately 60% of
the maximum response (Nabavi et al., 2014). The averages over

the last 10 min during the recording were used to calculate the
magnitude of LTP.

Reverse Transcription Quantitative Real-Time PCR
(RT-qPCR)
The rats were sacrificed by decapitation for later biochemical
analyses on P24 (N = 10 in the tactile and needle group,
respectively) and P87 (N = 10 in the tactile and needle group,
respectively). The brains were immediately removed from the
skull and the whole bilateral hippocampal tissues were quickly

Frontiers in Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 722

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00722 July 6, 2020 Time: 20:44 # 5

Xia et al. Neonatal Pain Impairs Fear Memory

TABLE 1 | Primer sequences used for mRNA quantification by real-time PCR.

Forward primer 5′–3′ Reverse primer 5′–3′

NR1 ACT CCC AAC GAC CAC TTC AC ACT CGC ATC ATC TCA AAC CA

NR2A TCC ACT CAA GGA ATC TTG TGA GAT AT ACT TGC CCA TGT GTA TTT ATT TGT TT

NR2B TGA TAA TGG CGG ATA AGG ATG AGG TGG TGA CGA TGG AAA AG

GluR1 GGC TCC CTT GAC CAT AAC CT ACG ACG CTC ACT CCA ATG TA

GAPDH GGC TCT CTG CTC CTC CCT GTT CTA CGT CCG ATA CGG CCA AAT CCG T

taken by dissection on ice. After rinsing in ice-cold saline (0.9%
NaCl buffer, pH 7.4), the left and right side were stored separately
in 2.0 mL microcentrifuge tubes for later Western blotting and
RT-qPCR, respectively.

Total RNA was extracted from the right hippocampus
homogenates using TRIzol (Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s instructions. RNA
quality was evaluated by a NanoDrop 1000 Spectrophotometer
(Thermo, United States), while the integrity of total RNA
was assessed by agarose gel electrophoresis. Total cDNA was
synthesized using a Transcriptor First Strand cDNA Synthesis Kit
(Roche Diagnostics GmbH, Germany) with 1.0 µg of the RNA
sample, as described by the manufacturer. PCR amplification of
a subset of the cDNA samples using glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) primers confirmed successful
reverse transcription.

Real-time PCR was performed using the SYBR GREEN (Roche
Diagnostics GmbH, Germany) Real-time PCR system (ABI-7500,
Singapore) with the following program: 50◦C for 2 min, 95◦C for
10 min, 40 cycles of 95◦C for 15 s and 60◦C for 1 min. The mRNA
levels were normalized to the corresponding GAPDH mRNA
levels. Data were analyzed with the 2−11Ct method. The primer
sequences are listed in Table 1.

Western Blotting
For Western blotting, 6 left side hippocampi per group at each
time point were homogenized by a tissue homogenizer
(SCILOGEX D160 Homogenizer, Thomas Scientific,
United States) in ice-cold lysis buffer (50 mM Tris pH 7.2,
1 mM EDTA, 0.1% SDS, 0.1% Na deoxycholate, 1% Nonidet
P-40) containing a protease inhibitor cocktail (Roche). After
a 30 min lysis on ice, samples were centrifuged at 13,800 × g
for 15 min at 4◦C and the supernatant was collected. Protein
concentrations were determined using a Pierce bicinchoninic
acid (BCA) protein assay kit with bovine serum albumin as the
standard (Thermo Fisher Scientific, Rockford, IL, United States).
A total of 40 µg of protein was loaded into each well of a
7.5% SDS–PAGE gel, separated and transferred onto PVDF
membranes (0.45 mm; Millipore) at 4◦C. Then the membranes
were blocked in 5% non-fat milk for 1.5 h at room temperature,
followed by incubation overnight at 4◦C with a primary antibody
against NR1 (1:500, Santa Cruz), NR2A (1:500, Santa Cruz),
NR2B (1:500, Santa Cruz), GluR1 (1:1000, Millipore), or β-actin
(1:1000, Santa Cruz). With 3 washings for 15 min each in
PBS containing 0.1% TWEEN 20 (PBST), they were incubated
peroxidase-conjugated goat anti-rabbit IgG secondary antibody
at room temperature for 1 h (1:3000, ZSGB-BIO, China). Then

washed 3 times again with PBST, blots were scanned using a
ChemiDoc XRS+ Imaging System (Bio-Rad Molecular Image,
United States) with electrochemiluminescence (ECL) detection
reagent (Amersham, Buckinghamshire, United Kingdom). The
results were expressed as the ratio of the intensity of the target
protein to that of β-actin from the same membrane.

Statistics
Statistical analysis was performed using SPSS version 16.0
for Windows (SPSS, Inc., Chicago, IL, United States). The
results are presented as the mean ± SEM. For behavioral
tests involving multiple trials/days per animal and body weight
measurements, repeated-measures analysis of variance (ANOVA)
was conducted. Group differences at certain time points were
determined by independent t-test. Two-way ANOVA was used
to detect the difference in LTP and MWT. A value of P < 0.05
(two-tailed) was considered statistically significant.

RESULTS

In the preliminary experiment, an untreated control group
was added to assess the effect of repetitive tactile stimulations
on behavior and gene expression. However, no differences
were observed in weight gain (Supplementary Table S1), the
mechanical withdrawal thresholds (Supplementary Figure S2)
and fear-memory behaviors (Supplementary Figure S3) as
well as the synapse-related gene expression of the hippocampi
(Supplementary Figure S4) when we compared the untreated
and the tactile group on P22–26. Therefore, only the tactile and
needle group were set in the formal experiment to evaluate the
effect of neonatal repetitive pain exposure during early life on fear
memory and the underlying neurological mechanisms.

Effects of Neonatal Pain on Later-Life
Fear Conditioning in Rats
On P24–26 and P87–89, the rats were trained and tested
according to protocol (Figure 2A). In the training phase, freezing
behavior acquired quickly along with the consecutive tones in
both group, but no differences were observed in freezing time
between the needle and tactile group during the training phase,
either on P24 (F = 0.124, P = 0.884, Figure 2B) or on P87
(F = 2.290, P = 0.116, Figure 2C).

Next, we observed contextual FC behavior in the training
context (day 2) and the altered context (day 3). Compared to
the tactile group, the needle group showed significantly reduced
freezing time in the training context (t = 3.869, P = 0.001,
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FIGURE 3 | High-frequency stimulation -induced maintained LTP. Representative traces of fEPSP were obtained at baseline and after HFS stimulation (arrow) on P24
(A) and P87 (C). Overlaid traces above the graph represented the changes in averaged fEPSPs chosen at times indicated on the graph, with the thin-lined trace
representing time point 1 and the thick-lined representing time point 2. Scale bar, 0.2 mV, 10 ms. Comparative bar graph indicated the slopes of fEPSP after
stimulation (solid fill), normalized to baseline (no fill) on P24 (B) and P87 (D). Red graph represented the tactile group, while the blue graph represented the needle
group. The independent t-test was used to detect group differences in the fEPSP slope. Data are expressed as the mean ± SEM. *P < 0.05, **P < 0.01 for group
vs. tactile group. P24: n (tactile group) = 45 slices/9 rats, n (needle group) = 28 slices/7 rats; P87: n (tactile group) = 41 slices/10 rats, n (needle group) = 35 slices/8
rats. HFS, high-frequency stimulation; LTP, long-term potentiation.

Figure 2D) on P25, but there was no difference in the novel
context (t = 0.836, P = 0.411, Figure 2D) on P26. However, the
needle group exhibited reduced freezing time of contextual FC
both in the training context (t = 2.490, P = 0.018) on P88 and in
the novel context (t = 2.887, P = 0.007) compared to the tactile
group on P89, as shown in Figure 2E.

Meanwhile, trace FC behavior in the altered context was
examined on the third day. As shown in Figure 2F, the needle
group exhibited a significant decrease in freezing time in the trace
(t = 2.111, P = 0.045) and ITI phases (t = 2.668, P = 0.013)
compared to that in the tactile group (F = 5.025, P = 0.015) on
P26. Moreover, the needle group also showed a robust decrease in
freezing time with trace FC (F = 13.091, P < 0.001, Figure 2G),
especially during the tone (t = 2.282, P = 0.029), trace (t = 5.096,
P < 0.001), and ITI phases (t = 5.168, P < 0.001) on P89.
These results indicated that neonatal pain might cause memory
retention deficits in later life.

Effects of Neonatal Treatments on LTP
Induced by HFS
The potentiation of the fEPSP is associated with the formation
and enlargement of dendritic spines (Pickering and O’Connor,
2007). We examined the effects of neonatal treatments on

synaptic plasticity by recording LTP of the hippocampal CA1
regions. Three trains of 100 pulses at 100 Hz induced LTP of
fEPSPs in the CA1 neurons of both groups on P24 (Figures 3A,B)
and on P87 (Figures 3C,D). According to the basal fEPSP
slope, HFS-induced LTP was maintained, with the tactile and
needle groups reaching 193.16 ± 11.69% and 125.73 ± 7.43%
on P24 (Figure 3A) and 209.09 ± 10.67% and 128.54 ± 4.63%
on P87, respectively (Figure 3C). Statistical analysis showed
significant differences in group and phase both on P24
[F(group) = 19.122, P < 0.001; F(phase) = 53.248, P < 0.001]
and P87 [F(group) = 37.280, P < 0.001; F(phase) = 123.039,
P < 0.001]. Moreover, the intensity of LTP in the needle group
was significantly lower than that in the tactile group both on P24
(t = 4.222, P< 0.001, Figure 3B) and on P87 (t = 6.536, P< 0.001,
Figure 3D), indicating neonatal pain impaired hippocampal LTP
from prepuberty to adulthood.

Effects of Neonatal Pain on
Synapse-Related mRNA and Protein
Expression in the Hippocampus
To fully analyze the effects of neonatal pain on synaptic plasticity,
we measured the mRNA and protein levels of an AMPAR subunit
(GluR1) and three NMDAR subunits (NR1, NR2A, and NR2B) in
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FIGURE 4 | Hippocampal expression of synapse-related mRNAs and proteins. The independent t-test was used to detect group differences in mRNA and protein
expression. The mRNA levels are presented as the ratio of each group to the control group, normalized to the corresponding GAPDH mRNA levels using the 2-11Ct

method (n = 10). The relative mRNA levels of NR2A (A), NR2B (B), GluR1 (C) and NR1 (D) were detected on P24 and P87. (E) Representative blots of hippocampal
synapse-related proteins and Actin. (F) The protein expressions of NR2A, NR2B, GluR1 and NR1 were expressed as the fold change compared with the Actin
(n = 6). Data are expressed as the mean ± SEM. *P < 0.05, **P < 0.01 for needle group vs. tactile group.

whole hippocampal tissue. As shown in Figures 4A–D, mRNA
levels of NR2A, NR2B, GluR1, and NR1 in the hippocampus
were decreased in the needle group compared to the tactile group
on both P24 (NR2A: t = −3.052, P = 0.007; NR2B: t = −2.305,
P = 0.033; GluR1: t = −2.139, P = 0.046; NR1: t = −2.317,
P = 0.032) and P87 (NR2A: t = −4.501, P < 0.001; NR2B:
t = −3.208, P = 0.005; GluR1: t = −2.484, P = 0.023; NR1:
t = −3.009, P = 0.008). Similarly, the NR2A, NR2B, GluR1,
and NR1 protein expression levels were reduced in needle group
rats compared with tactile group rats (P24: NR2A: t = −2.539,
P = 0.029; NR2B: t = −2.382, P = 0.039; GluR1: t = −2.850,
P = 0.017; NR1: t = −4.047, P = 0.002); P87: NR2A: t = −2.764,
P = 0.020; NR2B: t = −2.245, P = 0.049; GluR1: t = −9.134,
P < 0.001; NR1: t = −5.504, P < 0.001, shown in Figures 4E,F),

indicating neonatal pain caused synapse-related molecules to
change in the hippocampus.

DISCUSSION

Early life is a critical period of brain development due to its
plasticity and vulnerability. Stressful neonatal events such as
exposure to repetitive pain, light, noise, and maternal separation
have long-term adverse effects on children’s brain development,
including emotional and behavioral disorders. In our study, we
found that neonatal pain impaired contextual and trace fear
conditioning, causing sustained deficits in synaptic plasticity
related to glutamate signaling from early life to adulthood.
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Our study expands on current knowledge regarding the impact
of neonatal pain on later-life fear memory formation and its
underlying mechanism.

Firstly, we demonstrated that neonatal pain had a long-
term effect on fear memory. We chose both trace and
contextual FC because these two types of conditioning are
related to hippocampal function. Our previous study has showed
that repetitive neonatal needle pricks impaired hippocampal-
dependent spatial memory in the Morris water maze (Chen et al.,
2016); thus, we hypothesized that the same cognitive dysfunction
might occur in hippocampal emotion-related memory.

In Pavlovian cued FC, an initially non-threatening sensory
stimulus, such as a tone or light, is rapidly transformed into
a CS after being paired with a US that naturally evokes a
defensive response (unconditioned response, such as freezing).
However, CS and US information does not overlap during trace
conditioning; thus, the hippocampus is engaged to bridge the
interval and facilitate the formation of a CS-US association
(Connor and Gould, 2016). In the present study, there was
no difference between the two groups in freezing behavior
during the training session, indicating that the acquisition of
the CS-US association in the needle group was not affected;
thus, the memory acquisition function that was dependent on
the amygdala and hippocampus was not grossly impaired by
neonatal stimulation.

In trace FC, there is a stimulus-free interval of several
seconds – a “trace” period –between the CS and the US
(Lugo et al., 2014). During this period, the CA1 of the
hippocampus is believed to play an important role because
lesions to the hippocampus or pharmacological agents used to
block receptor function in the hippocampus result in deficits
in trace conditioning and contextual conditioning (McEchron
et al., 1998). Therefore, trace FC is a good method to investigate
hippocampus-dependent memory that is not spatially dependent.
In the present study, rats that experienced neonatal needle
pricks showed impaired contextual learning behavior in the
training context during prepuberty; this impairment lasted until
adulthood and even increased in severity, given that the deficits
occurred not only in the training context but also in the
novel context in adulthood. Fear memory retrieval is tested by
presenting the CS again, without the US, in a new environment.
In an organism that has properly stored trace fear memory,
presentation of the CS can trigger a conditioned response (CR).
Our study showed that repetitive neonatal needle pricks blocked
the retrieval of hippocampus-dependent trace fear memory from
prepuberty to adulthood.

Until now, there have been a few published reports addressing
the relationship between early-life pain and later-life fear
memory. Davis’s work (Davis et al., 2018) found that needle
prick produced a disruption in auditory fear conditioning
when collapsed across age and sex. However, it did not show
any difference in the training context and novel context. The
discrepancy between our studies and Davis’s work might be due
to the differences in neonatal stimulation pattern (Davis: one
stimulation at an every-2-h interval only on the left hindpaw
and four times per day; our study: one stimulation at an every-
6-h interval on four hindpaws in turns) and in the type of

fear conditioning (paradigm between cued FC and trace FC).
In addition, several studies regarding early-life stress and fear
memory have yielded diverse results. Chocyk et al. (2014) showed
that early-life stress, modeled by maternal separation (MS),
impaired fear learning during adolescence independent of sex.
The effect of MS on the expression of contextual FC (both in
males and in females) and auditory FC (only in males) persisted
into adulthood. In our previous study, repetitive neonatal needle
pricks impaired hippocampus-dependent learning and memory
in the Morris water maze (Chen et al., 2016). Moreover, early-
life stress impairs FC in adult rats, whereas stress experienced in
adulthood has the opposite effect (Kosten et al., 2006). However,
Pillai et al. (2018) found that early-life stress (induced by raising
mouse pups with limited nesting and bedding material on
postnatal days 2–9) did not affect context and auditory fear
memory in adulthood. Therefore, there was a compelling need to
examine whether neonatal pain affected fear memory later in life.
More interestingly, we found that the defects in contextual FC
and trace FC worsened from prepuberty to adulthood, manifested
by decreased freezing behavior in contextual FC and multiple
phases of trace FC.

Regarding the mechanisms of memory impairment, recent
studies have suggested that LTP is crucial for memory formation
(Park et al., 2016; Sachser et al., 2017). Learning involves
alterations to the intrinsic excitability of hippocampal neurons
and enhancement of synaptic plasticity (Disterhoft and Oh,
2006; McKay et al., 2013; Sehgal et al., 2013). There was an
increase in the amplitude of synaptic potentials recorded in
the hippocampus soon after contextual FC (Selig et al., 1999).
Likewise, field recordings from the hippocampus of freely moving
animals suggest that acquisition of FC is accompanied by a
facilitation of basal synaptic transmission (Doyere et al., 1995).
Specifically, mutant mice with deficient LTP in the hippocampus
also exhibited deficits in contextual (but not tone) FC and trace
(but not delayed) FC (Abeliovich et al., 1993; Bourtchuladze
et al., 1994; Huerta et al., 2000). Therefore, LTP played an
important role in facilitating contextual FC and trace FC. We
found that the rats with neonatal pain experience had an
impairment of maintained HFS-induced LTP at the CA1 synapses
of the hippocampus both in prepuberty and adulthood. This
effect might explain the deficits in fear memory in our study.
Other studies reported that neonatal stress caused a reduction in
hippocampal LTP (Kamal et al., 2014; Sousa et al., 2014; Lesuis
et al., 2019); to our knowledge, this is the first report about the
effect of neonatal pain experience on hippocampal LTP.

Pain perception and hippocampal LTP share many molecular
mechanisms but also have a notable and very important
distinction. A study on a different but related topic demonstrated
that neonatal surgical injury relaxed the timing rules governing
LTP at mouse primary afferent synapses onto mature lamina
I projection neurons, which serve as a major output of the
spinal nociceptive network and are essential for pain perception
(Wang et al., 2019). However, it is still controversial as to
whether spinal LTP and hippocampal LTP are parallel processes.
For example, low-frequency afferent stimulation causes LTD at
most synapses in the brain; however, low-frequency stimulation
of C-fibers is sufficient to evoke LTP at a subset of dorsal
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horn neurons receiving direct C-fiber input (Ikeda et al.,
2006). In the present study, needle pricks in the neonatal
period decreased the mechanical paw withdrawal threshold,
indicating hypersensitivity in somatosensory processes in later
life. However, hippocampal LTP was decreased in the neonatal
pain group. This may provide evidence that hippocampal LTP
might not be parallel to hyperalgesia after injury. Building on this
prior knowledge, our results revealed another possible instance
of electrophysiological reorganization in the superior areas of the
central nervous system after neonatal pain exposure.

As best characterized at the CA3–CA1 synapses of the
hippocampus, conventional LTP requires calcium influx through
NMDARs (Lu et al., 2001). In CA1 pyramidal cells, NMDARs
contain mainly NR2A and/or NR2B subunits in addition to NR1
(Yashiro and Philpot, 2008). Glutamate signaling at NMDARs, a
critical mediator of long-term memory and synaptic plasticity, is
recruited within the dorsal hippocampus during both acquisition
and recall of trace conditioning (Alberini, 2009). Additionally,
AMPA receptors (AMPARs) play a significant role in CFC in
the hippocampus. It was reported that spontaneous AMPAR-
mediated synaptic transmission takes place in the hippocampal
CA1 region during the association of context and shock (Zhou
et al., 2009). It was demonstrated that synaptic GluR1 trafficking
in the hippocampus is required for the encoding of CFC
(Mitsushima et al., 2011; Takahashi, 2011). In the present study,
we confirmed that neonatal repetitive procedural pain caused
sustained deficits in fear memory both prepuberty and adulthood,
which were associated with downregulation of NR1, NR2A,
NR2B, and GluR1 in the hippocampus. In line with our finding,
Blom et al. (2006) found that prenatal stress reduces the quantities
of NR2B and NR2A subunits in the hippocampus of rat pups.
Additionally, early postnatal chronic inflammation produces
long-term changes in pain behavior and NMDAR subtype gene
expression in the central nervous system of adult mice (Blom
et al., 2006). Here, the reduced expression of NMDARs and an
AMPAR might be the cellular mechanism for the impairment of
fear memory and synaptic plasticity caused by neonatal pain.

During early postnatal development, there is a switch from
slow NR2B to faster NR2A (Liu et al., 2004), as well as an
increase in the ratio of AMPA to NMDA receptors (Williams
et al., 1993), which is notably coinciding with the period neonatal
pain occurred. This glutamate receptor switch is observed
across brain regions and is crucial for synaptic maturation and
cognitive development (Liu et al., 2004). Multiple studies have
proved this critical process is susceptible to early life stress
and glucocorticoids. Our previous major study showed neonatal
repetitive pain was a powerful stressor which could activate the
HPA axis even during the stress hyporesponsive period (SHRP)
and disrupted the development of the HPA axis from childhood
to adulthood (Chen et al., 2016). It has been suggested the
hyperactivity of HPA axis disturbed the developmental mature in
glutamate signaling system due to overstimulation of immature
hippocampal neurons which might induce neural excitotoxicity
and further contribute to the dysfunction of cognition (Popoli
et al., 2011). Evidence of this propose has been observed in
the rat model of maternal isolation. Mooney-Leber et al. (2018)
found exposure to maternal isolation produced increase in serum

corticosterone and decrease in glutamate levels, and elevated
corticosterone suppressed hippocampal glutamatergic synapses
and NMDA receptors (Mikasova et al., 2017).

However, in the trace FC, the different shock levels set
for young and adult rats prevented the possible comparisons
across the ages. Concerning the neurodevelopmental process,
future studies needed to conduct under the same shock level. In
addition, the duration between the shock offset and the next tone
onset was only 28 s, which limited the animals with more fearful
associations to the context than to the tone. Although our results
indeed presented the impairments of CS-US memory retrieval in
the rats experienced neonatal needle pricks, future observation
are urgent to conduct under the longer ITI duration (more than
40 s). Besides, optogenetics and conditioned gene knockout in
mice are promising method to clarify the causal link between
neuroendocrine alternation and neonatal pain.

Overall, this study revealed that neonatal pain caused deficits
in hippocampus-related fear memory and impaired hippocampal
synaptic plasticity later in life, which expands the current
understanding of the long-term impairment of fear memory
in young and adult rats after repetitive neonatal procedural
pain. The changes in synaptic plasticity and neurotransmitter
metabolism in the hippocampus caused by early repeated pain
stimulation in neonatal rats are important pathophysiological
mechanisms for long-term behavioral development, which shed
light on the significance of reducing neonatal pain in the NICU
to prevent learning-process deficits in later life.
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