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ABSTRACT
Background: Chronic postsurgical pain (CPSP) in children remains an important problem with no 
effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining addi-
tional interindividual risk beyond psychological factors have been proposed.
Aims: We present a comprehensive review of current preclinical and clinical evidence for genetic 
and epigenetic mechanisms relevant to pediatric CPSP.
Methods: Narrative review.
Results: Animal models are relevant to translational research for unraveling genomic mechanisms. For 
example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and 
variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differ-
ential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal 
studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive 
priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions 
enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for 
enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, 
but pathways identified by adult gene association studies point to potential common mechanisms.
Conclusions: Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse 
translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in 
large-scale biobanks may be potential solutions. Time of developmental vulnerability and long-
itudinal genomic changes after surgery warrant further investigation. Emergence of promising 
precision pain management strategies based on gene editing and epigenetic programing empha-
size need for further research in pediatric CPSP-related genomics.
RÉSUMÉ: 
Contexte: La douleur chronique post-chirurgicale (DCPC) chez l'enfant reste un problème impor-
tant pour lequel il n’y a pas de stratégies préventives ou thérapeutiques efficaces. Récemment, des 
fondements génomiques expliquant des risques interindividuels additionnels, au-delà des facteurs 
psychologiques, ont été proposés.
Objectifs: Nous présentons une revue compléte des données probantes précliniques et cliniques 
actuelles pour les mécanismes génétiques et épigénétiques pertinents en matiére de DCPC pédiatrique.
Méthodes: Revue narrative.
Résultats: Les modéles animaux sont pertinents pour la recherche translationnelle afin de déchiffrer les 
mécanismes génomiques. Par exemple, les souris mutantes Cacng2, p2rx7 et bdnf présentent une 
hypersensibilité mécanique altérée à des lésions et des variantes des mêmes génes ont été associées à 
la sensibilité à la DCPC chez l’humain; de même, la méthylation différentielle de l'ADN (H1SP) et les 
miARN (miR-96/7a) ont montré des implications translationnelles. Des études menées sur des animaux 
indiquent également que la diaphonie entre les neurones et les cellules immunitaires peut être 
impliquée dans l'amorçage nociceptif observé chez les nouveau-nés. Chez les enfants, la méthylation 
différentielle de l'ADN dans les régions génomiques régulatrices enrichissant les voies GABAergiques, 
dopaminergiques et immunitaires, ainsi que des scores de risque polygénique pour une prédiction 
améliorée de la PCSP, ont été décrits. Les études pangénomiques en matiére de DCPC pédiatrique sont 
rares, mais les voies identifiées par les études d'association de génes chez l'adulte indiquent de possibles 
mécanismes communs.
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Conclusions: La recherche en génomique du laboratoire au patient dans le cadre de la DCPC 
pédiatrique est actuellement limitée. Les approches translationnelles inversées, l’utilisation d'autres 
-omiques et l’inclusion d'endophénotypes pédiatriques/DCPC dans les biobanques à grande 
échelle peuvent être des solutions possibles. La durée de la vulnérabilité développementale et 
des changements génomiques longitudinaux aprés la chirurgie justifie des recherches plus appro-
fondies. L'émergence de stratégies de précision prometteuses basées sur lé'dition de génes et la 
programmation épigénétique pour la prise en charge de la douleur font valoir la nécessité de 
poursuivre les recherches sur la génomique pédiatrique liée à la DCPC.

Introduction

Chronic postsurgical pain (CPSP) has recently been recog-
nized as an entity in the International Classification of 
Diseases, 11th Revision.1 It is being increasingly studied in 
pediatric cohorts where the incidence is reported as 14.5% 
to 38%.1,2 Importantly, up to 33% of preterm babies require 
surgery, and a higher proportion undergo painful proce-
dures in the neonatal intensive care unit (NICU). Major 
surgery within the first 3 months of life has been associated 
with increased pain sensitivity and analgesic requirements 
with subsequent surgeries compared with infants with no 
prior surgery, and time spent in the NICU has been linked 
with increased nociceptive sensitivity in school-aged chil-
dren, possibly due to repeated painful stimuli received as 
neonates.3,4 With a high likelihood of hypersensitivity later 
in life,5 the reported incidence of CPSP in children is likely 
just the tip of the iceberg for this phenomenon and is only 
likely to increase in the future.6 The presence of preopera-
tive pain and acute postoperative pain intensity (poorly 
controlled pain in the immediate and subacute periods) 
have been identified as risk factors for the development of 
CPSP,7,8 so much of the early research in this field focused 
on understanding the mechanisms underlying acute pain 
after surgery as a way of preventing the transition to CPSP. 
Psychosocial factors such as anxiety sensitivity,7,9 perio-
perative factors such as surgical duration,7 and parent– 
child interactions,3 2,10 have been shown to have both 
positive and negative influences on CPSP development in 
children.11 These factors have ~72% accuracy in explaining 
16% of interindividual CPSP susceptibility variability in 
children undergoing spine fusion.7 The heritability of 
chronic pain susceptibility is estimated at ~50%12–14 based 
on family and twin studies, with genetic effects accounting 
for 12% to 60% response variability to experimental pain15 

and chronic pain conditions.16–19 This points to a genetic 
contribution to individual differences in chronic pain risk 
and/or severity, but the specific genetic architecture of 
CPSP remains incompletely understood. In addition, 
shared environmental factors are responsible for 7% to 
10% variance in chronic pain development.16 Similar to 
other chronic pain conditions, there is increasing evidence 
to show that genetic factors linked to CPSP risk13,20,21 

intricately interact with environmental factors to play 
a role in the transition of acute to chronic postsurgical 
pain.22 Thus, in addition to genetics, epigenetic mechan-
isms have been a focus of study in development and main-
tenance of CPSP.

Though risk factors for CPSP and its related sequelae 
have been identified in clinical populations, the heteroge-
neity of patient demographics and surgical procedures, 
comorbidities, varying standards of care/pain definitions, 
and subjectivity of pain measures after surgery add com-
plexity to clinical research.23 Hence, preclinical models for 
CPSP are essential to understanding the pathological pro-
cesses underlying CPSP and allow researchers to ask ques-
tions that could not be answered easily in the clinical 
setting. In this review, we discuss preclinical to clinical 
evidence for the role of genomics (genetics and epigenetics) 
in pediatric CPSP. We describe benefits and limitations of 
animal models used to study CPSP and discuss challenges 
of translational research. We also discuss epigenetic and 
genetic signatures in nociceptors and immune cells mod-
ulating neonatal nociceptive priming, an important con-
cept leading to chronic pain transitions in children. We 
review current clinical studies in children describing 
genetic and epigenetic associations with CPSP and draw 
parallels with findings from adult genetic studies where 
there is a scarcity of pediatric evidence. Finally, we elabo-
rate on integrative approaches of basic and clinical 
research, potential targets for novel therapeutic strategies 
in human subjects, and future areas of research.

To better understand the nuances of extrapolating 
adult findings to pediatric populations, it is important 
to understand the differences in physiology of the devel-
oping nociceptive system compared to adults. In adults, 
there is good evidence that amplification of neural sig-
naling within the central nervous system leads to central 
sensitization, contributing to many prolonged chronic 
pain states.24 However, an immature neonatal brain is 
not just a small adult brain. During brain development, 
a progressive reduction of intracellular chloride in neu-
rons leading to an associated switch in gamma amino 
butyric acid (GABA) polarity (excitability and genera-
tion of depolarizing potentials in immature brains to 
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hyperpolarization and inhibition) has been confirmed in 
a wide range of animal species.25,26 Also, it has been 
shown that up to postnatal day 21 (P21) in the rat, the 
rostroventral medulla of the brainstem exclusively facil-
itates spinal pain transmission but that after this age (P28 
to adult), the influence of the rostroventral medulla shifts 
to biphasic facilitation and inhibition,27 and this switch 
may be mediated by mu-opioid receptor pathways.28 

Although sensory neurons, including nociceptors, dis-
play age-related changes in functional makeup during 
early development,5,29 nociceptors can be functional by 
the 20th week of gestation. The peripheral sensory neu-
rons in the dorsal root ganglia (DRG) overall appear to be 
fully developed by early childhood as external stimuli 
continue to shape their maturation.29 However, inter-
neuronal communications in the spinal cord are still 
developing at early ages. Hence, the premature newborn 
brain can poorly distinguish noxious and innocuous 
stimulation. Importantly, nociceptive reflexes and 
microglial reactions are strong at an early age, and 
repeated nociceptive stimuli (depending on age of initial 
insult) lead to irreversible changes that persist into adult-
hood, causing hyperalgesia, increasing risk for develop-
ing chronic pain, enhanced cortical activity to noxious 
stimulation, and considerable alterations in somatosen-
sory and pain processing.30,31 We believe this brief pre-
lude will highlight and provide a context for genomic 
evidence presented for pediatric CPSP as well as help 
readers understand relevant pediatric connections where 
adult findings are described in the article.27,28

Preclinical Models Relevant to Pediatric CPSP

Though there are many models that exist to study genomic/ 
genetic/epigenetic factors contributing to postsurgical pain, 
only a subset of these are commonly applied to CPSP 
explicitly, and even fewer have been leveraged to investigate 
pediatric CPSP specifically. Refer to Figure 1 for a brief 
overview of preclinical surgical models relevant to pediatric 
CPSP genomic investigations. Detailed reviews on pain 
assessments in experimental models of neonatal and pedia-
tric pain from early life sensitization have been previously 
published.6,32 Rodents (primarily mice and rats) are the 
most common animal model for pain genetics research, 
but there are several caveats to using these models for the 
study of pediatric CPSP. Mice are born at an earlier point of 
maturation compared with full-term birth in a human, 
equating roughly to the second postnatal week in 
rodents.33 In addition, general maturational rates are not 
linearly correlated between rodents and humans; mice 
mature at ~150 times the rate of humans in the first 
month, and this ratio decreases to 25:1 after 6 months of 
age. As a result, if pediatric CPSP is defined clinically as pain 
lasting >3 months, this would correspond to ~14 hours in 
the first month of life for a mouse,34 but most studies have 
used a much more protracted time frame (on the order of 
days to weeks depending on the specific surgical model) for 
measuring hypersensitivity after surgery/injury in adoles-
cent mouse models, even in this early period of accelerated 
development. Quantification of chronic pain severity in 
these models is often accomplished using pain-eliciting 
stimuli35–41 where severity of pain is associated with the 
degree of hypersensitivity exhibited or through pain 

Figure 1. Diagrammatic representation of preclinical pain models, tests, and analyses used in genomic studies with relevance to 
pediatric chronic postsurgical pain phenotypes.
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measures such as alterations in gait and locomotor activity 
that more effectively mimic movement-evoked pain as seen 
during surgical recovery.42

Preclinical models have proven useful for studying the 
effectiveness of common therapeutics for acute pain due to 
injury or inflammation (e.g., morphine, gabapentin, etor-
icoxib, celecoxib, indomethacin, naproxen) in the preven-
tion and treatment of CPSP.43,44 However, pediatric studies 
are needed to allow translation of findings in adult to 
pediatric applications. For example, the development of 
anti-calcitonin gene-related peptide antibodies for the treat-
ment of migraines in adults is currently being followed up 
by pediatric pharmacokinetic studies45 to determine 
whether dosing schedules based on weight or body surface 
area or hybrid models are optimal, because younger chil-
dren have faster clearance and lower plasma concentrations 
when dosed based on weight and age.46 In addition, safety, 
potential immunogenicity, and effects on pediatric physiol-
ogy may be very different from those for adults. Despite the 
unknowns, which can only be resolved by long-term safety 
and efficacy trials in children, recommendations for its use 
in children with refractory migraine have been put forth by 
experts,47 showing promise for potential translational suc-
cess on CPSP therapeutics in children.48 Nevertheless, ani-
mal models have limitations for translation. Behavioral 
responses to pain differ widely, with no clear-cut patterns 
between rats from the same strain purchased from different 
suppliers and different strains of mice, influencing both 
genetic association and interventional findings.49,50 

Because pain is a biopsychosocial phenomenon, it is not 
amenable to assess the wholesome nature of this phenotype 
in animals, although certain models (acetic acid [0.9%] 
writhing test and manipulating social partner) have been 
used to simulate social environments. Despite interesting 
targets for therapies in animals (for example, neurokinin 1 
antagonists), translation to human domains has been 
elusive.51 Nevertheless, pain memory, an important risk 
predictor in pediatric acute to chronic pain transitions,52 

has been observed in animal studies showing long-term 
sensitivity following injury.53 In addition, reverse transla-
tion, by first identifying variants associated with CPSP in 
human studies followed by mechanistic investigations in 
animal models, is suggested as a potentially improved 
approach to bridge the gap between benchside research 
and bedside applications.54,55

Preclinical Genetic Evidence in Chronic 
Postsurgical Pain

Findings from unbiased genome-wide approaches in ani-
mal models that recapitulate the tissue damage/injury 
aspects of surgery can provide insight into potential 

pediatric CPSP-relevant candidate genes. One such 
method, quantitative trait locus (QTL) mapping, has suc-
cessfully identified multiple genomic loci in rodents where 
genotype is correlated with variation in the susceptibility to 
chronic pain; though these studies have not been conducted 
in juvenile mice, the data can be used to generate hypoth-
eses for subsequent testing in pediatric CPSP. We could 
find no genomewide analysis conducted in animal models 
with the goal of identifying potential risk alleles or variants 
for pediatric-specific CPSP. However, two relevant QTLs, 
pain1 (mouse chromosome 15)56 and pain2 (rat chromo-
some 2),57 conducted in adult rodents have identified geno-
mic loci associated with chronic pain in the neuroma model 
of sciatic nerve transection that shares similarities to surgi-
cal and traumatic amputations. Pain1 contains 155 genes, 
but using whole genome microarray expression analysis 
and bioinformatics, a single high-priority candidate, 
Cacng2, was identified. A Cacng2 hypomorphic mutant 
mouse confirmed the gene’s functional role in chronic 
pain susceptibility, and subsequent translational studies 
revealed human CACNG2 single-nucleotide polymorph-
isms (SNPs) predicted risk for CPSP in adult women.57 

A similar approach was used to identify and confirm 
a role for purinergic receptor P2rx758 in susceptibility for 
nerve injury–induced mechanical hypersensitivity. This 
provides strong support for uncovering the genetic basis 
for CPSP with genome-wide linkage mapping or similar 
preclinical tools. Animal models offer the opportunity to 
examine the role of specific candidate genes identified in 
clinical populations.13 A direct example of this approach for 
CPSP comes from work by Tian et al.,59 who sequenced 638 
SNPs associated with 54 candidate pain-related genes in 
patients with CPSP and, as a result, identified brain-derived 
neurotrophic factor as a high-priority candidate gene. 
Knock-in mice harboring this specific brain-derived neu-
rotrophic factor mutation were found to have decreased 
mechanical sensitivity corresponding to their human 
cohorts, indicating lower risk for CPSP. Though these 
methods are available and reliable, their application to 
pediatric CPSP has lagged behind their application to 
other forms of chronic pain.

Even with the paucity of unbiased whole-genome 
approaches being used in preclinical models of pediatric 
CPSP, future animal studies are critical to disentangling the 
individual differences involved in CPSP risk by offering (1) 
an enhanced level of precision for identifying the location, 
timing, and specific mechanisms by which individual geno-
mic differences (genetic, or epigenetic) contribute to the 
pathology underlying pediatric CPSP and (2) a substrate for 
discovery of alternative therapeutics for treatment and pre-
vention of pediatric CPSP. The fundamental genetic/epige-
netic contributions to pediatric CPSP have yet to be 
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identified, but the systematic control over environmental 
parameters in animal studies makes them ideal for this type 
of inquiry, and eventually these methods could be used to 
model the multiple clinical factors that likely contribute to 
CPSP in the clinical setting, including insufficient post-
operative pain control,60 presence of drains, postoperative 
infection,61 and postponing the use of antineuropathic 
medication.62–64

Preclinical Evidence for Epigenetic Mechanisms 
in Chronic Postsurgical Pain

Epigenetic modifications alter gene expression without 
altering the DNA sequence through processes including 
DNA methylation,65 chromatin remodeling through his-
tone modifications (methylation and acetylation), and non-
coding RNAs (e.g., miRNAs)66–72 that regulate gene 
expression.67,73 Prior work illustrates a number of specific 
alterations in epigenetic status induced in models of sur-
gery-like injury, but, again, the application of these findings 
to the pediatric-equivalent in rodents is extremely limited. 
Nerve injury has been shown to induce global DNA hypo-
methylation in the DRG but global hypermethylation in the 
spinal cord and prefrontal cortex, pointing to the impor-
tance of tissue-specific changes in interpretation. To this 
end, Denk et al. previously proposed persistent, postinjury 
epigenetic alterations at microglial enhancers in spinal 
mechanisms underlying pain chronicity.74 Chronic painful 
neuropathy induces persistent DNA hypomethylation in 
the prefrontal cortex and amygdala68 with a concomitant 
increase in of Synaptotagmin II (syt2) expression, which 
plays a role in synaptic vesicle docking and as a calcium 
sensor for fast neurotransmitter release.75 These findings 
specifically point to an anatomical and epigenetic substrate 
for the emergence of psychological comorbidities of 
chronic pain, but their impact in the context of the imma-
ture brain in pediatric patients is unclear.68,76 Similarly, 
peripheral inflammation induces active DNA demethyla-
tion of the cbs gene promoter region in primary sensory 
afferents, resulting in increased production of hydrogen 
sulfide and increased pain.77,78 Other reports implicate 
differential methylation and hypoxia-inducible factor 1 sig-
naling pathway gene expression in neuropathic pain sever-
ity in both rodent models and breast cancer survivors.79 

Relevant to CPSP, increased methylation of the mu- and 
kappa-opioid receptor promoters in DRG neurons follow-
ing nerve injury provides a potential mechanism under-
lying the opioid resistance of neuropathic pain in preclinical 
and clinical populations.80

Histone deacetylase (HDAC) levels increase in the spinal 
cord as a result of peripheral inflammation and nerve 
injury, suggesting a role in pain persistence and/or 
chronicity.77,81 In fact, inhibiting spinal HDAC activity 

attenuates nerve injury–induced hypersensitivity.82 To 
this end, neuropathic pain reduces histone methylation, 
resulting in persistent dysregulation of the immune 
response to nerve injury.83 Though these data are not 
specific to pediatric CPSP, they do shed light on potential 
therapeutic targets for the prevention of CPSP given the 
involvement of both inflammation and tissue injury in 
most surgical procedures and the sensitivity of the epigen-
ome to transient alterations during the pediatric develop-
mental stage.

In one of the only specific investigations of CPSP, a rat 
model of lingual nerve injury, a common occurrence dur-
ing routine oral surgery or facial trauma/reconstruction, 
lingual nerve expression levels of multiple miRNAs pre-
dicted to regulate inflammatory and pain-related pathway 
genes were correlated with pain behavior. The relationships 
held true when miRNA expression in lingual neuromas was 
correlated with patient pain ratings.84 miRNAs may con-
tribute to alterations in sensory neuron excitability through 
their regulation of sodium channel (Nav) expression levels. 
The miRNAs miR-9685 and miR-7a86 exert regulatory con-
trol over Nav1.3 following nerve injury; the specific deletion 
of the miRNA processing enzyme Dicer in the DRG 
reduces expression of Nav1.7, 1.8, and 1.9 channels and 
attenuates inflammatory pain behaviors.87 Relevant to the 
use of opioids for postoperative pain, the Let-7 group of 
miRNAs has been implicated in the development of mor-
phine tolerance, offering a potential mechanism by which 
miRNAs could play a role in the opioid resistance of CPSP 
that affects both adult and pediatric patients.88 Further 
functional studies examining the tissue-specific roles of all 
epigenetic modifications in the emergence of CPSP are 
needed, and this is particularly true for their role in pedia-
tric CPSP.

Neonatal Nociceptive Priming: Epigenetic and 
Genetic Signatures in Nociceptors

A critical concern with children experiencing early life pain 
is how development of the nociceptive system is affected. 
Clinical and rodent data demonstrate that there are discrete 
time periods in which an aversive stimulus, such as an 
injury, results in altered development and long-lasting 
changes to the somatosensory system.4,89 Individuals who 
experience early life pain are at an increased risk of com-
plications after an injury later in life, a phenomenon called 
neonatal nociceptive priming.90,91 Importantly, these effects 
are clinically relevant to neonates who undergo painful 
stimuli within the NICU. Hypersensitivity to tissue damage 
resulting from repeated heel sticks/procedures during clin-
ical neonatal intensive care can persist long-term.6 The 
specific role of different sensory neurons has been exten-
sively studied in adult pain, but the role of specific sensory 
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neurons in the onset of neonatal pain is not clearly 
understood.92,93 Reports have indicated that age is a key 
factor that modulates pain after peripheral nerve injury.93,94

The normal development of somatosensory and pain 
processing is dependent on the sensory information from 
skin, muscle, and joints, which relay information to the 
spinal cord during the first few postnatal weeks.92,95,96 

Primary sensory neurons of the DRG that respond to 
touch, pain, temperature, itch, etc.,97 are chemically and 
functionally heterogenous.97,98 DRGs undergo many phe-
notypic changes during early postnatal development that 
are regulated by target-derived neurotropic factors 
(NTs).96,97,99,100 These factors exhibit temporal influence 
on developing primary afferents and alter the responses of 
neonatal sensory neurons to peripheral stimuli in response 
to injury.29,93,96 A functional switch from mechanically 
sensitive, thermally insensitive C-fibers to polymodal 
C-fibers during postnatal development29 coincides with 
the previously described neurochemical switch in growth 
factor responsiveness.101 Thus, peripheral injury prior to or 
after this critical period results in distinct sensitization 
patterns in the DRG neurons. Unique pharmacological 
and behavioral responses to injuries exist between develop-
ing and adult subjects, and this is observed in both patients 
and animal models.31,92 Potential neonatal-specific analge-
sic properties and mechanisms of nociceptive signaling also 
lend credence to the presence of a “primed” nociceptive 
system that enhances the response to re-injury later in 
life.92,102

The genetic landscape of human and animals models is 
known to play important roles in the onset and perpetua-
tion of chronic pain stemming from early life 
injury.12,13,67,103 Recent evidence demonstrates that neona-
tal mechanisms of nociception are distinct from those of 
adulta,29,104,105 and early life injury has been shown to 
change patient sensitivity to peripheral stimuli in 
adulthood.93,106 When considering alterations in develop-
ment, previous data indicate differences in chromatin 
accessibility between early stages of life and later develop-
mental time points across different cell types.107 Cellular 
activity can alter epigenetic signatures, and immunological 
data suggest that innate immune cells use the epigenome as 
a form of cellular memory.108,109 Further, animal models 
have identified alterations in neuronal function and differ-
entiation through epigenetic modifications.110,111 

However, the effect of injury and the direct impact this 
has on the nociceptive system is unknown. The complex 
interactions and genetic variation between patients such as 
SNPs12,13,67,112 and epigenetic modifications have gained 
attention in the onset of early pain.12,66,67 However, the cell 
types, systems, and localization of neonatal nociceptive 
priming remain pertinent questions.113 It will be necessary 
to determine the underlying factors that contribute to the 

unique vulnerability of the neonate, especially at the level of 
the sensory neuron in the form of a cellular “memory.” 
Hence, the definitive classification of primary sensory neu-
rons at the single cell level over time under normal and 
pathological conditions will help identify genes involved in 
sensory neuron function and their role in neonatal prim-
ing. We are working to determine how subpopulations of 
sensory neurons are altered through development and the 
impact that early life injury has on the different subtypes at 
the functional and epigenetic levels. This type of analysis 
will be of critical importance to determine whether early 
life surgical incision drives chromatin accessibility modifi-
cations that contribute to neonatal nociceptive priming.

Neonatal Nociceptive Priming: Role of Macrophages

It is clear that within the spinal cord, both dorsal horn 
circuitry and microglia, the macrophages of the central 
nervous system, are critical for neonatal nociceptive 
priming.91,114,115 However, evidence suggests that periph-
eral input through the primary afferents is also necessary 
for this.105,116 Nociceptive input is transmitted via primary 
afferent nociceptors and is modulated by the immune 
system.117 Importantly, macrophages undergo robust 
developmental changes in early life and experience 
a critical period that overlaps with the vulnerable period 
of the somatosensory system.118–121 Following infection or 
injury, a number of biological factors are released to the 
affected tissue, and macrophages begin to populate the 
area.117 The pro- or anti-inflammatory profile and presence 
of macrophages have been linked to patient and animal 
outcomes following surgical injury during 
development.122,123 Together, these data suggest that acti-
vated macrophages in the neonate are unique and impor-
tant in acute nociception as well as a long-term 
predisposition to chronic pain.

A unique feature of the peripheral immune system is its 
known ability to retain cellular memory. Though this 
“memory” is best attributed in the adaptive immune 
response, the innate immune system can also establish 
memory. In animals lacking an adaptive immune system, 
macrophages recognize pathogens to which they were pre-
viously exposed109 through the unique pro- or anti- 
inflammatory microenvironment, signaling cascades, and 
epigenetic modifications.108,124 The microenvironment in 
the tissue creates a signature of cytokines, chemokines, and 
growth factors known as pathogen-associated molecular 
patterns and/or damage associated molecular patterns.125 

These are recognized by innate immune cells, including 
dendritic cells, natural killer cells, and macrophages, by 
pattern recognition receptors. The activation of these 
“lock and key” signals to receptors on macrophages induces 
intracellular signaling cascades altering transcription 

90 A. J. DOURSON ET AL.



factors and the epigenetic landscape, which contributes to 
the formation of the immune memory.

Other molecules that directly alter the genome, such as 
HDACs, also drive epigenetic changes by modulating spe-
cific promotor regions to induce or inhibit pro- or anti- 
inflammatory responses from effector cells. Chromatin 
alterations include poised chromatin (e.g., H3K4me3 and 
H3K27me3), heterochromatin (e.g., H3K27me3 only), and 
active chromatin (e.g., H3K27ac and/or H3K4me3 only) or 
repressive chromatin (H3K9me2).126,127 Each of these 
modifications can induce long-lasting changes in gene 
expression128 and are specific to the pattern of 
stimulation.109 It is important to note that the epigenome 
in early life is unique in macrophages,129 necessary for 
tissue resident development,130 and is required for mono-
cyte transition into macrophages.131

Macrophages have been found to become either 
“trained” or “tolerant” to certain stimuli. If trained, macro-
phages that are restimulated with a factor that they had 
previously encountered will display an increased pro- 
inflammatory response. Opposing this, macrophages that 
become tolerant to repeat stimuli have a reduced inflam-
matory response. The difference between these has been 
traced to differential epigenetic regulation on the promo-
tors of effector genes. For example, stimulation to trained 

immunity can result in persistent active chromatin marks, 
whereas stimulation to tolerant immunity results in repres-
sive marks.124,132 In either case, after cessation of the cellular 
response following the “first hit,” the cell resumes similar 
activity. It is not until a “second hit” that the priming effect 
within the cell is observed.132 The factors that regulate this 
and the epigenetic landscape following different stimula-
tions have been recently reviewed by Fanucchi et al.133 

Although it is clear that macrophages have distinct 
responses after restimulation, the timescale, developmental 
vulnerability, and effect after injury are less explored and 
warrant further investigation.

After a tissue breaking injury, including surgery, 
a number of biological and cellular systems initiate the 
injury response and facilitate repair of the damage.134 The 
peripheral immune and nervous systems work together by 
sending signals to one another in a bidirectional pattern 
and to alter the local microenvironment.135,136 Previous 
data and our recent unpublished data indicate that the 
microenvironment after a neonatal surgical injury may be 
unique from that of the adult.105,129 Our work further 
demonstrates that macrophages are necessary for animals 
to display acute pain-like behaviors after an early life inci-
sion as well as chronic pain-like behaviors after a repeat 
injury later in life. The mechanisms that underlie 

Figure 2. Mechanisms contributing to increased susceptibility to CPSP. Underlying molecular mechanisms comprising genetic 
variations (i.e., SNPs) and epigenetic modifications (i.e., DNA or histone methylation and acetylation and miRNAs) contribute to 
individual differences in tissue-specific gene and protein expression in clinical association studies. Gene and protein expression 
differences can account for increased risk for altered neuronal excitability and sensitization. Alternative mechanisms involved in 
nociceptive priming are instigated following early life surgery. Tissue injury incites tissue-specific alterations (i.e., epigenetic 
modifications, gene expression changes) in cell types including sensory neurons and macrophages, which may be important in the 
formation and maintenance of neonatal nociceptive priming. Underlying conditions and early life surgery can independently 
contribute to increased susceptibility to CPSP and even act in a feedforward loop together, exacerbating CPSP.
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macrophage involvement in maintaining memory of early 
life surgical injury may be similar to the mechanisms that 
underlie macrophage involvement after an infection and 
may be controlled by the epigenome. The unique properties 
of the neonatal macrophage and immune response may 
contribute to the vulnerable periods for both the peripheral 
immune system and nervous system. Because neonatal 
macrophages display a unique epigenetic landscape com-
pared to adults,129 these data indicate that pediatric surgery 
may drive macrophage modifications that are long-lasting 
and affect injury outcomes later in life.

Clinical Studies of CPSP in the Pediatric 
Population

Pediatric clinical cohorts in CPSP genetic association stu-
dies are mostly small samples and thus findings need 
further scaling and validation. That said, the findings are 
mostly aligned with prior basic science knowledge, and 
novel systems biology–based approaches have been used 
to overcome size limitations. A schematic representation of 
the mechanisms involved in postinjury nociceptive priming 
from preclinical evidence is presented in Figure 2.

Genetic Association Studies with CPSP

Recent systematic reviews describe CPSP–genetics 
associations.137–139 In a comprehensive review of 21 CPSP 
gene association studies by Chidambaran et al., only one 
study included pediatric subjects (14–35 years) but the 
number of adolescents recruited was not stated.140 They 
conducted a meta-analysis including six variants of five 
genes (COMT: rs4680 and rs6269, mu-1-opioid receptor/ 
OPRM1: rs1799971, GTP cyclohydrolase 1/GCH1: 
rs3783641, potassium voltage-gated channel modifier sub-
family S member 1/KCNS1: rs734784, tumor necrosis fac-
tor/TNFA: rs1800629),141–149 but only rs734784 (A > G) of 
KCNS1 was found to marginally increase CPSP risk (addi-
tive genetic model; odds ratio = 1.511; 95% confidence 
interval [1–2.284]; P = 0.050). In another study, COMT 
rs4860 and μ-opioid receptor rs1799971 were not found 
to contribute to CPSP development after cesarean 
delivery.150 Warner et al. conducted a GWAS meta- 
analysis and reported that a variant in protein kinase 
C alpha gene (PRKCA) gene was associated with neuro-
pathic pain following total knee replacement,151 but this 
was not replicated in other studies. Another GWAS 
Genome wide association studies in females posthyster-
ectomy showed that rs118184265 at NAV3 was associated 
with CPSP in the replication cohort. Loci at cAMP response 
element-binding protein (CREB)-regulated transcription 
co-activator 3 gene (CRTC3) (rs117119665) associated 
with CREB-dependent transcription of genes and IQ 

motif containing GTPase-activating protein 1 (IQGAP1) 
(rs1145324) involved in immune signaling were signifi-
cantly associated with CPSP in a meta-analysis in both the 
discovery and replication cohort.152 However, the study 
was underpowered due to the small size of the discovery 
cohort. Heterogeneity in surgical cohorts, population struc-
ture, outcome definitions, unbalanced sex ratios, and the 
small cohort sizes are likely responsible for lack of consis-
tent and replicable findings. For example, KCNS1 variant 
rs734784 A > G (Ile48Val) was associated with higher pain 
scores in patients with disc herniation and lumbar back 
pain, phantom limb and stump pain in amputees, preo-
perative sciatica pain, and experimental pain sensitivity148 

but not with long-term pain after breast cancer surgery,153 

raising the possibility that this variant might increase risk 
for neuropathic CPSP but not nonneuropathic pain.154 

Table 1 summarizes the role of genes involved in variant 
CPSP association studies from the literature. It is unclear 
whether these findings will be replicated in pediatric 
cohorts. Although acute postsurgical pain and analgesic 
requirements are important predictors of CPSP in 
children7 and genetic influences on both of these factors 
may play a role in CPSP, this is beyond the scope of this 
focused review on pediatric CPSP genomics. Detailed 
reviews on these aspects have been previously 
published.155–157

Given difficulties in developing large genetic data banks 
with well-characterized CPSP phenotypes in children, 
leveraging systems biology may offer an alternative strategy 
to overcome sample size limitations.174 Integrating genetic- 
level data with biologic processes can generate prioritized 
candidate gene lists. Chidambaran et al. demonstrated the 
utility of functional annotation–based prioritization and 
enrichment approaches to identify novel genes and 
unique/shared biological processes in acute and chronic 
postoperative pain.175 Certain molecular mechanisms 
were elucidated to be common to acute and CPSP (e.g., 
CREB phosphorylation, ion channels, N-methyl- 
D-aspartate). Certain other genetic processes played a role 
in CPSP but not acute pain. These included immune/ 
inflammatory (Toll-like receptor signaling, interferon 
gamma signaling, cytokines, mitogen-activated protein 
kinase/extracellular signal–regulated protein kinase signal-
ing) and neurotransmitter-involved processes (purinergic, 
oxytocin, GABA, glutaminergic, catecholaminergic, dopa-
minergic). Despite the findings mostly being in adult stu-
dies, some of the pathways may be pertinent to pediatric 
populations, based on clinical and preclinical evidence. 
Several genes are common to immune, dopaminergic, ser-
otoninergic, and catecholamine pathways (described in 
Table 1). The latter three are also known to be involved in 
psychological disorders176 implicated in the chronification 
of pain in children. For example, genes involved in 
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dopaminergic neurotransmission (catechol-O-methyl 
transferase [COMT], GTP cyclohydrolase 1 [GCH1], and 
dopamine receptor [DRD2]) have different mechanisms.177 

GCH1 is involved in the production of BH4, a key molecule 
in the synthesis of dopamine, and variants (rs841) decrease 
GCH1 expression and are generally protective in chronic 
pain.178 COMT is involved in degradation of dopamine and 
other catecholamines with key roles in chronic pain.179 Its 
variants rs4680 and rs165774 decrease its enzymatic activ-
ity, increase catecholamine availability, and alter the signal-
ing cascade. The dopaminergic receptors (D1-like receptor 
[D1LR] family [includes D1 and D5 receptors, which are 
stimulatory] and D2-like receptor [D2LR] family [consist-
ing of D2, D3, and D4 receptors, which are inhibitory]) 
have opposite effects on nociceptive transmission. Variant 
rs6277 located in DRD2 decreases the stability of mRNA, 
thereby decreasing the expression of the D2 receptor, and 
increases CPSP risk.180,181 This pathway in modulation of 
nociception after surgery thus presents excellent targets for 
prevention and treatment of CPSP.182–184

Because single variants account only for small effect 
sizes and different pathways play concomitant roles in 
CPSP development, one must consider the combined 
effect of several gene variants (polygenic risk) in CPSP.17 

Polygenic risk scores (PRSs)—the sum of weighted effects 
of different phenotype-associated alleles—have been 
shown to predict several complex conditions.185–187 An 
atlas of PRS associations and putative causal relationships 
across the human phenome was reported, though it did 
not include CPSP as a phenotype.188 Chidambaran et al. 
recently combined systems biology and penalized regres-
sion techniques to determine PRS, which improved pre-
diction of CPSP risk compared to nongenetic models.189 

Another recent study determined a PRS that suggested 
significant overlap of genetics of CPSP with chronic wide-
spread pain, rheumatoid arthritis, and sciatica (but not 
with chronic headache and migraine). They suggested 
that this overlap is potentially due to common mechan-
isms regulating neurological signaling (sodium channels) 
and inflammatory response.190 Interestingly, this overlap 
was nullified in the replication cohort when subjects were 
randomly reassigned. Thus, further research is needed to 
enumerate polygenic risk for therapeutic targeting.191,192

Epigenetic Association with Clinical CPSP in Children

Epigenetic differences prior to surgery could serve as a risk 
factor for CPSP and tissue-specific epigenetic changes in 
response to a given surgery could serve as a separate risk 
factor.193–203 As evidence of epigenetic regulation of CPSP 
risk, offspring of mothers fed a high methyl donor diet 
during the perinatal period exhibit increased acute pain 
(mechanical allodynia following skin incision),204–206 

highlighting the influence of DNA methylation patterns 
in susceptibility of injury-related pain. However, epigenetic 
association studies with CPSP are currently scarce207 and 
present critical research gaps, especially in pediatrics. Using 
C-reactive protein as a marker, epigenome-wide associa-
tion studies identified hypomethylated genes contributing 
to inflammatory processes in CPSP.208 CpG methylation 
within tumor necrosis factor (TNF) gene promoter has 
been found to be a mechanism by which TNF alters risk 
for mild persistent breast pain in patients with breast cancer 
undergoing surgery.153 DNA methylation at the promoter 
region of the mu-opioid receptor gene (OPRM1) that codes 
for mu-opioid receptor and important in opioid pain path-
ways has been studied.209 DNA methylation at the promo-
ter is a potent epigenetic repressor of gene 
transcription210,211 and is elevated in individuals addicted 
to opioids and heroin.212,213 In children undergoing spine 
fusion, blood DNA methylation in an active regulatory 
region of OPRM1 gene was associated with CPSP.214 This 
region binds multiple transcription factors. It was postu-
lated that inhibition of transcription factor binding by DNA 
methylation may decrease OPRM1 gene expression, leading 
to decreased opioid response and increased pain responses. 
In contrast, another study used machine learning methods 
to examine a potential association between the DNA 
methylation of two key players of glial/opioid intersection 
and persistent postoperative pain 3 years after breast cancer 
surgery.215 Though their study supported a predictive uti-
lity of epigenetic testing using global DNA methylation, 
quantified at CpG sites located in the retrotransposon 
LINE1, they did not find that DNA methylation of two 
key genes of the glial–opioid interface (OPRM1 and Toll- 
like receptor TLR4) contributed to the persistent pain phe-
notype. Chidambaran et al. investigated whole blood DNA 
methylation profiles using epigenome-wide association stu-
dies to identify shared, enriched genomic pathways under-
lying CPSP and anxiety sensitivity Childhood Anxiety 
Sensitivity Index (CASI), recognized to increase CPSP 
risk.7,216 They identified 637 CPSP-associated and 2445 
CASI-associated differentially DNA methylated positions 
(DMPs). The DMPs associated with both phenotypes 
enriched GABA receptor and dopamine-DARPP32 feed-
back in cyclic adenosine monophosphate signaling path-
ways. Using bioinformatic approaches, the authors 
elucidated target transcription factors and downstream 
modifying pathways regulating genes with DMP. Aligned 
with the GABA findings, rodent studies have identified 
preoperative anxiety-induced glucocorticoid signaling 
downregulated Npas4 (a neuronal PAS domain protein) 
leading to impaired spinal GABAergic system and ulti-
mately contributing to postoperative hyperalgesia.217 

A schematic showing the presurgical genomic mechanisms 
that might increase risk for CPSP is depicted in Figure 2.
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Blood DNA methylation studies may identify CPSP 
biomarkers. Although environmental stressor changes are 
expected to be similar across tissues,218 blood-based studies 
(for a neurological phenotype such as pain) could have 
limited mechanistic interpretation because DNA methyla-
tion is tissue specific. Although cell-free DNA (cfDNA) has 
not been studied in association with CPSP, reports of 
circulating cfDNA associations with inflammation and 
brain diseases such as schizophrenia219,220 point to potential 
use of cfDNA as a possible alternative to identify tissue- 
specific DNA methylation patterns.221 Functional magnetic 
resonance imaging and spectroscopy could also be used to 
identify specific brain patterns and neurotransmitters asso-
ciated with CPSP epigenetic findings.222 However, because 
evidence does indicate a strong role for peripheral immune 
cells in CPSP development (see above), data could still play 
an important role in our understanding of the epigenetics 
of CPSP.

Postinjury and postsurgery epigenetic changes have 
not been studied in detail in vivo.223 The few cross- 
sectional studies cannot capture dynamic epigenetic 
mechanisms, making it difficult to identify direction of 
causality.224 Prospective longitudinal studies are needed 
to address reverse causation (epigenomes influenced by, 
rather than causal of, pain maintenance states). Within- 
subject studies will also be necessary to help control for 
potential confounders from associations of heritable 
SNPs with large DNA methylation–level differences 
near polymorphisms (cis effects) and associations of 
DNA methylation level differences with variants else-
where in the human genome (trans effects).225

Niculescu identified pain-related blood gene expres-
sion biomarkers for CPSP (MFAP3, GNG7, CNTN1, 
LY9, CCDC144B, and GBP1), some of which are targets 
of existing drugs.226 There are plasma and cerebrospinal 
fluid biomarkers associated with pain,227 but many of 
these remain unexplored in relation to CPSP.

MeQTLs: At the Intersection of Genetics and 
Epigenetics

Characterizing the complex relationship between genetic, 
epigenetic, and transcriptomic variation has the potential to 
increase understanding about the mechanisms underpin-
ning CPSP phenotypes and how to influence the risk. 
Understanding gene–environment interactions underlying 
CPSP is an important area of research that is yet not well 
explored. One such mechanism includes methylation 
quantitative trait loci (meQTL), which are variants that 
influence DNA methylation at close or distant genomic 
loci. meQTLs were recently evaluated as mediators of 
genetic association with CPSP in a study in adolescents 
undergoing spine fusion.228 Their rationale was based on 

the overlap of genetic variant and DNA methylation– 
enriched pathways associated with CPSP that they had 
previously reported on. This pilot study utilized causal 
inference tests to report that DNA methylation at 127 
cytosine–guanine loci mediated association of 470 
meQTLs with CPSP. They noted that several CpG– 
meQTL pairs were annotated to differentially methylated 
regions located at PARK16 locus on Chromosome 1, where 
CPSP risk meQTLs were associated with decreased DNA 
methylation at RAB7L1 and increased DNA methylation at 
PM20D1 genes. This region has previously been implicated 
in dopamine processing disorders of the nervous system.

Future Directions and Emerging Therapeutics 
and Interventions

Forward (bench to bedside) as well as backward (clinical to 
basic science) translation is needed to determine innovative 
targets and CPSP risk mitigation strategies. It is too early for 
tests based on newly discovered associations to provide 
stable estimates of genetic risk for CPSP. Although major 
findings are unlikely to be false positives, estimates based on 
combinations of current risk alleles need constant revision 
as new loci are found. In addition, CPSP may be too diverse 
a phenotype to have common genomic underpinnings— 
perhaps, study of endophenotypes and subgroups of 
patients having different characteristics based on biological 
pathways involved in the nature of pain (for example, 
predominantly nociceptive versus neuropathic), surgical 
nature (for example, musculoskeletal versus visceral), and 
socio-behavioral features will be a solution, as has been 
applied in developmental psychopathology.229 Furth 
ermore, inclusion of children and CPSP as a phenotype 
(especially now that is a recognized International 
Classification of Diseases, 11th Revision entity)1 within 
large-scale genetic studies (for example, the UK Biobank 
registry)188 would allow genome-wide approaches to pedia-
tric CPSP. Thus, we remain optimistic that in the future, 
genetics combined with other biomarkers could preopera-
tively stratify CPSP risk, guiding prevention and treatment. 
Though some gene association studies also investigated 
gene–gene,142 gene–sex,230 and gene–psychological factor 
interactions,231 research of such interactions, including 
gene–epigenetic interactions,211 is still in its infancy, and 
further research is needed to understand acute to chronic 
postsurgical pain transition, especially in children.

Several promising emerging therapeutics targeting genes 
and proteins first identified in animal models and involved 
in the transition from acute to chronic pain have been 
detailed previously.134,193,202,232–236 Gene editing237 and 
the development of novel chemical decoys238,239 that target 
the neurobiological substrates of chronic pain offer the 
potential for precision pain management strategies based 
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on manipulating this genetic context to effectively protect 
patients from CPSP without the negative side effects of 
opioids. Though a new CPSP treatment option has been 
slow to emerge, understanding and targeting genes, gene 
expression, and the processes that regulate expression 
represent a logical next step in developing precision pain 
management for CPSP.

Epigenetic biomarkers are being developed for screening 
in some areas like cancer. They are also being used to 
develop therapeutic targets. Sun et al. found that DNA 
methyltranferase (DNMT) inhibitor 5-Aza-2ʹ- 
deoxycytidine significantly reduced incision-induced 
mechanical allodynia and thermal sensitivity.240 Although 
six epigenetic drugs are approved for use in the United 
States (many more under development), their nonspecific 
effects are a significant drawback (see reviews241,242). In 
addition to generalized epigenetic targeting approaches, 
gene-specific epigenetic targeting is becoming a possibility 
through recently developed genome editing technology 
(e.g., demethylation of specific CpGs in human cells using 
fusions of engineered transcription activator–like effector 
repeat arrays, TET1 hydroxylase catalytic domain) that can 
effectively target and demethylate individual genes in vitro.-
243 In addition, Cas9 systems offer novel individual gene 
targeted approaches.244 Interestingly, the beneficial effects 
of lifestyle modifications (e.g., exercise) on mechanical and 
thermal hypersensitivity after sciatic nerve injury245 are 
partially mediated by decreased HDAC activity and 
increased acetylation of histones in the spinal cord,246 

pointing to the potential use of nonpharmacologic strate-
gies targeting the epigenome in the management of CPSP.

Pharmacogenomic profiles are also being generated for 
individual patients in order to develop better pain manage-
ment strategies.247,248 For example, research on the mu- 
opioid receptor has depicted several polymorphisms that 
could lead to a tailored targeting of an identified SNP.247 

Similarly, there have been some studies using proteomics to 
study different types of pain,249,250 such as widespread 
musculoskeletal pain,251 abdominal pain,252 and low back 
pain.253 Modifying the existing drugs to target these pro-
teins’ functionality may achieve the goal of treating CPSP, 
but proteomics profiling of pediatric populations would be 
a required first step to determine the utility of this strategy.

Conclusion

There is much work to be done to understand pain-related 
genomics and DNA methylation changes, the crosstalk 
between modifiable environmental factors and pain, opti-
mal times to intervene to prevent acute to chronic pain 
transitions, and identification of optimal pathways to target 
therapeutically. Future treatment may include epigeneti-
cally programmed drugs254 or simple modifications to 

preoperative regimens, including nutrition,255 activity, 
mindfulness, or behavioral therapy,256–258 to prevent per-
sistence of pain after injury or surgery. Distinct cellular 
interactions must also be taken into consideration in 
order to enhance translational potential. Clear evidence 
suggests a role for both neurons and immune cells 
(among others) in the epigenetic regulation of CPSP. 
Changing bidirectional communication between neurons 
and immune cells is essential for proper transduction of 
sensory stimuli over the life span and should therefore be 
contemplated when developing future treatments for CPSP 
in children.
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